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Canonical correlation is used to explore the correlations between selected columns of a matrix by calculating

transformations into lower-dimensional subspaces where the transformed variables have maximum correlation,

and can thus be quantified and visualized

Consider a n by m matrix A with elements ai j as follows
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a11 a12 · · · a1m

a21 a22 · · · a2m
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an1 an2 · · · anm
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where a subset of nx columns (i.e. x-variables) will be defined as X , another disjoint subset of ny columns

(i.e. y-variables) will be defined as Y , while ns columns may be suppressed (i.e. not used in the analysis).

Clearly

m = nx + ny + ns where nx ≥ 1, ny ≥ 1 and ns ≥ 0.

Example 1

From the main SimFIT menu choose [Statistics], [Multivariate], then [Canonical correlation] and observe the

format for the test file g03adf.tf1 shown below.

80.0 58.4 14.0 21.0

75.0 59.2 15.0 27.0

78.0 60.3 15.0 27.0

75.0 57.4 13.0 22.0

79.0 59.5 14.0 26.0

78.0 58.1 14.5 26.0

75.0 58.0 12.5 23.0

64.0 55.5 11.0 22.0

80.0 59.2 12.5 22.0

begin{indicators}

-1 1 1 -1

end{indicators}

The final section after the data matrix specifies the meaning of the above data as follows.

• Column 1: variable 1 (y(1) in this case as indicator(1) = -1)

• Column 2: variable 2 (x(1) in this case as indicator(2) = 1)

• Column 3: variable 3 (x(2) in this case as indicator(3) = 1)

• Column 4: variable 4 (y(2) in this case as indicator(4) = -1)

In other words, the red data values are Y variables while the blue values are X variables. Note that, in this

example, there are no variables to be suppressed by setting the corresponding indicator to zero, but in any

case the assignment of columns to types X or Y or suppressed can also be done interactively. Analysis leads

to the next table of results.
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Results from analysis of data in test file g03adf.tf1

Variables: yxxy
Number of X variables = 2, Number of Y variables = 2, Number unused = 0

Minimum of rank of X and rank of Y = 2

Correlations Eigenvalues Proportions χ2 N DOF p
0.9570 0.91591 0.8746 14.391 4 0.0061

0.3624 0.13133 0.1254 0.77438 1 0.3789

CVX: Canonical coefficients for centralized X
-0.4261 1.034

-0.3444 -1.114

CVY: Canonical coefficients for centralized Y
-0.1415 0.1504

-0.2384 -0.3424

In this table the eigenvalues are proportional to the correlation explained by the corresponding canonical

variable, while the χ2 values and corresponding p values indicate the significance of the successive canonical

variables. The results indicate that, with these data, the first canonical variate is sufficient to summarize the

correlations between the X and Y variables. Scree diagrams can also be plotted for this purpose.

Example 2

The figure below illustrates two possible graphical displays for the canonical
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variates defined by the SimFIT test file matrix.tf5, where columns 1 and 2 are designated the Y sub-matrix,

while columns 3 and 4 hold the X matrix. Note that, as eigenvectors do not have unique signs, it is often

necessary to reverse the signs of canonical variates for plotting in order to agree with graphs calculated by

alternative software. This feature, and also the ability to label the components in such diagrams according to

labels added to the data file, is also supported.

Theory

This technique is employed when a n by m data matrix includes at least two groups of variables, say nx

variables of type X , and ny variables of type Y , measured on the same n subjects, so that m ≥ nx + ny . The

idea is to find two transformations, one for the X variables to generate new variables V , and one for the Y
variables to generate new variables U , with l components each for l ≤ min(nx, ny ), such that the canonical

variates u1, v1 calculated from the data using these transformations have maximum correlation, then u2, v2,

and so on. Now the variance-covariance matrix of the X and Y data can be partitioned as

(

Sxx Sxy
Syx Syy

)
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and it is required to find transformations that maximize the correlations between the X and Y data sets.

Actually, the equations

(SxyS−1
yy Syx − R2Sxx )a = 0

(SyxS−1
xxSxy − R2Syy )b = 0

have the same nonzero eigenvalues as the matrices S−1
xxSxyS−1

yy Syx and S−1
yy SyxS−1

xxSxy , and the square roots of

these eigenvalues are the canonical correlations, while the eigenvectors of the two above equations define the

canonical coefficients, i.e. loadings.

Note that the eigenvalues are proportional to the correlation explained by the corresponding canonical variates,

so a scree diagram can be plotted to determine the minimum number of canonical variates needed to adequately

represent the data. This diagram plots the eigenvalues together with the average eigenvalue, and the canonical

variates with eigenvalues above the average should be retained. Alternatively, assuming multivariate normality,

the likelihood ratio test statistics

−2 log λ = −(n − (kx + ky + 3)/2)
l

∑

j=i+1

log(1 − R2
j )

can be calculated for i = 0, 1, . . . , l − 1, where kx ≤ nx and ky ≤ ny are the ranks of the X and Y data sets and

l = min(kx, ky ). These are asymptotically chi-square distributed with (kx − i)(ky − i) degrees of freedom,

so that the case i = 0 tests that none of the l correlations are significant, the case i = 1 tests that none of the

remaining l − 1 correlations are significant, and so on. If any of these tests in sequence are not significant,

then the remaining tests should, of course, be ignored.

The previous figure illustrates two possible graphical displays for the canonical variates defined bymatrix.tf5,

where columns 1 and 2 are designated the Y sub-matrix, while columns 3 and 4 hold the X matrix. The canon-

ical variates for X are constructed from the nx by ncv loading or coefficient matrix CV X , where CV X (i, j)
contains the loading coefficient for the ith x variable on the jth canonical variate u j . Similarly CVY ) is the ny
by ncv loading coefficient matrix for the ith y variable on the jth canonical variate vj . More precisely, if cvx j

is column j of CV X , and cvyj is column j of CVY , while x(k) is the vector of centralized X observations for

case k, and y(k) is the vector of centralized Y observations for case k, then the components u(k)j and v(k)j
of the n vector canonical variates u j and vj are

v(k)j = cvxTj x(k), k = 1, 2, . . . , n

u(k)j = cvyTj y(k), k = 1, 2, . . . , n.

It is important to realize that the canonical variates for U and V do not represent any sort of regression of Y on

X , or X on Y , they are just new coordinates chosen to present the existing correlations between the original

X and Y in a new space where the correlations are then ordered for convenience as

R2(u1, v1) ≥ R2(u2, v2) ≥ . . . ≥ R2(ul, vl).

Clearly, the left hand plot shows the highest correlation, that is, between u1 and v1, whereas the right hand plot

illustrates weaker correlation between u2 and v2. Note that further linear regression and correlation analysis

can also be performed on the canonical variates if required, and also the loading matrices can be saved to

construct canonical variates using the SimFIT matrix multiplication routines, and vectors of canonical variates

can be saved directly from plots like those displayed.
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