
TECHNICAL GUIDE TO COMPILING AND LINKING

SIMFITSIMFIT AND SIMDEMSIMDEM
SIMFIT 3D plot for z = f(x,y)

XY

Z

1

0

1

0

0

1

Contours for Rosenbrock Optimization Trajectory

X

Y

-1.500

1.500

1.500-1.500

Key Contour
 1 1.425
 2 2.838
 3 5.663
 4 11.313
 5 22.613
 6 45.212
 7 90.412
 8 1.808×102

 9 3.616×102

 10 7.232×102

1

2

2

3

3

4

4

5

5
6

6

7

7

8

8

9 9

10 10

Contents

1 Building SimFIT version 8.0.4 onwards 3

2 Building SimDEM version 7.4.2 onwards 3

3 The zip files 4

3.1 The SimFIT source code tree . 4

3.2 The SimDEM source code tree . 6

4 Overview 8

4.1 Websites . 8

4.2 Summary . 8

4.3 The installation folders . 9

4.4 FTN95 and w_clearwin.dll and x64_clearwin.dll . 9

4.5 Special versions of FTN95 SimDEM . 10

4.6 FTN95 and compiled HTML . 10

4.7 change_simfit_version.exe and NAG DLLs . 10

4.8 w_simfit.exe . 11

4.9 Cross compiler issues . 11

4.10 File extensions . 11

4.11 Scripts . 12

5 Source codes 13

5.1 Code style . 13

5.2 Signatures . 14

6 Compilers 15

6.1 Example 1: FTN95 and w_clearwin.dll . 15

6.1.1 Configuring FTN95 . 15

6.1.2 Compiling the resources . 16

6.1.3 Compiling the source code . 16

6.1.4 Linking the object code . 16

6.2 Example 2: NAGfor and w_menus.dll . 17

6.2.1 Compiling the source code . 17

6.2.2 Linking the object code . 17

7 SimDEM GUI 17

7.1 w_clearwin.dll . 18

7.2 w_menus.dll . 18

7.3 w_graphics.dll . 18

8 SimDEM executables 19

9 FTN95 auxiliary items 19

9.1 w_simfit.exe . 19

9.2 change_simfit_version.exe . 19

10 Numerical analysis 20

10.1 w_numbers.dll . 20

10.2 w_maths.dll . 20

11 w_models.dll 20

12 w_simfit.dll 21

1

13 SimFIT executables 21

14 NAG library details 21

14.1 NAG data files and models . 21

14.2 NAG procedures . 23

14.3 NAG DLL interface . 25

14.4 NAG library updates . 26

14.5 Example: Upgrading from Mark 22 to Mark23 . 28

14.6 Example: Upgrading from Mark 23 to Mark24 . 29

14.7 Example: Upgrading from Mark 24 to Mark25 . 29

14.8 Example: Upgrading from Mark 25 to Mark26 . 30

14.9 Example: Upgrading from Mark 26 to Mark27 and beyond 30

14.10Compiling the NAG library source codes . 31

15 Manual 32

16 Distribution 33

17 Makefiles 33

18 Errors preventing the batch files from working 35

19 Contact 36

2

1 Building SimFIT version 8.0.4 onwards

The procedure has been greatly simplified as will now be described. However, the previous detailed instructions

are still included in this document for older versions and to build versions using the NAG library. First of all

the latest zip file is unzipped and the main folder c:\simzip renamed as c:\simfit7 (or c:\simfit8)

The 32-bit version

Change to the work folder, e.g., c:\simfit7\work and simply type

make_everything to execute the batch file make_everything.bat.

The 64-bit version

Change to the work folder, e.g., c:\simfit_x64\work and simply type

x64_make_everything to execute the batch file x64_make_everything.bat.

2 Building SimDEM version 7.4.2 onwards

The procedure has been greatly simplified using only two dlls (simdem32.dllorsimdem64.dll)

for the FTN95 versions as will now be described. However, the previous detailed instruc-

tions are still included in this document for older versions and to build versions using the

NAG and gFortran versions. First of all the latest zip file is unzipped and the main folder

c:\demzip renamed as c:\simdem.

The 32-bit version

Change to the folder c:\simdem\simdem32 and simply type

make_simdem32 to execute the batch file make_simdem32.bat.

The 64-bit version

Change to the folder verb+c:SimDEMSimDEM64+ and simply type

make_simdem64 to execute the batch file make_simdem64.bat.

The NAG and gFortran versions

These require the appropriate Clearwin DLLs (clearwin.dll or x64_clearwin.dll)

which can be copied from the latest SimFIT installation, or built independently using

FTN95. The batch files and link files supplied must be edited to correct the paths to the

NAGfor or gFortran compilers. For instance, the batch files nag32.bat or nag64.bat can

be used to generate object files using NAGfor while strict.bat can be used to generate

64-bit object files using gFortran.

3

3 The zip files

SimFIT is a large package and, to allow programmers to compile subsections of the package,

for instance just the SimFIT GUI, or only one or a selection of the NAG library routines

used by SimFIT, the code is available from https://simfit.org.uk in several forms.

From versions 7 onwards the SimFIT and SimDEM codes are distributed in the following

zip files where x is the version (e.g., 7 or 8), y is the level and z is the release number at

level y.

demzipx_y_z.zip ... the Simdem package

simzipx_y_z.zip ... the Simfit package

manzipx_y_z.zip ... the reference manual

nagzipx_y_z.zip ... the NAG library interfacing code

naglibx_y_z.zip ... The NAG library source code

Note that the Fortran source in these zip files has been compiled and run successfully using

FTN95, NAGfor, and gFortran under the strictest checking options. Most of the SimFIT

codes do not require the Windows API, and those that do are collected together in the

clearwin folder, and they have a w_ underscore prefix as in w_config.for. The driver

programs w_simfit.exe and x64_simfit.exe also use the Windows API.

These zip files are intended for the use indicated.

• The demzip package

Only provides code necessary to compile and link the SimFIT GUI, that is the SimDEM

package.

• The simzip package

This is the complete code for the whole of the SimFIT package.

• The manzip package

All the LATEX sources and graphics files needed to create the SimFIT reference manual

and tutorials.

• The nagzip package

This is provided for users who wish to upgrade SimFIT to use a new release of the

NAG library DLLs.

• The naglib package

This code enables users to compile all the NAG library codes used by SimFIT or a

subsection of these codes.

3.1 The SimFIT source code tree

The zip files used to distribute the SimFIT codes assume the following code tree structure

of folders below the top-level simzip folder. The root \simzip\ would be changed to

c:\simfit7\ or c:\simfit8\ as required.

4

\simzip\work

\simzip\dll\simfit

\simzip\dll\clearwin

\simzip\dll\menus

\simzip\dll\graphics

\simzip\dll\maths

\simzip\dll\models

\simzip\dll\nag

\simzip\dll\numbers\...

• The work folder

All the source codes, icons, batch files and link scripts used to compile the SimFIT

package driving programs.

These codes must be linked to codes in the other folders, usually the DLLs

w_simfit.dll (or x64_simfit.dll)

w_clearwin.dll (or x64_clearwin.dll)

w_menus.dll (or x64_menus.dll)

w_graphics.dll (or x64_graphics.dll)

w_maths.dll (or x64_maths.dll)

w_models.dll (or x64_models.dll)

w_numbers.dll (or x64_numbers.dll)

• The dll simfit folder

Subroutines called from the driving programs. These codes must be linked to codes

in the other folders, usually the DLLs

w_clearwin.dll (or x64_clearwin.dll)

w_menus.dll (or x64_menus.dll)

w_graphics.dll (or x64_graphics.dll)

w_maths.dll (or x64_maths.dll)

w_models.dll (or x64_models.dll)

w_numbers.dll (or x64_numbers.dll)

• The dll clearwin folder

Part of the SimFIT GUI.

The interface to 32-bit Clearwin. Includes *.html and *.jpg codes as well as *.for

subroutines.

This code is free-standing and must not be linked to any of the other SimFIT folders.

• The dll menus folder

Part of the SimFIT GUI.

These subroutines filter calls from elsewhere into a form suitable for calling routines

in the clearwin folders. There are also free-standing items to control input/output.

This code must be linked to the clearwin code inw_clearwin.dllorx64_clearwin.dll.

• The dll graphics folder

Part of the SimFIT GUI.

Code to prepare graphics calls before calling items in the clearwin folder. These codes

must be linked to codes in the DLLs

5

w_clearwin.dll (or x64_clearwin.dll)

w_menus.dll (or x64_menus.dll)

• The dll maths folder

Subroutines with the same names and calling sequences as the NAG library. This code

is linked into the academic version of SimFIT. It must be linked to w_numbers.dll

or x64_numbers.dll.

• The dll nag folder

Subroutines with the same names as those in the maths folder except that they are *.f

rather than *.for. This code is linked to the NAG library DLLs so that the NAG version

of SimFIT calls the NAG library rather than the SimFIT maths library,

• The dll models folder

Subroutines for user-supplied models.

These codes must be linked to codes in the other folders, usually the DLLs

w_maths.dll (or x64_maths.dll)

w_menus.dll (or x64_menus.dll)

w_numbers.dll (or x64_numbers.dll)

• The dll numbers folder

Public domain code for numerical analysis called by SimFIT and subroutines in the

maths folder.

This code is free-standing and must not be linked to any of the codes in the other

SimFIT folders.

3.2 The SimDEM source code tree

The SimDEM package is intended to demonstrate to Fortran programmers how to write

Fortran programs that use the Windows API to create menus, tables, and graphs without

knowing anything about the API. All the subroutine arguments are in standard Fortran and,

as it relies on the FTN95 Clearwin functionality and runtime system, it is only useful for

Windows programming.

The zip files used to distribute the SimDEM codes assume the following code tree structure

of folders below the top-level demzip\ folder renamed to c:\simdem.

\demzip\dll\clearwin

\demzip\dll\menus

\demzip\dll\graphics

\demzip\chm

\demzip\extras

\demzip\for

\demzip\f95

\demzip\nagfor

\demzip\simdem32

\demzip\simdem64

6

The zip files used to distribute the SimDEM codes assume the following code tree structure

of folders below the top-level folder.

• The chm folder

HTML files to create the simdem.chm compiled HTML help file.

• The dll folder

The SimFIT GUI as explained for the SimFIT zip files.

• The dem folder

Test files.

• The eps folder

Encapsulated PostScript graphics files.

• The f95 folder

Free format code.

• The for folder

Fixed format code.

• The html folder

HTML files for the free-standing SimDEM help program.

• The nagfor folder

Code and batch files to build the NAGfor SimDEM package.

• simdem32

Code and batch files to create the Silverfrost 32-bit version of simdem linked to the

single run-time system simdem32.dll.

• simdem64

Code and batch files to create the Silverfrost 64-bit version of simdem linked to the

single run-time system simdem64.dll.

7

4 Overview

Experienced users can just go to the final section on makefiles where there are the sequences

of command lines necessary to compile and link the SimFIT and SimDEM packages. These

can be used to construct makefiles if makefiles are not distributed with the codes. Otherwise,

details and examples follow.

4.1 Websites

The SimFIT, SimDEM and LATEX source codes can be downloaded as zip files from

https://simfit.org.uk

and they should be unzipped into the tree structures provided. However, it may be necessary

to change the logical drives (e.g. C: instead of D:) or edit some paths to get all of the batch

files and link scripts to work.

Note that the utility program for2f95, distributed with the SimDEM package, can be used to

transform *.for files into *.f95 files, if that is required. It was designed to respect features

of the code employed to aid readability and checking and should be used rather than general

purpose fixed to free translators which will destroy such carefully designed structures.

There are also two SimFIT mirror sites as follows.

https://simfit.usal.es

https://simfit.silverfrost.com

4.2 Summary

SimFIT and SimDEM from version 7 onwards can be compiled and linked in such a

way that there are no cross compiler problems, and the resulting packages will run in all

versions of Windows from XP, as well as Linux under Wine, and Macintosh under VMware

or Crossover. Details are given for Silverfrost FTN95, which must be used without the

/f_stdcall switch for standard cdecl Silverfrost applications, but with the /f_stdcall

switch for the NAG library versions, and also for NAGfor which must be used with the

­compatible switch for NAG 32-bit DLL applications.

This is very important, and is mentioned several times in this document for emphasis, as

failure to observe the advice about not mixing cdecl and stdcall 32-bit binaries leads to run

time crashes that can be very difficult to trace.

To compile and link SimFIT to only create the Academic 32-bit versions then there is no

need to use the STDCALL calling convention, but for 32-bit versions that may be linked

to the NAG library DLLs it is vital to use the STDCALL calling convention. It is not

possible to mix binaries with both calling conventions in 32-bit applications. If the NAG

library is going to be used with FTN95 then all the code must be compiled using the

8

/f_stdcall compiler switch, and with NAGfor the compiler switch ­compatiblemust be

used everywhere. These complications do not apply to the 64-bit versions.

4.3 The installation folders

The default installation schemes for the packages are as follows.

For SimDEM

C:\Program Files\Simdem\bin ... binaries

C:\Program Files\Simdem\dem ... demonstration test data sets

C:\Program Files\Simdem\doc ... documentation

C:\Program Files\Simdem\f95 ... free format code

C:\Program Files\Simdem\for ... fixed format code

Both 32-bit and 64-bit applications are placed into in the same folder

C:\Program Files (x86).

For SimFIT

C:\Program Files\Simfit\bin ... binaries

C:\Program Files\Simfit\dem ... demonstration test data sets

C:\Program Files\Simfit\doc ... documentation

The 32-bit application would be installed in

C:\Program Files (x86)\

but with 64-bit Windows the installation would be in the following tree

C:\Program Files\

The source code has been written to be consistent with these structures. Some other features

are now considered.

4.4 FTN95 and w_clearwin.dll and x64_clearwin.dll

All the Silverfrost-specific calls are now in just one dynamic link library,namelyw_clearwin.dll

(or x64_clearwin.dll in 64-bit versions).

This must be compiled using Salford-Silverfrost FTN95, as it uses winio@ and other calls

that rely on the Silverfrost run time system, salflibc.dll. From Version 6.8.1 the files

w_clearwin.dll,

run6, and

change_simfit_version

are now the only parts of SimFIT that are FTN95 specific and rely on the Silverfrost run

time system.

9

4.5 Special versions of FTN95 SimDEM

From Version 7.4.0 onwards the three run-time dlls used by the SimFIT package are replaced

by just one, i.e. simdem32.dll in 32-bit versions and simdem64.dll in 64-bit versions. The

three separate dlls must still be used by other compilers to avoid cross-compiler problems.

The reason for this is because w_clearwin.dll and x64_clearwin.dll do not use

open, close, inquire, backspace, rewind, read, write, or any actions that would restrict

cross-compiler use. The files w_menus.dll, w_graphics.dll, x64_menus.dll, and

x64_graphics.dll would then be compiled by the native compiler, such as NAGfor,

gFortran, etc.

4.6 FTN95 and compiled HTML

All the compiled HTML help for the SimFIT and SimDEM executables is inw_clearwin.dll

which must be compiled using Silverfost FTN95. A compiled HTML SimDEM help file

called simdem.chm is now installed by the SimDEM installation package.

4.7 change_simfit_version.exe and NAG DLLs

There is a SimFIT program called change_simfit_version that can be compiled using

FTN95, or could easily be re-written to be compiled by any compiler. This program can do

the following tasks:

Overwrite w_maths.dll using academic_maths.dll

Overwrite w_maths.dll using fldll20_maths.dll

Overwrite w_maths.dll using fldll214a_mkl.dll

Overwrite w_maths.dll using fldll214z_mkl.dll

Overwrite w_maths.dll using fldll214a_nag.dll

Overwrite w_maths.dll using fldll214z_nag.dll

Overwrite w_maths.dll using fldll215z_nag.dll

Overwrite w_maths.dll using *************.dll

(and corresponding 64-bit dlls) and is configured by change_simfit_version.config

or x64_change_simfit_version.config. This results in a consistent version of SimFIT

that is either free standing (Academic) or NAG DLL based. The package can also be

distributed without the utilities

change_simfit_version.exe,or x64_change_simfit_version.exe

but fixed into one of these configurations. The SimFIT program change_simfit_version.exe

can be run as administrator, but only when SimFIT is switched off so as to not be linked to

w_maths.dll.The Academic and NAG versions only differ in the version of w_maths.dll

that is in the same folder as the rest of the SimFIT binaries.

Program change_simfit_version does not use open, close, inquire, backspace, rewind,

read, write, or any actions that would restrict cross-compiler use.

10

4.8 w_simfit.exe

The SimFIT driver program run7.exe = w_simfit.exe must be compiled using FTN95

but could, with some difficulty, be replaced by a new driver written for any compiler, using

any language. It links to object code from dllchk.for which must be edited for a correct

signature.

run7 = w_simfit.exe does not use open, close, inquire, backspace, rewind, read, write,

or any actions in such a way as to restrict cross-compiler use.

4.9 Cross compiler issues

If the main programs and dynamic link libraries are compiled and linked using the same

compiler, e.g. FTN95, NAGfor, etc., there will be no cross compiler problems, as all open,

close, read, write, inquire, etc. will be using the same run-time system. The resources can

be compiled using the Silverfrost SRC compiler or using other resource compilers, such as

windres supplied with MinGWgccand NAGfor. The HTML required byw_clearwin.dll

can only be compiled using SRC.

In the SimDEM examples documentation it is explained how to use special subroutines

and functions to perform, read, write, open, close, inquire, etc. to circumvent the situation

where code calling the SimDEM GUI is not compiled by the same compiler as the GUI.

4.10 File extensions

*.f95 ... Fortran file in free format

*.for ... Fortran file in fixed format(main programs and dll)

Some are single routines but many are composite.

Some use long names and allocate/deallocate.

*.ins ... Fortran file in fixed format(included routines)

Some are single routines but many are composite.

Some are .ins files defining common blocks etc.

These are being phased out in favor of modules.

*.f ... Front end code for the NAG library calls

*.rc ... Resource script for SRC (the Salford resource compiler)

These can also be compiled using windres.

*.ico ... Icon (for *.rc scripts)

*.htm ... HTML script (for *.rc script)

*.link ... Link script for SLINK or SLINK64 (or NAGfor)

*.bat ... MS DOS batch file

*.tex ... LaTeX script

*.wgb ... EPS file minus the prolog (prolog.wgb)

*.eps ... EPS file

*.cpp ... C code

11

4.11 Scripts

The source codes, when unzipped, contain batch files and link scripts, so that the process

is extremely simple. The batch files all suppose that Silverfrost FTN95 is on the path, but

this is only strictly necessary for three items:

w_clearwin.dll ... Simfit and Simdem

run7.exe = w_simfit.exe ... Simfit only

change_simfit_version.exe ... Simfit only

Otherwise, by making appropriate replicas of the batch files and link scripts, any Fortran

compiler can be used.

It is also assumed that the source codes for

w_clearwin.dll (and x64_clearwin.dll)

w_menus.dll (and x64_menus.dll)

w_graphics.dll (and x64_menus.dll)

are identical in the SimDEM and SimFIT packages. In the event of dedicated NAG and

Silverfrost versions, in future this may not always be the case.

12

5 Source codes

Download and unzip the latest versionx_y_z zip files as follows:

demzipx_y_z.zip ... the Simdem package

simzipx_y_z.zip ... the Simfit package

manzipx_y_z.zip ... the reference manual

nagzipx_y_z.zip ... the NAG library interfacing code

naglibx_y_z.zip ... The NAG library source code

The SimDEM package will be unzipped into C:\demzip

The SimFIT package will be unzipped into C:\simzip

The reference manual will be unzipped into C:\manzip

The NAG library interfacing code will be unzipped into C:\nagzip

The NAG library source code will be unzipped into C:\naglib

After unzipping, the source codes can be used to update existing installations.

If you decide to unzip elsewhere it will all be very much harder

Note that the source codes for

w_clearwin.dll

w_menus.dll

w_graphics.dll

in demzipx_y_z.zip, simzipx_y_z.zip, and nagzipx_y_z.zipmay not always be iden-

tical.

5.1 Code style

The SimFIT code does contain some obsolescent features, e.g. COMMON blocks and GOTOs,

but I am steadily replacing these. There are no equivalences, entries, Holleriths, subroutine

calls creating side effects, or any of the well known howlers that Fortran allows.

All subroutines are heavily commented, but observers will note how the style has changed

progressively from the days when we had to trap errors using things like

READ (NIN,100,END=20,ERR=40)

so that, in general, routines in upper case with labels and GOTOs will tend to be older than

code in lower case with things like

read (nin,100,iostat=ios)

if (ios.ne.0) then...

At one stage the code never used things like

DO I = 1, N

K(I) = L(I + 1) + 2

ENDDO

13

because of confusion between INTEGER*1, INTEGER*2, and INTEGER*4, and there are

many integers defined in parameter statements because of this, as in

INTEGER N1, N2

PARAMETER (N1 = 1, N2 = 2)

...

DO I = N1, N

K(I) = L(I + N1) + N2

ENDDO

Subsequently, I did maintain this feature so that integers used explicitly in a subroutine were

all declared and could be easily traced.

Another feature is that I tend to use argument lists like this

CALL SOME_THING (I, J, K,

A, B, C,

XTITLE, YTITLE, ZTITLE,

ABORT, OK, QUIT)

with integers, then double precisions, then characters, then logicals, all in alphabetical order

within their type. This helps type checking but was not always done with older code.

Note that using code with unnecessary continuation lines like

call putadv (

+’Input a file like manova1.tf1’)

instead of just

call putadv (’Input a file like manova1.tf1’)

was adopted to make the work of the Spanish translators easier

5.2 Signatures

All SimFIT programs have signatures to identify the version and release numbers, and

these are constantly checked during normal operation so that users can be warned of any

inconsistencies. All binaries in a SimFIT installation must have the same signature, so you

must edit the signature codes for version and release numbers as follows:

For the SimDEM package:

C:\simfit7\dll\menus\dllmen.for

C:\simfit7\dll\graphics\dllgra.for

C:\simfit7\dll\clearwin\dllclr.for

C:\simdem\simdem.for

C:\simdem\for\simdem.for

C:\simdem\f95\simdem.f95

For the SimFIT package:

14

C:\simfit7\work\dllchk.for (and x64_dllchk.for)

C:\simfit7\dll\simfit\dllsim.for

C:\simfit7\dll\menus\dllmen.for

C:\simfit7\dll\graphics\dllgra.for

C:\simfit7\dll\models\dllmod.for

C:\simfit7\dll\numbers\dllnum.for

C:\simfit7\dll\clearwin\dllclr.for

C:\simfit7\dll\maths\dllmat.for

C:\simfit7\dll\nag\dllmat_mark20.f ... now done by makenag.bat

C:\simfit7\dll\nag\dllmat_mkl214a.f ... now done by makenag.bat

C:\simfit7\dll\nag\dllmat_mkl214z.f ... now done by makenag.bat

C:\simfit7\dll\nag\dllmat_nag214a.f ... now done by makenag.bat

C:\simfit7\dll\nag\dllmat_nag214z.f ... now done by makenag.bat

For change_simfit_version.exe in the SimFIT package edit change_simfit_version.config

stored in the C:\setup\programs folder.

For the reference manual version and release numbers:

C:\manuals\manual0\color.tex

C:\manuals|manual0\mono.tex

6 Compilers

Examples are given for Silverfrost FTN95 and NAGfor but, except for one essential item

and three nonessential auxiliary items for which FTN95 must be used, any Fortran compiler

can be used. Note that most compilers can create binaries consistent with either the cdecl

calling convention, or the stdcall calling convention. It is possible to link executables

to DLLs built using either convention but, in general, it is best to use just one of these

conventions, e.g. stdcall for Excel, Visual Basic, NAG library DLLs, etc. 64-bit versions

can also be compiled using NAGfor or gFortran.

6.1 Example 1: FTN95 and w_clearwin.dll

As an example of how to use FTN95, the complete procedure for creating w_clearwin.dll

will be described. This DLL is an essential part of SimFIT and SimDEM and must be

compiled using the Silverfrost FTN95 compiler.

6.1.1 Configuring FTN95

First of all, the command

ftn95 /config

must be used to configure the compiler for either

a) cdecl (default) for some C programs, or

15

b) stdcall (for VB, Excel, NAG DLLs, Windows API, etc.)

Note that /f_stdcall compromises some /checkmate functionality.

6.1.2 Compiling the resources

Icons and HTML source code must be compiled into object code using the resource compiler

SRC where necessary (for the one essential item and the three FTN95-specific auxiliary

items).

For example, this command issued from the C:\simfit7\dll\clearwin folder

src ico_clr

will use the script file ico_clr.rc to compile the *.ico, *.htm, and *.jpg files into an

object file for loading into w_clearwin.dll.

6.1.3 Compiling the source code

It may be advisable to edit the format statement in w_config.for to upgrade defaults for

the SimFIT auxiliaries, or even alter this code to specify completely new defaults. After

that, this command issued from the C:\simfit7\dll\clearwin folder

ftn95 *.for

will create *.obj files from all the *.for files in that local folder. Note that batch files f.bat

are provided where compiler directives can be added if required to override the defaults

placed by the command

ftn95 /config

into the file ftn95.cfg. In that case, the simple command

f *

can be used to create the *.obj files.

6.1.4 Linking the object code

This uses the Silverfrost linker SLINK.

To illustrate, if you issue the command

slink clearwin.link

from withinC:\simfit7\dll\clearwin, then SLINK will use the link script clearwin.link

to createw_clearwin.dll. A batch filemakeclr.bat is provided to createw_clearwin.dll,

and this can be edited to include the compilation phase as well if required.

16

You should not try to build the SimFIT or SimDEM packages using the Plato IDE, as it is

infinitely better to use the batch and link files supplied with the source code to do this.

6.2 Example 2: NAGfor and w_menus.dll

As an example, the complete procedure for using NAGfor to create w_menus.dll will be

described.

NAGfor creates intermediate C code that is passed to the gcc compiler for creating object

code *.o, and also for linking. The gcc auxiliary program windres can be used to compile

resources, and the ­compatible compiler switch (formerly ­f77) creates code according

to the stdcall convention.

6.2.1 Compiling the source code

For instance, the command

nagfor ­compatible ­c *.for

issued from within C:\simfit7\dll\menus will create *.o files from all the *.for files in

that folder.

6.2.2 Linking the object code

This uses NAGfor to pass link instructions on to gcc, and it will only work if there is an

existing copy of C:\simfit7\dll\clearwin\w_clearwin.dll. This is only needed so

the export table can be scanned to satisfy all the references.

For example, the command

nagfor @nagfor_menus.link

will create w_menus.dll using the link script nagfor_menus.link.

You should not try to build the SimFIT or SimDEM packages using the NAG Fortran Builder

IDE, as it is infinitely better to use the batch and link files supplied with the source code to

do this.

7 SimDEM GUI

This consists of three DLLs.

w_clearwin.dll (or x64_clearwin.dll)

w_menus.dll (or x64_menus.dll)

w_graphics.dll (or x64_graphics.dll)

17

The silverfrost release versions from 7.4.2 only use the dll \simdem32.dll in 32-bit

applications or simdem64.dll in 64-bit applications.

7.1 w_clearwin.dll

This must be compiled and linked using Silverfrost FTN95.

Do not use /f_stdcall for the standard Silverfrost version.

Use /f_stdcall for the NAG version.

Procedure A.

Change to C:\simfit7\dll\clearwin

Type src ico_clr to compile the HTML code

Type scc *.cpp to compile C codes

Type f w_editor to create the module rp_editor_module

Type f module_clearwin to create the module module_clearwin

Type f * to cause the f.bat program to compile the object code

Type makeclr to activate makeclr.bat

7.2 w_menus.dll

Procedure B.

Change to C:\simfit7\dll\menus

Type f * to cause the f.bat program to compile the object code

Type makemen to activate makemen.bat

The linker SLINK will report unsatisfied references if it cannot findC:\simfit7\dll\w_clearwin.dll.

7.3 w_graphics.dll

Procedure C.

Change to C:\simfit7\dll\graphics

Type f module_savegks to compile the module_savegks

Type f * to cause the f.bat program to compile the object code

Type makegra to activate makegra.bat and

link to w_clearwin.dll

The linker SLINK will report unsatisfied references if it cannot findC:\simfit7\dll\w_clearwin.dll

Repeat procedures A, B, and C (if SLINK reports unresolved references) until w_clearwin.dll

and w_graphics.dll and w_menus.dll are all consistent.

18

8 SimDEM executables

This is done in C:\simdem and requires local copies of w_clearwin.dll, w_menus.dll,

and w_graphics.dll.

• To make the standard non /f_stdcall Silverfrost version

Use ftn95 /config to make sure /f_stdcall is switched off

Type make_SILVERFROST_simdem to activate make_SILVERFROST_simdem.bat

• To make the /f_stdcall Silverfrost version

Use ftn95 /config to make sure /f_stdcall is switched on

Type make_SILVERFROST_simdem to activate make_SILVERFROST_simdem.bat

• To make the NAGfor -compatible version

Type make_NAG_simdem to activate make_NAG_simdem.bat

9 FTN95 auxiliary items

For SimFIT only, not SimDEM you must first edit then compile dllchk.for.

The two auxiliary items are

1. The driver run6.exe = w_simfit.exe, and

2. change_simfit_version.exe.

If Silverfrost FTN95 is not going to be used then it would be easier to build a new

w_simfit.exe driver from scratch.

9.1 w_simfit.exe

Change to C:\simfit7\work

Type getdll to make local copies of the SimFIT DLLs available

Type f run6 to activate f.bat to create run6.obj

Type slink run6.link to create run6.exe

Type copy run6.exe to w_simfit.exe to create the SimFIT driver

9.2 change_simfit_version.exe

Change to C:\simfit7\work

Type f change_simfit_version then slink change_simfit_version.link

19

10 Numerical analysis

The files concerned are

w_maths.dll and

w_numbers.dll

but there are several variants due to the fact that there are academic versions as well as NAG

versions.

This is how the system works.

• Every installation of SimFIT requires w_maths.dll and w_numbers.dll

• This pair must be consistent in any installation

• The only difference between versions of SimFIT is in the pair of DLLs that are linked

in

• In all versions: w_numbers.dll is completely free standing and includes BLAS and

LAPACK

SimFIT is dependent on this w_numbers.dll

• In the Academic version w_maths.dll is linked to w_numbers.dll

• Instead, in the NAG versions w_maths.dll is linked to the NAG DLLs.

This is how to prepare the DLLs

10.1 w_numbers.dll

Change to C:\simfit7\dll\numbers and type compile to activate

compile.bat then makenum to make w_numbers.dll

10.2 w_maths.dll

Change to C:\simfit7\dll\maths and type f* to activate f.bat,

then type makemat to make w_maths.dll and academic_maths.dll

Change to C:\simfit7\dll\nag and type make_all_nag to make the

NAG library linked versions. It will be necessary to study

and possibly edit make_all_nag.bat and the link files it calls.

It may be necessary to edit change_simfit_version.config if links to

the NAG library DLLs are required.

11 w_models.dll

Change to C:\simfit7\dll\models

Type f * to activate f.bat

Type makemod to activate makemod.bat

20

12 w_simfit.dll

Change to C:\simfit7\dll\simfit

Type f * to activate f.bat

Type makesim to activate makesim.bat

13 SimFIT executables

Change to C:\simfit7\work

Type f * to activate f.bat

Type linkall to activate linkall.bat

Type makew to activate makew.bat

14 NAG library details

It should be noted that some of the information in this section refers to NAG routines that

are no longer extant, because they have been deleted from the library. For example, j06sbf

was in the obsolete NAG graphics library. However most of the functionality that was

available in the former NAG graphics library is still available using the SimFIT graphics

procedures. Again, the old G05 routines for random number generators, and some other

obsolete routines, are still referenced due to their extremely widespread use in SimFIT but

what happens in such cases is that there is extra code to call the newer replacement routines.

When NAG routines are called, users can interactively edit all the control parameters

described in the NAG documentation, but in some cases the SimFIT routines have extra

functionality and can call the routines with additional parameters, which is done by planting

code that is activated when additional arguments are required.

14.1 NAG data files and models

The following SimFIT test files are data sets and model equations taken from the NAG

documentation that are used in SimFIT to demonstrate the NAG library routines. These

files are all available after using the[NAG] button of the SimFIT files Open control, but in

most cases they are presented as defaults anyway when the routine is called. The list of

files is maintained in the file list.nag, and all that is required to add further files is to edit

list.nag and place the new files in the SimFIT file store, as list.nag is scanned for this

list each time the [NAG] button is activated.

Models

c05adf.mod 1 function of 1 variable

c05nbf.mod 9 functions of 9 variables

d01ajf.mod 1 function of 1 variable

d01eaf.mod 1 function of 4 variables

d01fcf.mod 1 function of 4 variables

e04fyf.mod 1 function of 3 variables

Data

21

c02agf.tf1 Zeros of a polynomial

e02adf.tf1 Polynomial data

e02baf.tf1 Data for fixed knot spline fitting

e02baf.tf2 Spline knots and coefficients

e02bef.tf1 Data for automatic knot spline fitting

e04fyf.tf1 Data for curve fitting using e04fyf.mod

f01abf.tf1 Inverse: symposdef matrix

f02fdf.tf1 A for Ax = (lambda)Bx

f02fdf.tf2 B for Ax = (lambda)Bx

f02wef.tf1 Singular value decomposition

f02wef.tf2 Singular value decomposition

f03aaf.tf1 Determinant by LU

f03aef.tf1 Determinant by Cholesky

f07fdf.tf1 Cholesky factorisation

f08kff.tf1 Singular value decomposition

f08kff.tf2 Singular value decomposition

g02baf.tf1 Correlation: Pearson

g02bnf.tf1 Correlation: Kendall/Spearman

g02bny.tf1 Partial correlation matrix

g02daf.tf1 Multiple linear regression

g02gaf.tf1 GLM normal errors

g02gbf.tf1 GLM binomial errors

g02gcf.tf1 GLM Poisson errors

g02gdf.tf1 GLM gamma errors

g02haf.tf1 Robust regression (M-estimates)

g02laf.tf1 Partial Least squares X-predictor data

g02laf.tf2 Partial Least Squares Y-response data

g02laf.tf3 Partial Least Squares Z-predictor data

g02wef.tf1 Singular value decomposition

g02wef.tf2 Singular value decomposition

g03aaf.tf1 Principal components

g03acf.tf1 Canonical variates

g03adf.tf1 Canonical correlation

g03baf.tf1 Matrix for Orthomax/Varimax rotation

g03bcf.tf1 X-matrix for procrustes analysis

g03bcf.tf2 Y-matrix for procrustes analysis

g03caf.tf1 Correlation matrix for factor analysis

g03ccf.tf1 Correlation matrix for factor analysis

g03daf.tf1 Discriminant analysis

g03dbf.tf1 Discriminant analysis

g03dcf.tf1 Discriminant analysis

g03eaf.tf1 Data for distance matrix: calculation

g03ecf.tf1 Data for distance matrix: clustering

g03eff.tf1 K-means clustering

g03eff.tf2 K-means clustering

g03faf.tf1 Distance matrix for classical metric scaling

22

g03ehf.tf1 Data for distance matrix: dendrogram plot

g03ejf.tf1 Data for distance matrix: cluster indicators

g04adf.tf1 ANOVA

g04aef.tfl ANOVA library file

g04caf.tf1 ANOVA (factorial)

g07bef.tf1 Weibull fitting

g08aef.tf1 ANOVA (Friedman)

g08aff.tfl ANOVA (Kruskall-Wallis)

g08agf.tf1 Wilcoxon signed ranks test

g08agf.tf2 Wilcoxon signed ranks test

g08ahf.tf1 Mann-Whitney U test

g08ahf.tf2 Mann-Whitney U test

g08cbf.tf1 Kolmogorov-Smirnov 1-sample test

g08daf.tf1 Kendall coefficient of concordance

g08raf.tf1 Regression on ranks

g08rbf.tf1 Regression on ranks

g10abf.tf1 Data for cross validation spline fitting

g11caf.tf1 Stratified logistic regression

g12aaf.tf1 Survival analysis

g12aaf.tf2 Survival analysis

g12baf.tf1 Cox regression

g13dmf.tf1 Auto- and cross-correlation matrices

j06sbf.tf1 Time series

14.2 NAG procedures

• a00acf, a00adf

• c02agf

• c05adf, c05azf, c05nbf

• d01ajf, d01eaf

• d02cjf, d02ejf

• e02adf, e02akf, e02baf, e02bbf, e02bcf, e02bdf, e02bef, e02gbf, e02gcf

• e04jyf, e04kzf, e04uef, e04uff

• f01abf, f01acf, f01adf

• f02aaf, f02aff, f02ebf, f02fdf

• f03aaf, f03abf, f03aef, f03aff

• f04aff, f04agf, f04ajf, f04asf, f04atf

• f06eaf, f06ejf, f06qff, f06yaf, f06raf

• f07adf, f07aef, f07agf, f07ajf, f07fdf

23

• f08aef, f08aff, f08faf, f08kaf, f08kef, f08kff, f08mef, f08naf, f08saf

• fz1caf, fz1clf

• g01aff, g01bjf, g01bkf, g01cef, g01dbf, g01ddf, g01eaf, g01ebf, g01ecf, g01edf,

g01eef, g01eff, g01emf, g01faf, g01fbf, g01fcf, g01fdf, g01fef, g01fff, g01fmf,

g01gbf, g01gcf, g01gdf, g01gef

• g02baf, g02bnf, g02byf, g02caf, g02gaf, g02gbf, g02gcf, g02gdf, g02gkf, g02haf,

g02laf, g02lcf, g02ldf

• g03aaf, g03acf, g03adf, g03baf, g03bcf, g03caf, g03ccf, g03daf, g03dbf, g03dcf,

g03eaf, g03ecf, g03eff, g03ejf, g03faf, g03fcf

• g04adf, g04aef, g04agf, g04caf

• g05cbf, g05ccf, g05daf, g05dbf, g05dcf, g05ddf, g05def, g05dff, g05dhf, g05dpf,

g05dyf, g05ecf, g05edf, g05ehf, g05eyf, g05fff, g05kff, g05kgf, g05ncf, g05saf,

g05scf, g05sdf, g05sff, g05sjf, g05skf, g05slf, g05smf, g05snf, g05sqf, g05ssf, g05taf,

g05tdf, g05tjf, g05tlf

• g07aaf, g07abf, g07bef, g07daf, g07ddf, g07eaf, g07ebf

• g08aaf, g08aef, g08acf, g08aff, g08agf, g08ahf, g08ajf, g08akf, g08baf, g08cbf,

g08cdf, g08daf, g08eaf, g08raf, g08rbf

• g10abf, g10acf, g10baf, g10zaf

• g11caf

• g12aaf, g12baf, g12zaf

• g13aaf, g13abf, g13acf, g13adf, g13aef, g13ahf

• s01baf

• s11aaf, s11abf, s11acf

• s13aaf, s13acf, s13adf

• s14aaf, s14abf, s14acf, s14adf, s14baf

• s15abf, s15acf, s15adf, s15aef, s15aff

• s17acf, s17adf, s17aef, s17aff, s17agf, s17ahf, s17ajf, s17akf

• s18acf, s18adf, s18aef, s18aff

• s19aaf, s19abf, s19acf, s19adf

• s20acf, s20adf

• s21baf, s21bbf, s21bcf, s21bdf, s21caf

• x01aaf, x02ajf, x02alf, x02amf, x03aaf

24

14.3 NAG DLL interface

In order for SimFIT to run with any version of the NAG library, and to have additional

functionality, like extra arguments, or calling obsolete routines, the named procedures just

listed are not called directly from SimFIT. What happens is that there is a set of dummy

procedures with exactly the same argument lists as required by the NAG library, but they all

have an additional dollar sign at the end of the named procedure. Inside the source code of

such dummy procedures is a call to SimFIT subroutine putifa so SimFIT will always run

with IFAIL = ­1, but then write out NAG messages for nonzero IFAIL values, or results

from iterative procedures, to a file called nagifail.txt. Some dummy procedures, of

course, will also have the code for extra functionality referred to previously.

As an example, consider the subroutine D01AJF for quadrature. This would be accessed by

a call as follows

CALL D01AJF$(F, A, B, EPSABS, EPSREL, RESUL, ABSERR, W, LW,

+ IW, LIW, IFAIL)

but this would be included in a version of w_maths.dll which linked in to the object code

from compiling the subroutine D01AJF$.F coded as follows.

C

C

SUBROUTINE D01AJF$(F, A, B, EPSABS, EPSREL, RESUL, ABSERR, W, LW,

+ IW, LIW, IFAIL)

C

IMPLICIT NONE

INTEGER IFAIL, LIW, LW, IW(LIW)

DOUBLE PRECISION F, A, B, EPSABS, EPSREL, RESUL, ABSERR, W(LW)

EXTERNAL D01AJF, F, GETIFA

CALL GETIFA (IFAIL)

CALL D01AJF (F, A, B, EPSABS, EPSREL, RESUL, ABSERR, W, LW,

+ IW, LIW, IFAIL)

END

C

C

This mode of operation has several very considerable advantages.

❍ It is a trivial matter to update SimFIT to use future versions of the NAG library, without

having to change the SimFIT source code.

❍ It is simple to shunt calls to obsolete routines into calls to newer procedures without

needing to change the source code.

❍ The behavior of the NAG IFAIL mechanism can be changed by a one line edit.

❍ It is easy to create modules to run from within the SimFIT environment that could

link directly to the NAG DLLs, and so bypass the SimFIT dollar sign mechanism if

required.

25

It should be indicated that any executable made using the NAG Fortran Builder that is linked

in to the SimDEM GUI and calls the NAG library DLLs can be used as a module from

within the SimFIT environment.

14.4 NAG library updates

The only difference between alternative versions of SimFIT is the file w_maths.dll. This is

either linked to the SimFIT numerical libraries, or one of the NAG library DLLs. The usual

procedure would be to make a SimFIT DLL stub, so that SimFIT can be used with a new

version of a NAG DLL that is not covered by the current SimFIT distribution. This stub is

then used by change_simfit_version.exe to overwrite the current version of w_maths.dll

so that SimFIT links to the NAG library.

The recommended procedure is first summarized, details are given, then a worked example

is provided.

❍ Download and unzip nagzip***.zip from www.simfit.org.uk.

❍ Study a typical batch file such as makenag_markxy.bat which is for Mark xy.

❍ Make a copy of this file that just adds the new NAG DLLs to the SimFIT repertoire.

❍ It may be necessary to edit a couple of other files referenced by this batch file as

described below

❍ Run makenag_markxy.bat to create the new SimFIT DLL linked to the NAG Mark

xy DLL

❍ Add this new SimFIT DLL to the SimFIT distribution

The following details give a description of exactly what to do to to take an existing compiled

version of SimFIT and make it link to a new version of the NAG DLLs.

It will be assumed that the Silverfrost-Salford FTN95 or NAG NAGfor compiler is going to

be used and that the SimFIT code has been unzipped into the folder c:\simfit7\dll\nag

using the zip file nagzip***.zip distributed with the SimFIT package. Once a certain

amount of limited coding has been completed it is then only necessary to run the batch

file makenag_markxy.bat, which compiles and links everything. To use different paths

or alternative compilers a certain amount of extra editing would be necessary. In order to

perform the upgrade it will be necessary to look at the file system defined in the next section,

identify the extremely simple codes that are needed, act accordingly, then simply type

makenag_markx

to use FTN95 or, if NAGfor is to be used, type

makenag_markxy_nagfor

to create the upgrade to the NAG library at Mark xy.

Files needed to build the NAG DLL interface

26

1. Link scripts for the compiler

The files below are completed and only need to be edited if the paths to the NAG

library DLLs have been changed.

One file is needed for each DLL to be created.

nag_mark20.link

mkl_mark21a.link

mkl_mark21z.link

mkl_mark22m.link

mkl_mark23m.link

mkl_mark24m.link

mkl_mark25m.link

nag_mark21a.link

nag_mark21z.link

nag_mark22m.link

nag_mark23m.link

nag_mark24m.link

nag_mark25m.link

x64_mkl_mark24.link

x64_nag_mark24.link

x64_mkl_mark25.link

x64_nag_mark25.link

2. The DLLs to be created

All of these DLL stubs can be created at each new release if required, which can be

done by the makefiles makenag_xy.bat files. However, this requires archived copies

of all previous DLLs and should not normally be used. It would be usual to make an

edited copy of e.g. makenag_23m.bat to only create just one new version.

fldll20_maths.dll

fldll214a_mkl_maths.dll

fldll214z_mkl_maths.dll

fldll224m_mkl_maths.dll

fldll234m_mkl_maths.dll

fldll244m_mkl_maths.dll

fldll254m_mkl_maths.dll

fldll214a_nag_maths.dll

fldll214z_nag_maths.dll

fldll224m_nag_maths.dll

fldll234m_nag_maths.dll

fldll244m_nag_maths.dll

fldll254m_nag_maths.dll

FLW6I24DC_mkl_maths.dll

FLW6I25DC_mkl_maths.dll

FLW6I24DC_nag_maths.dll

FLW6I25DC_nag_maths.dll

27

3. The makefile

This is, for example, makenag_mark23.bat which does the following:

a. Compile using FTN95

b. Link

c. Create the DLLs

Browsing makenag_mark23.bat, for example, will make all the above perfectly clear.

It is only possible to make a DLL if the path to the NAG DLL in the link script points

to an existing NAG DLL.

4. Other action required

Edit change_simfit_version.config and make sure this file, and the file

change_simfit_version.exe, and the dummy DLLs described above are distributed

with the package.

Note that no action is required that involves the rest of the SimFIT package. All that is

needed to upgrade the SimFIT package to use a new version of a NAG DLL is to make

sure that the SimFIT binary folder contains a copy of the new SimFIT DLL linked to

the new NAG DLL, and that the edited version of change_simfit_version.config

has been used to overwrite the existing file w_maths.dll.

14.5 Example: Upgrading from Mark 22 to Mark23

This example should be imitated so that SimFIT can be made link to future releases of

the NAG library DLLs. It is important to note that any compiler can be used, not just

FTN95 or NAGfor, and SimFIT can be used with any version of the NAG library without

any recompilation of the SimFIT code: all that is required is simple editing of some text

files and the creation of a new stub linking SimFIT to the new NAG DLLs.

At Mark 23 some of the routines used by SimFIT from the F02 and G05 chapters were

deleted. Now it would be extremely difficult to edit the SimFIT code every time a routine

is deleted. Instead, SimFIT uses a dummy name so that the code can be called from the

Academic maths library or any past, present, or future release of the NAG library. To

understand how this is done please inspect the following files:

f02_mark23.f

for the F02 update and the file

g05_mark23.f

for the G05 update. Such a large redirection is not usually required, but was necessary at

Mark 23 because some LAPACK routines had been omitted at Mark 22 and a wholesale

upgrade to the random number generators was made available.

The steps required were as follows.

1. Copy mkl_mark22m.link to mkl_mark23m.link then edit.

28

2. Copy nag_mark22m.link to nag_mark23m.link then edit.

3. Copy makenag_mark22.bat to makenag_mark23.bat then edit.

4. Type makenag_mark23 to create the new DLL stubs.

5. Check that the following new DLLs have been created

fldll234m_mkl_maths.dll and

fldll234m_nag_maths.dll.

6. Edit change_simfit_version.config to reference the Mark 23 DLLs.

7. Add the following files to the SimFIT program folder

change_simfit_version.config

fldll234m_mkl_maths.dll and

fldll234m_nag_maths.dll.

8. As administrator, run the executable

change_simfit_version.exe in the SimFIT folder.

14.6 Example: Upgrading from Mark 23 to Mark24

This is particularly easy as there were no routines used by SimFIT that became obsolete.

Here is an abbreviated form of makenag_mark24.bat which creates the dummy DLLs.

echo Step 1: Compile all the *.f source code

ftn95 /f_stdcall getifa_ftn95.f95

ftn95 /f_stdcall *.f

echo Step 2: Create the new nag dll linked to the nag mark24m NAG DLL

slink nag_mark24m.link

echo Step 3: Create the new mkl dll linked to the mkl mark24m NAG DLL

slink mkl_mark24m.link

The corresponding 64-bit batch file is x64_makenag_mark24.bat.

14.7 Example: Upgrading from Mark 24 to Mark25

This is fairly easy but there were some routines used by SimFIT that became obsolete. Here

is an abbreviated form of makenag_mark25.bat which creates the dummy DLLs.

echo Step 1: Compile all the *.f source code

ftn95 /f_stdcall getifa_ftn95.f95

ftn95 /f_stdcall *.f

echo Step 2: Create the new nag dll linked to the nag mark25m NAG DLL

slink nag_mark25m.link

echo Step 3: Create the new mkl dll linked to the mkl mark25m NAG DLL

slink mkl_mark25m.link

The corresponding 64-bit batch file is x64_makenag_mark25.bat.

29

14.8 Example: Upgrading from Mark 25 to Mark26

This was very easy as no routines were replaced. The scripts required are as follows, where

each batch files identifies the link scripts required.

makenag_mark26.bat

x64_makenag_mark26.bat

14.9 Example: Upgrading from Mark 26 to Mark27 and beyond

The way to make an upgraded version involves the following steps.

1. Check which items have been deleted and see if any are called by the SimFIT package.

2. For any that have been deleted make a file with replacement code.

3. Edit the link scripts to remove the subroutines that are not still available and use the

replacement code instead.

4. As there are now a large number of NAG libraries in addition to the standard and mkl

libraries you should edit the link scripts required.

5. Make sure that the NAG DLls linked in are covered by a NAG licence.

6. Edit thechange_simfit_version.configandx64_change_simfit_version.config

files.

7. Make sure that the configuration scripts are in the simfit\bin folder.

At mark27 the routine G10BAF was replaced by G10BBF and the code for this replacement

is in G10_mark27.f and the following batch files were used.

makenag_mark27.bat

x64_makenag_mark27.bat

At Mark27 change_simfit_version.config for 32bit SimFIT was as follows.

academic_maths.dll Academic Version

nldll27de_nag_maths.dll NAG Mark27 Version DE (NLW3227DE_NAG.DLL standard)

nldll27de_mkl_maths.dll NAG Mark27 Version DE (NLW3227DE_MKL.DLL high speed)

fldll26de_nag_maths.dll NAG Mark26 Version DE (FLDLL26DE_NAG.DLL standard)

fldll26de_mkl_maths.dll NAG Mark26 Version DE (FLDLL26DE_NAG.DLL high speed)

fldll254m_nag_maths.dll NAG Mark25 Version M (FLDLL254M_NAG.DLL standard)

fldll254m_mkl_maths.dll NAG Mark25 Version M (FLDLL254M_MKL.DLL high speed)

fldll244m_nag_maths.dll NAG Mark24 Version M (FLDLL244M_NAG.DLL standard)

fldll244m_mkl_maths.dll NAG Mark24 Version M (FLDLL244M_MKL.DLL high speed)

fldll234m_nag_maths.dll NAG Mark23 Version M (FLDLL234M_NAG.DLL standard)

fldll234m_mkl_maths.dll NAG Mark23 Version M (FLDLL234M_MKL.DLL high speed)

fldll224m_nag_maths.dll NAG Mark22 Version M (FLDLL224M_NAG.DLL standard)

fldll224m_mkl_maths.dll NAG Mark22 Version M (FLDLL224M_MKL.DLL high speed)

fldll214a_nag_maths.dll NAG Mark21 Version A (FLDLL214A_NAG.DLL standard)

fldll214a_mkl_maths.dll NAG Mark21 Version A (FLDLL214A_MKL.DLL high speed)

fldll214z_nag_maths.dll NAG Mark21 Version Z (FLDLL214Z_NAG.DLL standard)

fldll214z_mkl_maths.dll NAG Mark21 Version Z (FLDLL214Z_MKL.DLL high speed)

fldll20_maths.dll NAG Mark20

%

30

This is the configuration file for change_simfit_version.exe.

Each line must consist of a source DLL and a descriptive comment.

The program change_simfit_program.exe will overwrite w_maths.dll

by one of the source DLLs selected from a menu.

The percentage sign % indicates the end of the data and start

of comments.

To upgrade the Simfit package it is simply necessary to prepare

a source DLL linked to the appropriate NAG DLLs and enter it into

the above list in any order.

\normalsize

At Mark27 \verb+change_simfit_version.config+ for 642bit \simfit\ was as follows.

\small

\begin{verbatim}

academic_maths.dll Academic Version

nldll27de_nag_maths.dll NAG Mark27 Version DE (NLW3227DE_NAG.DLL standard)

nldll27de_mkl_maths.dll NAG Mark27 Version DE (NLW3227DE_MKL.DLL high speed)

fldll26de_nag_maths.dll NAG Mark26 Version DE (FLDLL26DE_NAG.DLL standard)

fldll26de_mkl_maths.dll NAG Mark26 Version DE (FLDLL26DE_NAG.DLL high speed)

fldll254m_nag_maths.dll NAG Mark25 Version M (FLDLL254M_NAG.DLL standard)

fldll254m_mkl_maths.dll NAG Mark25 Version M (FLDLL254M_MKL.DLL high speed)

fldll244m_nag_maths.dll NAG Mark24 Version M (FLDLL244M_NAG.DLL standard)

fldll244m_mkl_maths.dll NAG Mark24 Version M (FLDLL244M_MKL.DLL high speed)

fldll234m_nag_maths.dll NAG Mark23 Version M (FLDLL234M_NAG.DLL standard)

fldll234m_mkl_maths.dll NAG Mark23 Version M (FLDLL234M_MKL.DLL high speed)

fldll224m_nag_maths.dll NAG Mark22 Version M (FLDLL224M_NAG.DLL standard)

fldll224m_mkl_maths.dll NAG Mark22 Version M (FLDLL224M_MKL.DLL high speed)

fldll214a_nag_maths.dll NAG Mark21 Version A (FLDLL214A_NAG.DLL standard)

fldll214a_mkl_maths.dll NAG Mark21 Version A (FLDLL214A_MKL.DLL high speed)

fldll214z_nag_maths.dll NAG Mark21 Version Z (FLDLL214Z_NAG.DLL standard)

fldll214z_mkl_maths.dll NAG Mark21 Version Z (FLDLL214Z_MKL.DLL high speed)

fldll20_maths.dll NAG Mark20

%

This is the configuration file for change_simfit_version.exe.

Each line must consist of a source DLL and a descriptive comment.

The program change_simfit_program.exe will overwrite w_maths.dll

by one of the source DLLs selected from a menu.

The percentage sign % indicates the end of the data and start

of comments.

To upgrade the Simfit package it is simply necessary to prepare

a source DLL linked to the appropriate NAG DLLs and enter it into

the above list in any order.

From these it is obvious how to add subsequent releases.

14.10 Compiling the NAG library source codes

This section adds additional information to the previous section on numerical analysis (page 20) so that users

can appreciate how to compile selected routines instead of the whole NAG library replacement DLLs. The

31

naglib zip files unzip into a maths folder containing the source codes for the NAG routines, and a numbers

folder with subfolders containing auxiliary routines. A list of public domain software and acknowledgement

of the programmers involved will be found in the SimFIT reference manual w_manual.pdf.

The source codes used to replace some 215 library routines called by SimFIT are a mixture of public domain

subroutines, some edited to conform to the NAG library calling sequences, but with some subroutines created

from scratch. This code only contains standard Fortran constructs and can be compiled using any Fortran

compiler. Nevertheless, several things should be noted.

1. Some of the subroutines in the maths folders are dummy stubs for subroutines that are called by the

NAG version of SimFIT but are not called by the academic version of SimFIT and they just return

IFAIL = ­399. Also many of the routines in the numbers subfolders are not called by the NAG

library routines but are called from elsewhere in SimFIT so, to avoid compiling the whole of the maths

and numbers subroutines and just compile a particular NAG routine, it will be necessary to check for

dependencies within the numbers subfolders and simply extract the code required.

2. The routines treat IFAIL as an intent (out) variable that is zeroized on entry to the routines. So the

input IFAIL value is not used. However, as far as possible, the exit IFAIL values correspond to the

NAG documentation, but the error trapping must be done by users supplying their own checking code

for nonzero IFAIL exits, as I have done in the SimFIT package.

3. The routines have exactly the same names as the NAG ones except for an added dollar character to the

routine name. However the arguments are exactly the same.

4. Some of the routines use the workspaces dimensioned as for the NAG routines but some use additional

workspaces, mostly created as temporary workspaces using allocate.

5. Some routines are as good, or even better, than the NAG routines, but some were thrown together in

a hurry and are not so polished. I never got round to optimizing some code, particularly searching,

sorting, selecting between accuracy and speed, avoiding repetition, or economizing on storage, and this

is often indicated in the comments.

6. Users may wish to use their own implementations of packages like BLAS, LAPACK, and SLATEC.

7. The codes are nearly all in fixed format *.for style and, if free format *.f95 code is preferred, you

should use my SimFIT program for2f95, as this is designed to maintain the readability built into the

original code that will be destroyed by general purpose fixed to free translators.

15 Manual

Translating or extending the manuals will be very easy, since a very strict LATEX style has been used.

Programmers will observe that at one or two points handcrafting has been used (e.g.\newpage), and this will

have to be edited. Note also that most of the diagrams are included as *.wgb files. The file prolog.wgb

contains the PostScript header that has been cut out of the individual PostScript files to save space. By pasting

prolog.wgb back into the *.wgb files they become *.eps files. Of course dvips only needs prolog.wgb

once as a special. Note that makeindex is required to create the index. As hyperef is used, a call to dvips then

ps2pdf converts the *.dvi file into *.ps and *.pdf with hyperlinks. By obvious editing in w_manual.tex,

as in mono_manual.tex, a monochrome manual can be produced. Usually the package is distributed with

w_manual.pdf in color with hyperlinks, but mono_manual.pdf, and w_manual.ps in monochrome for high

resolution monochrome printing.

Programmers should definitely use the default folders otherwise it will be necessary to edit every call to

included graphics files throughout the whole document.

C:\manuals ...LaTeX w_manual [1st pass]

LaTeX w_manual [2nd pass]

32

Makeindex w_manual [1st pass]

LaTeX w_manual [3rd pass]

(Makeindex w_manual) [2nd pass ?]

(LaTeX w_manual) [4th pass ?]

dvips w_manual [w_manual.ps]

ps2pdf w_manual [w_manual.pdf]

C:\manuals\promote LaTeX promote

dvips promote [promote.ps]

ps2pdf promote.ps [promote.pdf]

C:\manuals\ms_office LaTeX ms_office

dvips ms_office [ms_office.ps]

ps2pdf ms_office.ps [ms_office.pdf]

C:\manuals\pscodes LaTeX pscodes

dvips pscodes [pscodes.ps]

ps2pdf pscodes.ps [pscodes.pdf]

C:\manuals\source LaTeX source

dvips source [source.ps]

ps2pdf source.ps [source.eps]

16 Distribution

Before making a distribution a package must be compiled, but it will be necessary to refresh the binaries.

For instance, binaries to build SimFIT are stored in c:\setup\programs and the batch files update.bat,

and x64_update.bat should be run to make sure that only the recently compiled binaries are loaded into the

distribution executable.

To make the SimFIT self-extracting installation programs, use edited versions of the scripts simfit.iss, and

x64_simfit.iss, together with text files infobefo.txt and x64_infobefo.txt for Inno Setup from

http://www.jordanr.cjb.net/

or

http://www.jordanr.dhs.org/.

In the case of SimDEM the files are simdem.iss, x64_simdem.iss, demobefo.txt, and x64_demobefo.txt.

However, by editing the information files infobefo.txt and demobefo.txt if required, and analyzing the

compilation scripts simfit.iss and simdem.iss to appreciate what paths are involved, any program can be

used to distribute the packages.

17 Makefiles

It is important to note that if frequent changes of compiler are made then modules can become inconsistent.

For this reason the object code generated for the SimFIT package program files and the GUI DLLs

w_simfit.dll

w_graphics.dll

should be compiled twice in succession to make sure the correct modules are linked in.

The procedure with dedicated FTN95 scripts is described for SimFIT while for SimDEM using NAGfor is

also illustrated with dedicated NAGfor commands. Check that all the batch files and link scripts have correct

paths and that all subfolders exist and contain the necessary files. Also, make sure all signatures are updated

and that SRC has been used to create objects from the icon *.ico and *.rc files then proceed as follows.

For FTN95 and the SimFIT package the sequence of commands is:

33

ftn95 /config

cd c:\simfit7\dll\numbers

compile

makenum

cd c:\simfit7\dll\maths

f *
makemat

cd c:\simfit7\dll\clearwin

src ico_clr

scc scroll_kludge

f w_editor

f module_clearwin

f *
makeclr

cd c:\simfit7\dll\menus

f *
makemen

cd c:\simfit7\dll\graphics

f module_savegks

f*
makegra

cd c:\simfit7\dll\models

f *
makemod

cd c:\simfit7\dll\simfit

f orthog

f *
makesim

cd c:\simfit7\dll\help

makehlp

cd c:\simfit7\dll\nag

make_all_nag

cd c:\simfit7\work

getdll

src ico_sim6

src ico_run6

f *
linkall

makew

cd c:\setup\programs

update

cd ..

notepad infobefo.txt

Now run the Inno-setup compiler using simfit.iss, rename the C:\setup\output\setup.exe file appro-

priately and zip up.

For FTN95 and the SimDEM package the sequence of commands is:

ftn95 /config

cd c:\simfit7\dll\clearwin

src ico_clr

scc scroll_kludge

f w_editor

f module_clearwin

34

f *
makeclr

cd c:\simfit7\dll\menus

f *
makemen

cd c:\simfit7\dll\graphics

f module_savegks

f *
makegra

cd c:\simdem

getdll

make_SILVERFROST_simdem

notepad demobefo.txt

cd c:\simdem\output

For NAGfor and the SimDEM package the sequence of commands is to first use FTN95 as follows:

ftn95 /config

cd c:\simfit7\dll\clearwin

src ico_clr

scc scroll_kludge

f w_editor

f module_clearwin

f *
makeclr

which creates w_clearwin.dll. Then use

cd c:\nagfor\dll\menus

nagfor ­compatible ­c ­w=x77 ­f2003 *.for

nagfor @nagfor_makemen.link

cd c:\nagfor\dll\graphics

nagfor ­compatible ­c ­w=x77 ­f2003 module_savegks.for

nagfor ­compatible ­c ­w=x77 ­f2003 *.for

nagfor @nagfor_makegra.link

cd c:\simdem

get_nagdll

make_NAG_simdem

notepad demobefo.txt

cd c:\simdem\output

Now run the Inno-setup compiler using simdem.iss, rename the c:\simdem\output\setup.exe file ap-

propriately and zip up. Single makefiles calling batch files can be used to compile and link these packages,

but these may not be distributed with the source codes to avoid confusion. Following the above sequence of

command lines should allow anybody to create their own makefiles.

18 Errors preventing the batch files from working

For SimFIT up to version 8.0.3 the batch files required the creation of *.mod or *.mod64 by compiling some

source files defining modules to compile other source files before using the batch files. From version 8.04 the

preprocessing is now done automatically with make_everything.bat and x64_make_everything.bat for

the following subroutines in the menus.dll

contr1$.for

grplts$.for

module_savegks.for

35

and for the clearwin.dll

g_covergks.for

module_clearwin.for

w_editor.for

w_rdvals.for

w_rfvals.for

x_ftable.for

w_symbol.for

w_dbcolr.for

19 Contact

Comments and requests for help to bill.bardsley@simfit.org.uk

36

	Cover
	Contents
	Building Simfit version 8.0.4 onwards
	Building Simdem version 7.4.2 onwards
	The zip files
	The Simfit source code tree
	Simdem source code tree

	Overview
	Websites
	Summary
	The installation folders
	FTN95 and w_clearwin.dll and x64_clearwin.dll
	Special versions of FTN95 Simdem
	FTN95 and compiled HTML
	change_simfit_version.exe and NAG DLLs
	w_simfit.exe
	Cross compiler issues
	File extensions
	Scripts

	Source codes
	Code style
	Signatures

	Compilers
	Example 1: FTN95 and w_clearwin.dll
	Configuring FTN95
	Compiling the resources
	Compiling the source code
	Linking the object code

	Example 2: NAGfor and w_menus.dll
	Compiling the source code
	Linking the object code

	Simdem GUI
	w_clearwin.dll
	w_menus.dll
	w_graphics.dll

	Simdem executables
	FTN95 auxiliary items
	w_simfit.exe
	change_simfit_version.exe

	Numerical analysis
	w_numbers.dll
	w_maths.dll

	w_models.dll
	w_simfit.dll
	Simfit executables
	NAG library details
	NAG data files and models
	NAG procedures
	NAG DLL interface
	NAG library updates
	Example: Upgrading from Mark 22 to Mark23
	Example: Upgrading from Mark 23 to Mark24
	Example: Upgrading from Mark 24 to Mark25
	Example: Upgrading from Mark 25 to Mark26
	Example: Upgrading from Mark 26 to Mark27 and beyond
	Compiling the NAG library source codes

	Manual
	Distribution
	Makefiles
	Errors preventing the batch files from working
	Contact

