
SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
http://www.simfit.org.uk

Given a model defining several equations in one or more variables, the integrals can be estimated over a
hyper-rectangular region defined by fixed limits.

The following procedure is required forn ≥ 1 functions ofm ≥ 1 variables.

1. Create a file defining then functions ofm variables to be integrated.

2. Open programusermod and input the file definingn function ofm variables.

3. It is necessary to explicitly indicate thatn functions ofm variables are required and the values forn
andm must be specified correctly.

4. Programusermod then checks that the function is defined correctly.

5. The range of integration required must be defined by editing the vectorsBLI M andT LI M to specify
them lower and upper limits for the corresponding variables.

6. The absolute errorEPSABS and relative errorEPSREL parameters required must be set.

7. Integration can then be requested but the result should only accepted ifIF AIL = 0 on completion.

8. If IF AIL = 1 on exit, then re-entry for continued iterations will be offered, otherwise some of the
previous parameters will have to be adjusted and the integration repeated.

From the main SimFIT menu, choose [A/Z], open programusermod, then read in test filed01eaf_e.mod
which defines the the integrand used to evaluate the following integral The program accepts a user defined
model forn functions ofm variables and estimates then integrals

Ii =
∫ B1

A1

∫ B2

A2

. . .

∫ Bm

Am

f i (x1, x2, . . . , xm ) dxm . . . dx2 dx1

for i = 1, 2, . . . , n, where the limits are taken from the arraysAi = blim(i) andBi = tlim(i). The procedure
only returns IFAIL= 0 when

max
i

(ABSEST (i)) ≤ max(EPSABS, EPSREL ×max
i
|FI N EST (i) |),

whereABSEST (i) is the estimated absolute error inFI N EST (i), the final estimate for integrali, as described
for NAG routine D01EAF.

Then functions defined by SimFIT test filed01eaf_e.mod are

f j = log(x1 + 2x2 + 3x3 + 4x4) sin(j + x1 + 2x2 + 3x3 + 4x4) for j = 1, 2, . . . , 10

while the results from integration are listed in the following tables.

Results from the integration of d01eaf_e.mod
IF AIL 0 (from D01EAF)

EPSABS 1.000E-06

EPSREL 1.000E-03

MI NCLS 459 (Function evaluations)

T EST ER 4.417E-04 (Error threshold: * where exceeded)

1



Variable BLI M T LI M
1 0.0 1.0

2 0.0 1.0

3 0.0 1.0

4 0.0 1.0

Function I NT EGRAL ABSEST
1 3.8352146E-02 1.8779E-04

2 4.0118447E-01 2.3766E-04

3 3.9516964E-01 1.6379E-04

4 2.5837668E-02 1.7314E-04

5 -3.6724934E-01 2.3574E-04

6 -4.2268900E-01 1.5493E-04

7 -8.9510341E-02 1.5503E-04

8 3.2596371E-01 2.2910E-04

9 4.4174823E-01 4.5854E-03 *

10 1.5139146E-01 5.1370E-04 *

The other parameters in these tables that have not already been defined have the following meanings.

MINCLS Number of calls to the subroutine for function evaluations.
TESTER Maximum error estimate acceptable so that items larger thanthis (if any) are

indicated by the symbol * in the listing (as for functions 9 and 10).
There can be a few * symbols and still have IFAIL= 0 on exit as a slightly
weaker test than this is performed by the numerical integrator.

INTEGRAL Integral for listed function.
ABSEST Error estimate for listed function.

The SimFIT test file defining these 10 functions of 4 variables is now listed.

%
...
model for the 10 functions in 4 variables required to demonstrate D01EAF
f_j = log(x_1 + 2x_2 + 3x_3 + 4x_4)(sin(j + x_1 + 2x_2 + 3x_3 + 4x_4)

for j = 1, 2, ..., 10
...
%
10 equations
4 variables
0 parameters
%
begin{expression}
A = y(1) + 2y(2) + 3y(3) + 4y(4)
B = log(A)
f(1) = B*sin(1 + A)
f(2) = B*sin(2 + A)
f(3) = B*sin(3 + A)
f(4) = B*sin(4 + A)
f(5) = B*sin(5 + A)
f(6) = B*sin(6 + A)

2



f(7) = B*sin(7 + A)
f(8) = B*sin(8 + A)
f(9) = B*sin(9 + A)
f(10) = B*sin(10 + A)
end{expression}
%

Note the use of dummy variables A and B to avoid re-calculations.

3


