

Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. https://simfit.org.uk

Sometimes it is required use LAT_EX to display chemical structures inside a scientific plot, and this document describes how to do this using a condensed scheme for the oxidation of p-dimethylaminomethylbenzylamine. Note that all the files mentioned in this document are distributed as $SIMF_IT$ test files so that users simply wishing to create the final composed document can proceed directly to the last section describing how to use EditSVG

The TEX source

This is the code contained in the file latex_chemical_formula.tex

```
\documentclass[12pt]{article}
\usepackage{carom}
\pagestyle{empty}
\begin{document}
{\begin{picture}(3000,600)(0,0)
\thicklines
\mu(700, 450) \{\nu(1, 0), 400\}
put(820,550){[0]}
\mu(1000,0) \{ bzdrv \{ 1 = CH0; 4 = CH$, \{2\} \ (CH$, \{3\} \ ), \{2\} \} \}
put(1650, 400) \{+\}
\mu(1750, 400) \{ NH\$ \{ 3 \} \}
\mu(2000, 450) \{\nu(1, 0), 400\}
put(2120,550){[0]}
\left(2300,0\right)\left(\frac{1}{2}\right) = CO_{1}^{2} + 4 = CH_{1}^{2} + C
\end{picture}}
\end{document}
```

which displays like this.

To import this formula into a graph using **EditSVG**, latex_maths_equation.svg can be made using the following commands, or latex_maths_equation.tex can be input directly into **EditSVG**.

- latex latex_chemical_formula.tex
- dvips latex_chemical_formula.dvi
- dvisvgm -E latex_chemical_formula.ps

The file latex_chemical_formula.svg created is then ready to be imported into EditSVG but, alternatively, the source file latex_chemical_formula.tex can be opened in or dragged and dropped directly onto EditSVG if there is a local installation of LATEX. It should be realized that, when using LATEX in this way to create a SVG file, the command line must be used from a folder containing the *.TEX file required as a local file and not as a fully qualified path-filename to a remote source file. The program EditSVG circumvents this issue when importing LATEX source by creating local copies of all files.

Creating the plot file

The file latex_chemical_plot.svg with the time course data to be used looks like this before the equation is added.

Oxidation of p-Dimethylaminomethylbenzylamine

This figure was created using **qnfit** fit three data sets for the consecutive reaction scheme

$$A \to B \to C$$

in the SIMFIT test library file consec3.tfl, then fitted using the model in the model file consec3.mod.

After manipulating the line thicknesses, title, legend, and colors, the files <code>latex_chemical_plot.svg</code>, and <code>latex_chemical_plot.eps</code> were created to archive the graph. In addition the <code>SIMFIT</code> metafile <code>latex_chemical_plot.metafile</code> was saved so that users wishing generate this plot can easily do so using the <code>SIMFIT</code> program <code>simplot</code> or the <code>SIMDEM</code> program <code>simdem70</code>. Users wishing to avoid this process can simply read the <code>SIMFIT</code> metafile <code>latex_maths_plot.metafile</code> directly into the <code>SIMFIT</code> program <code>simplot</code>, or the <code>SIMDEM</code> program <code>simdem70</code>.

Joining the SVG files using EditSVG

Open program EditSVG then input the test file latex_chemical_plot.svg. Then there are two options.

- 1. Input the test file latex_chemical_formula.svg directly; or
- 2. read in the test file latex_chemical_formula.tex which will then be used by LATEX to generate an internal copy of latex_chemical_formula.svg.

Finally, just use the mouse to move the equation into position and alter the scaling as required to obtain the final plot saved as latex_chemistry.svg and shown next.

Summary

The programs referred to in this document are as follows.

- 1. InkScape is an OpenSource program that takes in SVG files and can write out EPS and other files.
- 2. EditSVG is a SIMF_IT and SIMD_EM program that takes in SVG or TEX files and writes out SVG and other files.
- 3. editPS is a SIMFT and SIMDEM program that takes in EPS files and writes out only EPS files.
- 4. The SIMFIT program simplot and the SIMD_EM program simdem70 take in SIMFIT metafiles and write out either SVG or EPS files.

Further, the SIMFIT test files (*.TEX and *.SVG) described in this document that can be used by program **EditSVG**, and those (*.EPS) that can be used by program **editPS** are now listed.

File name	Data included
latex_chemical_plot.metafile	SIMF _I T or SIMD _E M metafile to create the plot without any equation
latex_chemical_formula.tex	LATEX source file for the maths equation with no plot
latex_chemical_formula.svg	SVG file containing the formula only
latex_chemical_plot.svg	SVG file containing the plot only
latex_chemistry.svg	SVG file containing both the formula and plot
latex_chemical_formula.eps	EPS file containing the formula only
latex_chemical_plot.eps	EPS file containing the plot only
latex_chemistry.eps	EPS file containing both the formula and plot