

Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. https://simfit.org.uk https://simfit.silverfrost.com

It is obvious that outliers in a sample lead to biased parameters estimates. In some instances an experimenter is able to examine the data and make a decision to eliminate certain observations, usually extremely low or high values, that indicate a systematic source of variation beyond the usual spread of observational errors. Alternatively, to avoid subjective doctoring of data, a robust method can be used which generally involves discarding extreme values and using more appropriate numerical methods that do not assume that the sample is normally distributed.

As an example, choose statistics from the main $SimF_{IT}$ menu, navigate to [Data exploration] and open the option for [Robust analysis of one sample]. The results from examining the test file robust.tfl after trimming 10% off the extreme values are shown below, followed by the results from handling the full data set without any trimming in the exhaustive analysis procedure.

Robust analysis	
Data: 50 N(0,1) random numbers with 5 outliers	
Total sample size	50
Median value	0.2019
Median absolute deviation	1.0311
Robust standard deviation	1.5288
Trimmed mean (TM)	0.2227
Variance estimate for TM	0.0192
Winsorized mean (WM)	0.2326
Variance estimate for WM	0.0192
Number of discarded values	10
Number of included values	40
Percentage of sample used	80% (for TM and WM)
Hodges-Lehmann estimate (HL)	0.2586
Exhaustive analysis	
Minimum, Maximum values	-2.208, 7.000
Lower and Upper Hinges	-0.829, 1.307
Coefficient of skewness	1.690
Coefficient of kurtosis	3.566
Median value	0.202
Sample mean	0.512
Sample standard deviation	1.853: CV% = 361.736%
Standard error of the mean	0.262
Upper 2.5% t-value	2.010
Lower 95% confidence limit for mean	-0.014
Upper 95% confidence limit for mean	1.039
Variance of the sample	3.435
Lower 95% confidence limit for variance	2.397
Upper 95% confidence limit for variance	5.335
Shapiro-Wilks W statistic	0.851
Significance level for W	0.000 Reject normality at 1% sig.level

Clearly the exhaustive analysis indicates that the presence of outliers has created a sample that is not normally distributed and the results from robust analysis yield better estimates for the population mean and variance

which, before adding outliers, were $\mu = 0$, $\sigma^2 = 1$. An outline of the theory and definitions used in this robust analysis follows.

Theory

If the sample vector is x_1, x_2, \ldots, x_n the following calculations are done.

1. Using the whole sample and the inverse normal function $\Phi^{-1}(.)$, the median *M*, median absolute deviation *D* and a robust estimate of the standard deviation *S* are calculated as

$$M = \text{median}(x_i)$$
$$D = \text{median}(|x_i - M|)$$
$$S = D/\Phi^{-1}(0.75).$$

2. The percentage of the sample chosen by users to be eliminated from each of the tails is $100\alpha\%$, then the trimmed mean *TM*, and Winsorized mean *WM*, together with variance estimates *VT* and *VW*, are calculated as follows, using $k = [\alpha n]$ as the integer part of αn .

$$TM = \frac{1}{n-2k} \sum_{i=k+1}^{n-k} x_i$$
$$WM = \frac{1}{n} \left\{ \sum_{i=k+1}^{n-k} x_i + kx_{k+1} + kx_{n-k} \right\}$$
$$VT = \frac{1}{n^2} \left\{ \sum_{i=k+1}^{n-k} (x_i - TM)^2 + k(x_{k+1} - TM)^2 + k(x_{n-k} - TM)^2 \right\}$$
$$VW = \frac{1}{n^2} \left\{ \sum_{i=k+1}^{n-k} (x_i - WM)^2 + k(x_{k+1} - WM)^2 + k(x_{n-k} - WM)^2 \right\}.$$

3. If the assumed sample density is symmetrical, the Hodges-Lehman location estimator *HL* can be used to estimate the center of symmetry. This is

$$HL = \operatorname{median}\left\{\frac{x_i + x_j}{2}, 1 \le i \le j \le n\right\},\$$

and it is calculated along with 95% confidence limit. This would be useful if the sample was a vector of differences between two samples *X* and *Y* for a Wilcoxon signed rank test that *X* is distributed F(x) and *Y* is distributed $F(x - \theta)$.