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In order to separate a set of objects into categories according to some measure of similarity between individual

items there has to be some concept of the distance between them. For instance, for two sets of coordinates

α = (x1, y1) and β = (x2, y2) we could use the square of the Euclidean distance between them, that is

(α − β)2
= (x1 − x2)2

+ (y1 − y2)2

as this is the squared length of the hypotenuse of a right angle triangle with coordinates (x1, y1), (x2, y1)
and (x2, y2). We could then group items together depending on such a distance measure between them or

according to distances from some fixed points. Cluster analysis extend such a concept to situations involving

more than two dimensions, and using alternative measures of distance.

Calculating a distance matrix

The idea is, as in data mining, where you have a n by m matrix ai j of m variables (columns) for each

of n cases (rows) and wish to explore clustering, that is groupings together of like entities. To do this,

you choose an appropriate pre-analysis transformation of the data, a suitable distance measure, a meaningful

scaling procedure, and a sensible linkage function. SimFIT will then calculate a distance matrix, or a similarity

matrix, and plot the clusters as a dendrogram. As an example, from the main SimFIT menu choose [Statistics],

[Multivariate], then [Distance matrix] and analyze the test file cluster.tf1 giving the results displayed

in this table.

Variables included:

1 2 3 4 5 6 7 8

Transformation: Untransformed

Distance: Euclidean distance

Scaling: Unscaled

Linkage: Group average

Weighting: [weights r not used]

Distance matrix (strict lower triangle) is:

2) 22.0

3) 36.2 28.8

4) 22.9 29.7 36.6

5) 1.95 16.6 31.1 24.5

6) 39.8 32.7 40.6 31.8 26.1

7) 21.7 28.3 38.2 21.3 19.3 36.2

8) 14.1 24.1 42.6 18.8 18.9 34.2 18.5

9) 32.7 23.0 45.4 44.9 23.6 38.7 36.6 33.4

10) 31.6 23.9 37.2 41.0 22.2 43.9 33.5 33.9 (+)

10) 24.7

11) 32.2 24.4 39.1 41.8 20.2 41.4 31.3 33.4 (+)

11) 19.9 8.25

12) 29.9 22.7 37.7 39.0 17.2 38.4 29.2 31.4 (+)

12) 18.1 11.4 6.24

Note that, as a distance matrix is symmetrical with diagonals = 0, only the strict lower triangle is displayed.

The header to this table indicates that all eight variables were included in the analysis using untransformed

data, the Euclidean distance, no data scaling, group average linkage, and no weights. The symbol (+) merely

indicates wrap round due to long lines. The meaning of the parameter settings in the table header will now be

explained.
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Distance matrix norms

The distance d jk between objects j and k is just a chosen variant of the weighted Lp norm

d jk = {

m∑

i=1

wi jkD(a ji/si, aki/si)}
p , for some D, e.g.,

(a) The Euclidean distance D(α, β) = (α − β)2 with p = 1/2 and wi jk = 1

(b) The Euclidean squared difference D(α, β) = (α − β)2 with p = 1 and wi jk = 1

(c) The absolute distance D = |α − β | with p = 1 and wi jk = 1, otherwise known as the Manhattan or city

block metric.

However, as the values of the variables may differ greatly in size, so that large values would dominate the

analysis, it is usual to subject the data to a preliminary transformation or to apply a suitable weighting. Often

it is best to transform the data to standardized (0, 1) form before constructing the dendrogram, or at least to

use some sort of scaling procedure such as:

(i) use the sample standard deviation as si for variable i,

(ii) use the sample range as si for variable i, or

(iii) supply precalculated values of si for variable i.

Bray-Curtis dissimilarity uses the absolute distance except that the weighting factor is given by

wi jk =
1∑m

i=1(a ji/si + aki/si)

which is independent of the variables i and only depends on the cases j and k, and distances are usually

multiplied by 100 to represent percentage differences. Bray-Curtis similarity is the complement, i.e., 100

minus the dissimilarity.

The Canberra distance measure, like the Bray-Curtis one, also derives from the absolute distance except that

the weighting factor is now

wi jk =
1

λ(a ji/si + aki/si)
.

There are various conventions for defining λ and deciding what to do when values or denominators are zero

with the Bray-Curtis and Canberra distance measures, and the scheme used by SimFIT is as follows.

• If any values are negative the calculation is terminated.

• If any Bray-Curtis denominator is zero the calculation is terminated.

• If there are no zero values, then λ is equal to the number of variables in the Canberra measure.

• If both members of a pair are zero, then λ is decreased by one for each occurrence of such a pair, and

the pairs are ignored.

• If one member of a pair is zero, then it is replaced by the smallest non-zero value in the data set divided

by five, then scaled if required.

Distance matrix linkage

The values in a distance matrix will affect subsequent analysis. For instance, the shape of a dendrogram

depends on the choice of analytical techniques and the order of objects plotted is arbitrary: groups at a
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given fixed distance can be rotated and displayed in either orientation. Another choice which will affect the

dendrogram shape is the method used to recalculate distances after each merge has occurred. Suppose there

are three clusters i, j, k with ni, n j, nk objects in each cluster and let clusters j and k be merged to give cluster

j k. Then the distance from cluster i to cluster j k can be calculated in several ways.

[1] Single link: di, jk = min(di j, dik )

[2] Complete link: di, jk = max(di j, dik )

[3] Group average: di, jk = (n jdi j + nkdik )/(n j + nk )

[4] Centroid: di, jk = (n jdi j + nkdik − n jnkd jk/(n j + nk ))/(n j + nk )

[5] Median: di, jk = (di j + dik − d jk/2)/2

[6] Minimum variance: di, jk = {(ni + n j )di j + (ni + nk )dik − nid jk }/(ni + n j + nk )

Distance matrix nearest neighbors

Once a distance matrix has been calculated, it is sometimes useful to calculate the nearest neighbors, as

illustrated in the next table for the previous data.

Object Nearest Distance

1 8 14.1067

2 5 16.5529

3 2 28.7576

4 8 18.7617

5 2 16.5529

6 5 26.0960

7 8 18.4932

8 1 14.1067

9 12 18.1384

10 11 8.24621

11 12 6.24500

12 11 6.24500

In this table, column 1 refers to the objects in logical order, column 2 indicates the object that is closest, i.e.,

the nearest neighbor, while column 3 records these minimum distances. Clearly, the nearest neighbors will

depend upon the parameters used to configure the calculation of the distance matrix.
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