

Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. https://simfit.org.uk https://simfit.silverfrost.com

The Mann-Whitney U test is a sort of nonparametric equivalent of the unpaired t test that is used to examine the relative size of observations in two data sets, say X and Y without assumptions about the distributions.

To be precise, the user has two samples (i.e. vectors X and Y) with m and n observations

$$X = (x_1, x_2, \dots, x_m)$$
$$Y = (y_1, y_2, \dots, y_n)$$

where the ranks of the two sets of observations within a combined, i.e. pooled, data set can be consulted to see if is is reasonable to conclude that either

- data values in both samples are similar,
- data values in sample *X* tend to be smaller than those in sample *Y*, or
- data values in sample *X* tend to be larger than those in sample *Y*.

The test is weak unless large samples are used, and is further weakened by ties within the data, that is, multiple observations with the same value.

From the main SIMF_IT menu select [A/Z], choose to open the SIMF_IT nonparametric testing program **rstest**, then analyze the test files provided to obtain the following results.

Wilcoxon-Mann-Whitney U test									
X-data: g08ahf.tf1 (Mann-Whitney U test)									
Y-data: g08ahf.tf2 (Mann-Whitney U test)									
X sample size 16									
Y sample size 23									
<i>U</i> 86.00									
Z -2.804									
H_0 : $F(x)$ is equal to $G(y)$ (x and y are comparable)									
as null hypothesis against the alternatives:-									
H_1 : $F(x)$ is not equal to $G(y)$ (x and y not comparable)									
p 0.0050 Reject H_0 at 1% significance level									
H_2 : $F(x) > G(y)$ (x tend to be smaller than y)									
p 0.0025 Reject H_0 at 1% significance level									
H_3 : $F(x) < G(y)$ (x tend to be larger than y)									
p 0.9977									

Note that U is the Mann-Whitney test statistic which is used to calculate an exact p value, while Z is an approximately normal test statistic and, using SIMF_IT program normal, we find that $P(Z \le -2.804) = 0.0025$.

To understand how to interpret the meaning of the above two-tail and one-tail test statistics you can just look at a table of frequencies. This is easily constructed using $SIMF_IT$ program editmt to rearrange the samples into increasing order as follows, where bracketed values are frequencies.

X	6(1)	7(5)	8(2)	9(1)	10(3)	11(0)	12(2)	13(1)	14(0)	15(0)	16(1)	17(0)
Y	6(1)	7(0)	8(2)	9(0)	10(4)	11(2)	12(4)	13(3)	14(3)	15(3)	16(0)	17(1)

Alternatively, the frequencies can be plotted, as lines and symbols by first using $SIMF_IT$ program **makfil** to generate plotting files, followed by $SIMF_IT$ program **simplot** to create the following plot which emphasizes the test results, i.e. the most likely conclusion is that *X*-sample values tend to be smaller than the *Y*-sample values.

Using the built-in data editor in **simplot** to move *X* leftwards and *Y* rightwards to prevent overlapping, then replacing symbols by bars and suppressing the lines gives the next alternative way to plot the data.

Mann-Whitney U Test Bar Chart