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Michaelis-Menten models are used to analyze quasi steady state data when the enzymes concerned do not ex-
hibit substrate inhibition, substrate activation, or any other complicating features such as allosterism. The one
site version can be extended to cover the case of an enzyme with several kinetically differing but independent
sites, or mixtures of isoenzymes.

Example 1: Substrate varied mode

From the main SimFIT menu select [A/Z], open program mmfit, select the substrate-varied option, and view
the default test file mmfit.tf4 which has the following data.

S v se(v)
0.21759 0.20273 0.0054324
0.21759 0.20050 0.0054324
0.21759 0.19241 0.0054324
0.39440 0.31925 0.015018
0.39440 0.34123 0.015018
0.39440 0.31252 0.015018
0.71490 0.50336 0.011163
0.71490 0.48104 0.011163
0.71490 0.49241 0.011163
1.2958 0.67103 0.018464
1.2958 0.70535 0.018464
1.2958 0.67639 0.018464
2.3488 0.90847 0.015994
2.3488 0.93885 0.015994
2.3488 0.91501 0.015994
4.2575 1.1107 0.021537
4.2575 1.1439 0.021537
4.2575 1.1035 0.021537
7.7172 1.3639 0.048544
7.7172 1.2947 0.048544
7.7172 1.3882 0.048544
13.988 1.6565 0.042217
13.988 1.5894 0.042217
13.988 1.5785 0.042217
25.355 1.6468 0.078963
25.355 1.7954 0.078963
25.355 1.6748 0.078963
45.959 1.8712 0.029314
45.959 1.8568 0.029314
45.959 1.8148 0.029314

The columns contain data in the following format.

1. Column 1: S, the non–negative substrate concentration which must be in non-decreasing order.

2. Column 2: v, the non–negative initial rate measured for the concentration in column 1.

3. Column 3: se, the positive sample standard deviation of the replicate rate measurements. This column
can be omitted or set to 1 if unweighted regression is required.
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To illustrate the functionality of the SimFIT program mmfit we shall fit a one site model followed by a two
site model (or mixture of two isoenzymes) and see if any improvement in fit can be supported by statistical
analysis. The two models are as follows.

f1(S) =
VmaxS
Km + S

f2(S) =
Vmax1 S
Km1 + S

+
Vmax2 S
Km2 + S

To fit these two models choose to start fitting at order 1 and end fitting at order 2, using the further default
settings, to obtain the following results tables.

Table 1: For best-fit 1:1 Michaelis-Menten function f1
Number Parameter Value Std. Error Lower95%cl Upper95%cl p

1 Vmax 1.7861 0.040866 1.7024 1.8698 0.0000
2 Km 1.9734 0.097463 1.7738 2.1731 0.0000

Parameter correlation matrix for model f1
1

0.8185 1

Table 2: For best-fit 2:2 Michaelis-Menten function f2
Number Parameter Value Std. Error Lower95%cl Upper95%cl p

1 Vmax1 1.0254 0.10377 0.81211 1.2387 0.0000
2 Vmax2 1.0290 0.13352 0.75455 1.3035 0.0000
3 Km1 9.7460 2.8652 3.8566 15.636 0.0022
4 Km2 1.0433 0.11698 0.80283 1.2837 0.0000

Predicted maximum rate (i.e. apparent Vmax ) = 2.0544
Predicted half saturation point (i.e. apparent Km) = 3.1811

Parameter correlation matrix for model f2
1

-0.9568 1
-0.8573 0.9638 1
-0.9631 0.9810 0.9088 1

In order to determine if a significant improvement in fit has resulted we need to consider the following
questions.

1. Are the parameters well-determined with both fits ?

2. Does the residuals analysis indicate satisfactory fits ?

3. Does the F test for excess variance support model f2 in preference to f1 ?

4. Can the best-fit curves be seen to differ when plotted against the data ?

5. Does the graphical deconvolution display convincing evidence that both components of f2 are con-
tributing to the overall fit ?

The results displayed in Tables 1 and 2 show that both models fit well with parameters that differ significantly
from zero. Table 3 indicates that an excellent fit has resulted for model f2 and Table 4 supports the conclusion
that there is statistical evidence that model f2 should be accepted as explaining the data better than model f1.
This is then further emphasized by the graphical displays showing the data with best-fit curves for f1 and f2,
and the deconvolution of the f2 fit into the two contributing components.
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Table 3: Goodness of fit for model f2
Analysis of residuals: W SSQ 28.293
P( χ2 ≥ W SSQ) 0.3442
R2, cc(theory, data)2 0.9963
Largest Absolute relative residual 5.88%
Smallest Absolute relative residual 0.25%
Average Absolute relative residual 2.28%
Absolute relative residuals in range 0.1-0.2 0.00%
Absolute relative residuals in range 0.2-0.4 0.00%
Absolute relative residuals in range 0.4-0.8 0.00%
Absolute relative residuals > 0.8 0.00%
Number of negative residuals (m) 13
Number of positive residuals (n) 17
Number of runs observed (r) 22
P(runs ≤ r : given m and n) 0.9957
5% lower tail point 10
1% lower tail point 9
P(runs ≤ r : given m plus n) 0.9959
P(signs ≤ least number observed) 0.5847
Durbin-Watson test statistic 2.5008 >2.5, -ve serial correlation?
Shapiro-Wilks W statistic 0.9678
Significance level of W 0.4806
Akaike AIC (Schwarz SC) stats 6.2425 ( 11.847)
Verdict on goodness of fit: incredible

Table 4: F test results for model f2 against f1
W SSQ previous 257.18
W SSQ current 28.293
Number of parameters previous 2
Number of parameters current 4
Number of x values 30
Akaike AIC previous 68.458
Akaike AIC current 6.2425, ER = 3.2346E+13
Schwarz SC previous 71.260
Schwarz SC current 11.847
Mallows’ Cp 210.34, Cp/2 = 105.17
Numerator degrees of freedom 2
Denominator degrees of freedom 26
F test statistic (FS) 105.17
P(F ≥ FS) 0.0000
P(F ≤ FS) 1.0000
5% upper tail point 3.3690
1% upper tail point 5.5263

Conclusion based on F test
Reject previous model at 1% significance level
There is strong support for the extra parameters
Tentatively accept the current best fit model
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Example 2: Isotope displacement mode

When there is no appreciable kinetic isotope effect, that is, the binding or kinetic transformation process is
the same whether the substrate is labeled or not, this allows experiments in which labeled ligand is displaced
by unlabeled ligand, or where the flux of labeled substrate is inhibited by unlabeled substrate. Since the ratios
of labeled ligand to unlabeled ligand in the bound state, free state, and in the total flux are equal, a modified
form of Michaelis-Menten equations can be used to model the binding or kinetic processes. For instance,
suppose that total substrate, S say, consists of labeled substrate, [Hot] say, and unlabeled substrate, [Cold]
say. Then the flux of labeled substrate for k ≥ 1 active sites will be given by

−d[Hot]
dt

=
Vmax1 [Hot]

Km1 + [Hot] + [Cold]
+

Vmax2 [Hot]
Km2 + [Hot] + [Cold]

+ · · · +
Vmaxk [Hot]

Kmk
+ [Hot] + [Cold]

.

So, if [Hot] is kept fixed and [Cold] is regarded as the independent variable, then program mmfit can be used
to fit the resulting data. In other words, cold substrate is being used as a competitive inhibitor of the flux of
hot substrate in such experiments.

Using the isotope displacement option in program mmfit with the default test file hotcold.tf1 establishes
that two sites is a statistically significant improvement over one site, and leads to the following deconvolution
plot to display the best-fit curve together with the separate components.
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Note that an important difference between using mmfit in this mode rather than in straightforward kinetic
mode is that the kinetic constants are modified in the following sense: the apparent Vmax values estimated
are actually the true values multiplied by the concentration of labeled substrate, while the apparent Km values
estimated are the true ones plus the concentration of labeled substrate.

Where the actual concentration of [Hot] is known it is possible to fit such data in a more satisfactory and
discerning manner by using SimFIT program qnfit, where the [Hot] can be input as a fixed constant term so
that the actual kinetic constants can be estimated rather than the apparent ones mentioned above.
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Theory

Quasi steady-state enzyme kinetics is actually based on the assumption that the substrate concentration re-
mains constant, i.e. dS/dt = 0, while the initial rate of product production dP/dt ≥ 0 is measured. Although
it is a contradiction of nomenclature it is a widely used short hand convention nevertheless that an initial rate
v(S) can defined as a flux from substrate S into product P as follows

v(S) =
dP
dt
= −dS

dt

and, in the case of k ≥ 1 independent active sites, the appropriate model equation is

v(S) =
Vmax1 S
Km1 + S

+
Vmax2 S
Km2 + S

+ · · · +
Vmaxk S
Kmk

+ S
.

In bygone times before the advent of computers, experimentalists had to fit such equations by plotting in
transformed spaces, such as the Lineweaver-Burke double reciprocal plot, and then extrapolating to estimate
slopes and intercepts, but thankfully this era is long since gone. However, this does not mean that fitting such
an equation by constrained weighted least squares is a simple process. It is not. In fact the case with k = 1 is
trivial, the case with k = 2 is reasonable, but the cases k > 2 require data that is very extensive and accurate,
and where the parameters are sufficiently distinct to allow model discrimination. For this particular model
that requires Vmaxi values to be similar, but Kmi to be distinct.

Program mmfit performs the following steps.

1. The v values are first weighted using wi = 1/se2
i , or used unweighted if all sei = 1.

2. Using the ranges of Si and vi the data are transformed into internal coordinates of order unity.

3. Possible starting estimates are calculated for the parameters based on the internal coordinates, and then
these are altered by adding pseudo-random perturbations until an approximate minimum value for the
weighted sum of squares is located.

4. The parameters are then transformed into internal coordinates that will hopefully be of order unity to
stabilize the optimization.

5. From these random starting estimates the lowest and highest possible limits are calculated, then con-
strained optimization is performed by the quasi-Newton technique.

6. The internal parameters are transformed back into user-space, and the Hessian is estimated at the
solution point then inverted to calculate the parameter covariance matrix.

7. The order of parameters is permuted so that the subscripts for i = 1, 2, . . . , k refer to best-fit parameters
in the order Vmax1 ≤ Vmax2 ≤ . . . ≤ Vmaxk . This is to allows retrospective comparison of fits to
alternative data sets.

8. The apparent (overall) Vmax is calculated as the sum of the Vmaxi and the apparent (overall) Km is
calculated numerically.

9. Analysis of the residuals is performed together with numerous statistical procedures to ascertain good-
ness of fit, parameter reliability, and model discrimination.

10. Results tables and graphs are then provided.

Program mmfit allows users to control the random search for starting estimates and the technique to be used
for calculating the gradient vector, and should the cases with k > 2 be required, users can perform extensive
random searches to obtain starting estimates that can be input retrospectively for manual starts. If these steps
do not succeed it is time to try the SimFIT advanced curve-fitting program qnfit.
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