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Cooperative ligand binding models are used in the situation where a protein or receptor has more than one type

of binding site and these are linked in such a way as to display deviations from normal hyperbolic binding. If

a receptor has = > 1 binding sites that differ in binding constants but are independent this can only give rise to

apparent negative cooperativity. If the sites are linked in that the binding to one site influences the subsequent

binding of further ligands then positive or mixed cooperativity can be exhibited.

Ligand binding theory will be presented under the following headings.

1. Historical introduction

2. Binding polynomials

3. The Hessian of a binding polynomial

4. Definition of cooperativity

5. Zeros of the binding polynomial

6. Statistical interpretation of saturation functions

7. Cooperativity analysis

Historical Introduction

In 1910 Hill [1] proposed that the sigmoid binding curve for oxygen binding to haemoglobin �1 could be

analyzed in terms of the binding of = ligands - in one step with no appreciable intermediates, i.e. the mass

action description

�1 + =- ⇋ �1-=.

This leads to the Hill equation describing the fractional saturation H as a function of concentration G, and the

Hill plot of log[H/(1 − H)] as a function of log G as follows

H =
 G=

1 +  G=

log

(

H

1 − H

)

= = log G + log .

It is now realized that the Hill equation is simply an empirical equation that is at best a poor approximation to

any real binding situation since:

1. it is only an appropriate representation for a one-site binding process, i.e. for = = 1 ;

2. when = < 1 it has an infinite slope at the origin and cannot model any realistic binding situation;

3. when = > 1 it has zero slope at the origin and cannot model any realistic binding situation;

4. when = is not a positive integer it is pure nonsense; and

5. using it to discuss the effect of cooperativity on graphical features such as sigmoidicity in the H(G)

curve, or convexity in Lineweaver-Burke or Scatchard space, has resulted in considerable confusion.
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Of course, before the days of computers and nonlinear regression, fitting a straight line to a Hill plot to get a

non-integer value for the estimated slope was all that could be done, and this non-integer value was correctly

taken to mean that this was a result of a cooperative binding model.

Nowadays no one would dream of discussing cooperative binding in terms of the Hill equation or fitting a

straight line to a Hill plot but, by a serendipitous coincidence, it turns out that the variable slope of the curve

obtained by transforming a saturation curve into Hill space still provides an unambiguous definition of the

sign and magnitude of cooperativity that has got nothing at all to do with the Hill equation. That is because,

to use receptor terminology,
H

1 − H
=

[Bound]

[Free]
.

Binding polynomials and their Hessians

In 1925 Adair [2] improved the description of binding isotherms by defining binding constants for the

individual binding events, and later it came to be appreciated that these have to be normalized by statistical

factors in order to discuss the affinity of receptor for ligand in adjacent binding events. In 1967 Wyman [3]

rationalized the situation by pointing out that, for a non-aggregating macromolecule with = binding sites and

only one ligand G varied, there would be binding polynomial which would act like a partition function in that

successive terms of degree 8 in the polynomial are proportional to the amount of macromolecule with 8 ligands

attached.

So now the binding of ligands to receptors can be defined for all possible cooperative binding schemes in

terms of a binding polynomial ?(G) in the free ligand activity G, as follows

?(G) = 1 +  1G +  2G
2 + · · · +  =G

=

= 1 + �1G + �1�2G
2 + · · · +

=
∏

8=1

�8G
=

= 1 +

(

=

1

)

�1G +

(

=

2

)

�1�2G
2 + · · · +

(

=

=

) =
∏

8=1

�8G
=,

where the only difference between these alternative expressions concerns the meaning and interpretation of the

binding constants. The fractional saturation H(G) is just the scaled derivative of the log of the polynomial with

respect to log(G), and an important auxiliary function is ℎ(G), the scaled Hessian of the binding polynomial

and these are defined as follows

H(G) =

(

1

=

)

3 log ?(G)

3 log G

=

(

1

=

)

G?′(G)

?(G)
, and

ℎ(G) = =??′′ − (= − 1)?′2.

Definition of the Hessian of a binding polynomial

To investigate the algebraic properties of arbitrary polynomials 5 (G) of degree = it is useful to consider the

homogeneous form* (G, H) as in

5 (G) = ?0 + ?1G + ?2G
2 + . . . + ?=G

=, in the equivalent form

* (G, H) =

(

=

0

)

�0G
= +

(

=

1

)

�1G
=−1H +

(

=

2

)

�2G
=−2H2 + . . . +

(

=

=

)

�=H
=
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where H is a dummy variable. Then the Hessian of the polynomial� ( 5 ) can be derived from the symmetrical

formula for � (*) leading to the expression for ℎ(G) in the Hill plot slope as follows

� (*) =
1

=2(= − 1)2
[*GG*HH −*

2
GH]

� ( 5 ) =
ℎ(G)

=2(= − 1)

using Euler’s theorem on homogeneous functions and setting H = 1 after differentiating.

Definition of cooperativity

Given a binding polynomial of degree = there are = − 1 cooperativity coefficients 28 defined as

28 = �8+1 − �8 for 8 = 1, 2, . . . , = − 1,

or alternatively as log(�8+1/�8), and the interpretation of these is perfectly clear: in a situation where 28 > 0

the macromolecule has greater affinity for binding the 8 + 1th ligand after the 8th ligand has been bound and it

is perfectly reasonable to describe this as mechanistic positive cooperativity. Hence every binding situation

for = ligands can be summarized by a succession of = − 1 signs and it might be thought that during the

actual saturation of macromolecule with ligand there would be a succession of phases with possibly differing

cooperativity. For instance, the sequence + − + might be supposed to give a saturation curve with positive,

then negative, then positive cooperativity. Unfortunately the cooperativity coefficients cannot be interpreted

in this way and they are not a unique indicator of the sign and magnitude of the type of cooperativity exhibited

during the saturation process. The reason for this is simply that binding does not occur in a succession of

isolated steps and at every stage for 0 < G < ∞ every species that is possible is present, that is no ligands

bound, one ligand bound, two ligands bound, etc. up to = ligands bound.

At every point in the range 0 < G < ∞ there is a one site binding curve H0?? with a uniquely defined apparent

binding constant  0?? according to the scheme

[Free sites] + - ⇋ [Occupied sites]

that is

H0?? (G) =
 0??G

1 +  0??G
.

Surely all would agree that the sign and magnitude of cooperativity at that point in the saturation curve would

depend on whether  0?? is increasing or decreasing as a function of G. It turns out that

 0?? =

?′(G)

=?(G) − G?′(G)
and

3 0??

3G
=

ℎ(G)

(=?(G) − G?′(G))2

so that increasing affinity (i.e. positive cooperativity) requires that the Hessian of the binding polynomial

ℎ(G) has ℎ(G) > 0, decreasing affinity (i.e. negative cooperativity) requires ℎ(G) < 0 while at a point where

ℎ(G) = 0 cooperativity changes sign. Bardsley and Wyman [4] emphasized that the magnitude of the Hill

slope with respect to 1 is the unambiguous indicator of cooperativity which also depends on the sign of the

Hessian ℎ(G) as follows
3 log[H/(1 − H)]

3 log G
= 1 +

Gℎ(G)

?′(G) (=?(G) − G?′(G))
.

and Wood and Bardsley [5] proved that the Hessian can have at most = − 2 positive zeros.
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Zeros of the binding polynomial

If the = zeros of the binding polynomial are U8 then the fractional saturation H can be expressed as

H =
( G

=

)
=
∑

8=1

1

G − U8
,

but further discussion depends on the nature of the zeros.

First observe that, for a set of < groups of receptors, each with =8 independent binding sites and binding

constant :8 , then the zeros are all real and

?(G) =

<
∏

8=1

(1 + :8G)
=8 ,

and H =
1

∑<
8=1 =8

<
∑

8=1

=8:8G

1 + :8G
,

so H is just the sum of simple binding curves, giving concave down double reciprocal plots, etc.

Actually Bardsley et al [6] and [7] proved that, if a binding polynomial factorizes into < polynomials ?8 with

positive coefficients according to

?(G) = ?1(G)?2(G) . . . ?<(G)

then the Hill plot slope cannot exceed that of the Hill plot slope for any of the individual factors. As a binding

polynomial can always be factorized into a product of linear factors with real negative zeros and complex

conjugate pairs forming quadratic factors it might be supposed that the Hill slope can never exceed two.

However, if a binding polynomial of degree > 2 has complex conjugate zeros, the Hill slope may exceed two

and there may be evidence of strong positive cooperativity. That is why Hill plot slopes up to a maximum of

the degree of the binding polynomial can be achieved if there are quadratic factors with negative coefficients,

corresponding to a group of at least three linked binding sites.

For instance, the binding polynomial for a four site Monod-Wyman-Changeux model is

?(U) =
1

1 + !

(

(1 + U)4 + !(1 + 2U)=
)

and this can factorize into the form

@(G) = (1 + 01G + 11G
2) (1 − 02G + 12G

2)

with 01 > 0, 02 > 0, 11 > 0, 12 > 0 under certain constraints so that the meaningless quadratic factor with a

negative term allows Hill slopes greater than two.

Edelstein and Bardsley [8] subsequently explored the relationship between the Hill slope at half-saturation

and the Hessian of the binding polynomial.

Statistical interpretation of saturation functions

The species fractional populations B8 which are defined for 8 = 0, 1, . . . , = as

B8 =
 8G

8

 0 +  1G +  2G2 + · · · +  =G=

with  0 = 1, are interpreted as the proportions of the receptors in the various states of ligation as a function

of ligand activity. The species fractions defined as H8 = 8B8/= for 8 = 1, 2, . . . , = are the contributions of the
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species to the overall saturation. Note that

=
∑

8=0

B8 = 1, , while

=
∑

8=1

H8 = (1/=)3 log ?/3 log G.

Such expressions are very useful when analyzing cooperative ligand binding data and they can be generated

from the best fit binding polynomial after fitting binding curves with program sffit, or by interactive input of

binding constants into program simstat. At the same time other important analytical results like factors of

the Hessian and minimax Hill slope are also calculated.

The species fractional populations can be also used in a probability model to interpret ligand binding in several

interesting ways. For this purpose, consider a random variable * representing the probability of a receptor

existing in a state with 8 ligands bound. Then the the probability mass function, expected values and variance

are

%(* = 8) = B8 (8 = 0, 1, 2, . . . , =),

� (*) =

=
∑

8=0

8B8 ,

� (*2) =

=
∑

8=0

82B8 ,

+ (*) = � (*2) − [� (*)]2

= G

(

?′(G) + G?′′(G)

?(G)

)

−

(

G?′(G)

?(G)

)2

= =
3H

3 log G
,

as fractional saturation H is � (*)/=. In other words, the slope of a semi-log plot of fractional saturation data

indicates the variance of the number of occupied sites, namely; all unoccupied when G = 0, distribution with

variance increasing as a function of G up to the maximum semi-log plot slope, then finally approaching all

sites occupied as G tends to infinity. You can input binding constants into the statistical calculations procedure

to see how they are mapped into all spaces, cooperativity coefficients are calculated, zeros of the binding

polynomial and Hessian are estimated, Hill slope is reported, and species fractions and binding isotherms are

displayed, as is done automatically after every = > 1 fit by program sffit.

Cooperativity analysis

After fitting a model, program sffit outputs the binding constant estimates in all the conventions and, when

= > 2 it also outputs the zeros of the best fit binding polynomial and those of the Hessian of the binding

polynomial ℎ(G).

The positive zeros of ℎ(G) indicate points where the theoretical one-site binding curve coinciding with the

actual saturation curve at that G value has the same slope as the higher order saturation curve, which are

therefore points of cooperativity change. The SimFIT cooperativity procedure allows users to input binding

constant estimates retrospectively to calculate zeros of the binding polynomial and Hessian, and also to plot

species population fractions.
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For instance, for 4 sites with

 1 = 100,  2 = 10,  3 = 1, and  4 = 0.1,

the Hessian has these characteristic features

positive zero at G = 5.86139

minimum Hill slope in the range plotted is 0.0842, at G = 0.28607

maximum Hill slope is 1.44479, at G = 17.059, and

the slope at half saturation is 1.0847, at G = 6.5808.

The next graph shows the plot of the Hill slope and illustrates how it varies for these  8 values leading to the

maximum and minimum slopes indicated along with the point where the positive zero of the Hessian occurs.
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The next graph is the actual Hill plot obtained using these  8 values which shows the sort of complicated Hill

plots that can be obtained when there are more than two cooperatively linked sites, that is, where up to = − 2

zeros of the Hessian of the binding polynomial can occur.

The asymptotes are for the equation

H =
:G

1 + :G

with : =  1/= as G → 0 and : = = =/ =−1 as G → ∞, and the zero of the Hessian is where the slope changes

from less than 1 to greater than one,
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