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Factor analysis seeks to explore the relationships between multivariate observations with m variables in terms

of a set of k hypothetical factors, where k < m. It is widely used in social and psychological research where

the factors could be things such as intelligence which are difficult to quantify and model, but it is not used

much in the physical sciences where the construction of deterministic models is preferred where possible.

Example 1

From the main SimFIT menu choose [Statistics], [Multivariate], then [Factor analysis] and read in the default

test file g03caf.tf1 which contains the following correlation matrix from a sample of 211 subjects where

9 variables were measured. Actually, due to the symmetry and unit diagonals, only the strict lower or strict

upper triangle is needed, but the SimFIT data input requires a full matrix because the factor analysis procedure

can also read in a data matrix then calculate the correlation matrix interactively.

1 0.523 0.395 0.471 0.346 0.426 0.576 0.434 0.639

0.523 1 0.479 0.506 0.418 0.462 0.547 0.283 0.645

0.395 0.479 1 0.355 0.270 0.254 0.452 0.219 0.504

0.471 0.506 0.355 1 0.691 0.791 0.443 0.285 0.505

0.346 0.418 0.270 0.691 1 0.679 0.383 0.149 0.409

0.426 0.462 0.254 0.791 0.679 1 0.372 0.314 0.472

0.576 0.547 0.452 0.443 0.383 0.372 1 0.385 0.680

0.434 0.283 0.219 0.285 0.149 0.314 0.385 1 0.470

0.639 0.645 0.504 0.505 0.409 0.472 0.680 0.470 1

This matrix is discussed in the book Factor Analysis as a Statistical Method by D.N.Lawley and E.A.Maxwell

London Butterworths (2nd Edition) 1971 which must be consulted in order to understand the following results.

Results from analysis of test file g03caf.tf1

Number of variables 9

Transformation Untransformed

Matrix type Input correlation matrix

Number of factors 3

Replicates Unweighted for replicates

F (Ψ̂) 0.0350

Test statistic T S 7.1494

Degrees of Freedom 12 (Number of cases = 211)

P( χ2
≥ T S) 0.8476

Eigenvalues Communalities Ψ̂

15.968 0.54954 0.45046

4.3577 0.57293 0.42707

1.8475 0.38345 0.61655

1.1560 0.78767 0.21233

1.1190 0.61947 0.38053

1.0271 0.82308 0.17692

0.92574 0.60046 0.39954

0.89508 0.53846 0.46154

0.87710 0.76908 0.23092
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Residual correlations

0.0004

-0.0128 0.0220

0.0114 -0.0053 0.0231

-0.0100 -0.0194 -0.0162 0.0033

-0.0046 0.0113 -0.0122 -0.0009 -0.0008

0.0153 -0.0216 -0.0108 0.0023 0.0294 -0.0123

-0.0011 -0.0105 0.0134 0.0054 -0.0057 -0.0009 0.0032

-0.0059 0.0097 -0.0049 -0.0114 0.0020 0.0074 0.0033 -0.0012

Factor loadings by columns

0.6642 -0.3209 -0.0735

0.6888 -0.2471 -0.1933

0.4926 -0.3022 -0.2224

0.8372 0.2924 -0.0354

0.7050 0.3148 -0.1528

0.8187 0.3767 0.1045

0.6615 -0.3960 -0.0778

0.4579 -0.2955 0.4914

0.7657 -0.4274 -0.0117

Example 2

Test fileg03ccf.tf1 contains the following correlation matrix that is also discussed by Lawley and Maxwell.

It is from an analysis of 220 students on the six subjects indicated in column 1. They suggest that "the fact

that all the correlations between the variates are positive indicates that students who get scores above average

on any one of the subjects tend also to get scores above average on the other subjects."

Gaelic 1 0.439 0.410 0.288 0.329 0.248

English 0.439 1 0.351 0.354 0.320 0.329

History 0.410 0.351 1 0.164 0.190 0.181

Arithmetic 0.288 0.354 0.164 1 0.595 0.470

Algebra 0.329 0.320 0.190 0.595 1 0.464

Geometry 0.248 0.329 0.181 0.470 0.464 1

The next table shows the results from analysis of this correlation matrix for two factors.

Results from analysis of test file g03ccf.tf1

Number of variables 6

Transformation Untransformed

Matrix type Input correlation matrix

Number of factors 2

Replicates Unweighted for replicates

F (Ψ̂) 0.1088

Test statistic T S 2.3346

Degrees of Freedom 4 (Number of cases = 220)

P( χ2
≥ T S) 0.6754
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Eigenvalues Communalities Ψ̂

5.6142 0.48983 0.51017

2.1428 0.40593 0.59407

1.0923 0.35627 0.64373

1.0264 0.62264 0.37736

0.9908 0.56864 0.43136

0.8905 0.37179 0.62821

Factor loadings by columns

0.55332 -0.42856

0.56816 -0.28832

0.39218 -0.44996

0.74042 0.27280

0.72387 0.21131

0.59536 0.13169

The score coefficients are now shown but also a further possibility should be mentioned. As the factors are

only unique up to rotation, it is possible to perform a Varimax or Quartimax rotation to calculate a rotation

matrix R before working out the score coefficients, which may simplify the interpretation of the observed

variables in terms of the unobservable variables.

Factor score coefficients

Method Regression

Rotation None

0.19318 -0.39203

0.17035 -0.22649

0.10852 -0.32621

0.34950 0.33738

0.29891 0.22861

0.16881 0.09783

The next figures illustrate the rows from the loading matrix labeled as r1, r2, · · · , r6 both before and after a

Varimax rotation with γ = 1 and reflection of the y-axis and indicating the presence of two clusters.
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Many workers find it convenient to rotate loadings in this way until all are positive so that the relative

magnitudes and potential groupings can be visualized more easily. The example illustrated above indicates

that factor 2 is what is known as a bi-polar factor with approximately half positive and half negative, but that

the obvious grouping is still preserved by rotation.

It should be pointed out that this procedure may also require the use of reflection of axes in order to achieve

positive loadings, as in the present case where the second set of loadings were reflected by the automatic

technique provided by SimFIT to do such transformations interactively.
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Theory

This technique is used when it is wished to express a multivariate data set in m manifest, or observed variables,

in terms of k latent variables, where k < m. Latent variables are variables that by definition are unobservable,

such as social class or intelligence, and thus cannot be measured but must be inferred by estimating the

relationship between the observed variables and the supposed latent variables. The statistical treatment is

based upon a very restrictive mathematical model that, at best, will only be a very crude approximation and,

most of the time, will be quite inappropriate. For instance, Krzanowski (in W.J.Krzanowski Principles of

Multivariate Analysis, Oxford, revised edition, 2000) explains how the technique is used in the psychological

and social sciences, but then goes on to state

At the extremes of, say, Physics or Chemistry, the models become totally unbelievable. p477

It should only be used if a positive answer is provided to the question, “Is the model valid?” p503

However, despite such warnings, the technique is now widely used, either to attempt to explain observables

in terms of hypothetical unobservables, or as just another technique for expressing multivariate data sets

in a space of reduced dimension. In this respect it is similar to principal components analysis, except that

the technique attempts to capture the covariances between the variables, not the variances. If the observed

variables x can be represented as a linear combination of the unobservable variables or factors f , so that the

partial correlation ri j.l between xi and x j with f l fixed is effectively zero, then the correlation between xi and

x j can be said to be explained by f l . The idea is to estimate the coefficients expressing the dependence of x
on f in such a way that the the residual correlation between the x variables is a small as possible, given the

value of k.

The assumed relationship between the mean-centered observable variables xi and the factors is

xi =
k∑

j=1

λi j f j + ei for i = 1, 2, . . . ,m, and j = 1, 2, . . . , k

where λi j are the loadings, f i are independent normal random variables with unit variance, and ei are

independent normal random variables with variances ψi . If the variance covariance matrix for x is Σ, defined

as

Σ = ΛΛ
T
+ Ψ,

where Λ is the matrix of factor loadings λi j , and Ψ is the diagonal matrix of variances ψi , while the sample

covariance matrix is S, then maximum likelihood estimation requires the minimization of

F (Ψ) =
m∑

j=k+1

(θ j − log θ j ) − (m − k),

where θ j are eigenvalues of S∗ = Ψ−1/2SΨ−1/2. Finally, the estimated loading matrix Λ̂ is given by

Λ̂ = Ψ
1/2V (Θ − I)1/2,

where V are the eigenvectors of S∗, Θ is the diagonal matrix of θi , and I is the identity matrix.

The proportion of variation for each variable xi accounted for by the k factors is the communality
∑k

j=1 λ
2
i j

,

the Psi-estimates are the variance estimates, and the residual correlations are the off-diagonal elements of

C − (ΛΛT + Ψ)

where C is the sample correlation matrix. If a good fit has resulted and sufficient factors have been included,

then the off-diagonal elements of the residual correlation matrix should be small with respect to the diagonals

(listed with arbitrary values of unity to avoid confusion). Subject to the normality assumptions of the model,

4



the minimum dimension k can be estimated by fitting sequentially with k = 1, k = 2, k = 3, and so on, until

the likelihood ratio test statistic

T S = [n − 1 − (2m + 5)/6 − 2k/3]F (Ψ̂)

is not significant as a chi-square variable with [(m − k)2
− (m + k)]/2 degrees of freedom. Note that data

for factor analysis can be input as a general n by m multivariate matrix, or as either a m by m covariance or

correlation matrix. However, if a square covariance or correlation matrix is input then there are two further

considerations: the sample size must be supplied independently, and it will not be possible to estimate or plot

the sample scores in factor space, as the original sample matrix will not be available.

It remains to explain the estimation of scores, which requires the original data of course, and not just the

covariance or correlation matrix. This involves the calculation of a m by k factor score coefficients matrix Φ,

so that the estimated vector of factor scores f̂ , given the x vector for an individual can be calculated from

f̂ = xTΦ.

However, when calculating factor scores from the factor score coefficient matrix in this way, the observable

variables xi must be mean centered, and also scaled by the standard deviations if a correlation matrix has

been analyzed. The regression method uses

Φ = Ψ
−1
Λ(I + ΛTΨ−1

Λ)−1,

while the Bartlett method uses

Φ = Ψ
−1
Λ(ΛTΨ−1

Λ)−1.
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