

Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. https://simfit.org.uk https://simfit.silverfrost.com

Partial correlation analysis is used to evaluate the extent to which the correlations between two or more columns (called *Y*-variables) of a *n* by *m* data matrix with m > 2 depend on correlations between these columns and other columns in the matrix (called *X*-variables). Either a data set or a correlation matrix together with sample size can be input, and it is most often used to study the way that the correlations between two columns depend on a third column.

Example 1

From the main SIMFIT menu select [Statistics], [Multivariate], [Partial correlation] and then read in the test file g02byf.tfl provided. In the special case when n = m you have to specify whether a data file or correlation matrix is being input, but this is a data matrix with fifteen rows and three columns as follows.

Column 1: number of deaths Column 2: smoke (mg/m^3) Column 3: sulphur dioxide(parts/million)

112	0.30	0.09
140	0.49	0.16
143	0.61	0.22
120	0.49	0.14
196	2.64	0.75
294	3.45	0.86
513	4.46	1.34
518	4.46	1.34
430	1.22	0.47
274	1.22	0.47
255	0.32	0.22
236	0.29	0.23
256	0.50	0.26
222	0.32	0.16
213	0.32	0.16

However the following important trailer section has been added to the data.

```
begin{indicators}
-1 -1 1
end{indicators}
```

Negative indicator values denote Y-variables, zero values indicate suppression, while positive indictor values identify X variables. In other words, the default partial correlation between deaths and smoke is required when sulphur dioxide is considered as fixed. However, it should be noted that the assigning of columns to Y or X groups can also be done interactively.

First the overall Pearson product-moment correlation matrix is calculated and displayed along with the two-tail *p*-values.

Pearson product moment correlation results:

 Strict upper triangle:
 r

 Strict lower triangle:
 corresponding two-tail p values

 0.7560
 0.8309

 0.0011

 0.9876

 0.0001
 0.0000

This is then followed by a likelihood ratio test

Test for absence of ar	ny significant	correlations	
H_0 : correlation matrix is the identity matrix			
Determinant	0.003484		
Test statistic (TS)	68.86		
Degrees of freedom	3		
$P(\chi^2 \ge TS)$	0.0000	Reject H_0 at 1% significance level	

but, in addition, the partial correlation matrix is displayed as in the next table for variables indicated as *YYX*. That is, correlation for columns 1 and 2, regarding column 3 as fixed.

Partial correlation results for variables: *YYX* Strict upper triangle: partial *r* Strict lower triangle: corresponding 2-tail *p* values ... -0.7381 0.0026 ...

Example 2

This is the test file pacorr.tfl which contains a correlation matrix.

```
Correlation matrix: sample size = 30
3
         3
1.0000
         0.6162
                  0.8267
0.6162
         1.0000
                  0.7321
0.8267
                  1.0000
         0.7321
3
variable 1: Intelligence
variable 2: Weight
variable 3: Age
```

By systematically altering the definition for Y variables and X variables SIMF_IT can calculate all the correlations and partial correlations as follows.

r(1,2) = 0.6162 r(1,3) = 0.8267 r(2,3) = 0.7321... r(1,2|3) = 0.0286 (95% confidence limits = -0.3422, 0.3918) t = 0.1488, ndo f = 27, p = 0.8828... r(1,3|2) = 0.7001 (95% confidence limits = 0.4479, 0.8490) $t = 5.094, ndo f = 27, p = 0.0000 \text{ Reject } H_0 \text{ at 1\% significance level}$... r(2,3|1) = 0.5025 (95% confidence limits = 0.1659, 0.7343) $t = 3.020, ndo f = 27, p = 0.0055 \text{ Reject } H_0 \text{ at 1\% significance level}$ From this table it is clear that when variable 3 is regarded as fixed, the correlation between variables 1 and 2 is not significant but, when either variable 1 or variable 2 are regarded as fixed, there is evidence for significant correlation between the other variables. Exactly what commonsense would predict.

Theory

Assuming a multivariate normal distribution and linear correlations, the partial correlations between any two variables from the set *i*, *j*, *k* conditional upon the third can be calculated using the usual correlation coefficients as $r_{ii} = r_{ik}r_{ik}$

$$r_{i,j|k} = \frac{r_{ij} - r_{ik}r_{jk}}{\sqrt{(1 - r_{ik}^2)(1 - r_{jk}^2)}}$$

If there are p variables in all but p - q are fixed then the sample size n can be replaced by n - (p - q) in the usual significance tests and estimation of confidence limits, e.g. n - (p - q) - 2 for a t test.

The situation is more involved when there are more than three variables, say $n_x X$ variables which can be regarded as fixed, and the remaining $n_y Y$ variables for which partial correlations are required conditional on the fixed variables.

Then the variance-covariance matrix Σ can be partitioned as in

$$\Sigma = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}$$

when the variance-covariance of Y conditional upon X is given by

$$\Sigma_{y|x} = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy},$$

while the partial correlation matrix R is calculated by normalizing as

$$R = \operatorname{diag}(\Sigma_{y|x})^{-\frac{1}{2}} \Sigma_{y|x} \operatorname{diag}(\Sigma_{y|x})^{-\frac{1}{2}}$$

Exactly as for the full correlation matrix, the strict upper triangle of the output from the partial correlation analysis contains the partial correlation coefficients r_{ij} , while the strict lower triangle holds the corresponding two tail probabilities p_{ij} where

$$p_{ij} = P\left(t_{n-n_x-2} \le -|r_{ij}| \sqrt{\frac{n-n_x-2}{1-r_{ij}^2}}\right) + P\left(t_{n-n_x-2} \ge |r_{ij}| \sqrt{\frac{n-n_x-2}{1-r_{ij}^2}}\right).$$

However, for convenience, the output table may display the subscripted partial correlation coefficients with indicated conditional variables together with confidence limits as in Example 2.