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1 Statistical distributions in data analysis

Data analysis will usually consist of assuming a statistical distribution and comparing a sample, or a test

statistic derived from it, to possible values from the assumed distribution. If the test statistic proves to have a

rather extreme value when referred to the assumed distribution it may be taken to suggest that the assumed

distribution may not be correct. So statistical testing will often consist of a null hypothesis, denoted as �0,

and there may be an alternative hypothesis or several alternative hypotheses, say ��.

The situation can be summarized by the following sequence.

1. Collect data.

An example could be a sample of sizes, times, weights, distances, etc.

2. Calculate a test statistic.

An example could be calculating the sample mean or standard distribution.

3. Assume a theoretical null distribution, denoted by �0.

An example �0 could be assuming a normal distribution with mean of 6 and standard deviation of 4.

4. Assume a possible alternative distribution, denoted by ��.

For instance �� might be a normal distribution with a mean of 7 and a standard deviation of 4.

5. Check if the test statistics would be extreme if coming from the assumed distribution.

For instance, to do this we could see if the sample estimates for mean and standard deviation are more

consistent with �0 rather than ��. This would lead to one of two possible courses of action.

• Consider the possibility that �0 is likely to be correct.

• If no satisfactory conclusion can be reached then accumulate more data or assume a new distribu-

tion, or the same distribution with different parameters.

Obviously, if the assumed distribution is incorrect, any conclusions drawn from this procedure will be of

questionable value. Now almost no scientific experiment ever leads to data that follows a known distribution

exactly, so what happens in practice is that a number of standard distributions are chosen in the hope that one

of these will be sufficiently close to the distribution of the test statistic, or that the data can be transformed

into an alternative form that is closer to an assumed distribution.

In actuality, only a limited number of standard distributions, such as the following, are encountered in data

analysis.

a) Normal

b) t

c) chi-square

d) F

e) Binomial

f) Poisson

g) Uniform
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Even so-called nonparametric tests often finish up by relying on some standard distribution, and frequent use

is made in statistical theory of the Gauss central limit theorem. This shows that sums of suitably normalized

values will tend, in the limit of large sample size =, to a normal distribution. However = may often be very

large before such convergence is achieved. Because of all this uncertainty it is often stated that statistical

analysis can prove nothing, or alternatively anything. Nevertheless this is all we have so it is useful to sum up

some unifying concepts that will be assumed in subsequent SimFIT tutorials.

2 Continuous variables

A continuous random variable - is a number that can take all values in a range, say−∞ ≤ - ≤ ∞ but is subject

to certain constraints. Typical continuous variables would be time, size, blood pressure, etc., which like so

many measured variables happen to be necessarily non-negative. In particular, there will be a non-negative

probability distribution function 5 (G) ≥ 0 and a cumulative distribution function � (G) such that that the

probability that - has a particular value G in the range � ≤ - ≤ � will be

%(� ≤ - ≤ �) =

∫
�

�

5 (C)3C

= � (�) − � (�) .

Here, for example are 5 (G) and � (G) for a normal distribution with mean zero and variance one.
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Evidently values of - less than -3 or greater than 3 would be very unlikely for this distribution and could

indicate a mean differing from zero and/or a variance differing from 1. A statistical test using the sample

mean and sample variance could be constructed by such reasoning.
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Note also that, because the variable is continuous, it makes no sense to assign a probability of the random

variable having a definite value, but only the probability of it taking a value in an interval � ≤ - ≤ �.

However, the integration of 5 (G) over the possible range, say −∞ ≤ - ≤ ∞ would be one, i.e.

∫ ∞

−∞

5 (C)3C = 1.

3 Discrete variables

A discrete random variable - is an integer that can only take a limited number of values. Examples would be

the number of heads resulting from a fixed number of coin tossings, or the number of eggs hatching as males

from a clutch of eggs.

In particular, there will be a non-negative probability mass function ?(G) ≥ 0 which would describe the

probability of - having a particular integer value, that is %(- = :) = ?(:). Obviously, if there are = possible

values that - can have, say :1, :2, . . . := then

=∑
8=1

?(:8) = 1.

Here, for example is the plot of probabilities for a binomial distribution with # = 10 and ? = 0.5 such as

would result, for instance, by adding up the number of times a head would occur in ten throws of a coin.
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Evidently numbers of heads of 0, 1, 9, or 10 would be very unlikely for this distribution and could be taken to

indicate a biased coin. A statistical test using the sample mean and sample variance could be constructed by

such reasoning.
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