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The general linear modeling technique (GLM) can be used to analyze survival data when there are covariates.

It should be emphasized that GLM is a very powerful technique, but it must be used with great care as it

requires more understanding from users than most analytical techniques. It defines an error type for the

observations, and assumes that the distribution of mean values is described in a link function which is a linear

combination of covariates. Further, additional model information in the form of data transformation, offsets,

weights, and strata may be required. For this reason SimFIT provides a simplified interface for fitting survival

data which will now be described

From the main SimFIT menu choose [Statistics], [Time series and survival], then [GLM], and study the default

test file cox.tf1which has data from P. Feigel and M. Zelen Biometrics 21, 826-838 (1965) in the following

format.

covariate G1 covariate G2 covariate G3 observation H time in weeks C indicator B

0.8329 0 0 0 65.00 1

-0.2877 0 0 0 156.0 1

1.4586 0 0 0 100.0 1

0.9555 0 0 0 134.0 1

1.7918 0 0 0 16.00 1

2.3514 0 0 0 108.0 1

2.3026 0 0 0 121.0 1

2.8332 0 0 0 4.000 1

1.6864 0 0 0 39.00 1

1.9459 0 0 0 143.0 1

2.2407 0 0 0 56.00 1

3.4657 0 0 0 26.00 1

3.5553 0 0 0 22.00 1

4.6052 0 0 0 1.000 1

4.6052 0 0 0 1.000 1

3.9512 0 0 0 5.000 1

4.6052 0 0 0 65.00 1

1.4816 1 1.4816 0 56.00 1

1.0986 1 1.0986 0 65.00 1

1.3863 1 1.3863 0 17.00 1

0.4055 1 4.0547 0 7.000 1

2.1972 1 2.1972 0 16.00 1

1.6677 1 1.6677 0 22.00 1

2.3026 1 2.3026 0 3.000 1

2.9444 1 2.9444 0 4.000 1

3.2958 1 3.2958 0 2.000 1

3.3322 1 3.3322 0 3.000 1

3.4340 1 3.4340 0 8.000 1

3.2581 1 3.2581 0 4.000 1

3.0445 1 3.0445 0 3.000 1

4.3694 1 4.3694 0 30.00 1

4.6052 1 4.6052 0 4.000 1

4.6052 1 4.6052 0 43.00 1

The above data format, i.e. the meaning of these six columns of data for this example of GLM survival

analysis with three covariates must be thoroughly understood as will be explained.
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If there are < covariates the first < columns must be the covariates, then column < + 1 must be either 0

(failure) or 1 (right censoring), column < + 2 must be the nonnegative survival time, while column (m + 3)

could be a default value of 1, or the weight for replicates or (in some case) the stratum indicator.

For these data the particular details are as follows.

• Column 1:

covariate G1 = log white blood cell count (in thousands)

• Column 2:

covariate G2 = AG-factor positive or negative (0 or 1)

• Column 3:

covariate G3 (in this special case G3 = G1G2 i.e. column 1 multiplied by column 2)

• Column 4:

observation H (where H = 0 for failure, or H = 1 for censored)

• Column 5:

C = survival time in weeks (C must be > 0)

• Column 6:

B = 1 this should usually be 1. However, it could be interpreted as a weighting factor for replicates,

except for the SimFIT advanced Cox regression procedure when it would be assumed to be the stratum

indicator.

In order to fit survival data using generalized linear models (GLM) by maximum likelihood four components

must be defined.

1. A random variable, say . with mean � (. ) = `, and variance+ (. )

2. A set of covariates G1, G2, . . . , G< recorded at the same time as .

3. A link function 6(.) which is a function of `

4. A linear predictor function of the covariates [ =
∑<

9=1 V 9G8

In addition it is supposed that the relationship between � (. ) and [ is

6(`) = [

and the fit is achieved by an iterative process.

As the GLM technique for fitting survival models is very complicated, requiring careful choices for the

distribution of. and the link function 6(.) as well as the calculation of offsets and use of data transformations,

SimFIT supplies a simplified interface to handle the following four special cases.

• The exponential model

• The Weibull model

• The extreme distribution model

• The Cox model

The following table displays the results from analyzing the same test file cox.tf1 using each of these models

sequentially.
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Model: exponential survival

No. parameters = 4, Rank = 4, No. points = 33, Deg. freedom = 29

Parameter Value Lower95%cl Upper95%cl Std.error ?

�>=BC0=C -5.1498 -6.201 -4.098 0.5142 0.0000

�(1) 0.4818 0.115 0.849 0.1795 0.0119

�(2) 1.8705 0.374 3.367 0.7317 0.0161

�(3) -0.3278 -0.831 0.175 0.2460 0.1931 **

Deviance = 38.55, A = 1

Model: Weibull survival

No. parameters = 4, Rank = 4, No. points = 33, Deg. freedom = 29

Parameter Value Lower95%cl Upper95%cl Std.error ?

�>=BC0=C -5.0405 -6.182 -3.899 0.5580 0.0000

�(1) 0.4761 0.108 0.844 0.1800 0.0131

�(2) 1.8413 0.338 3.344 0.7349 0.0181

�(3) -0.3244 -0.829 0.180 0.2465 0.1985 **

U 0.9777 0.889 1.066 0.0434 0.0000

Deviance = 37.06

Deviance - 2= log[0;?ℎ0] = 38.55

Model: Extreme value survival

No. parameters = 4, Rank = 4, No. points = 33, Deg. freedom = 29

Parameter Value Lower95%cl Upper95%cl Std.error ?

�>=BC0=C -5.2457 -6.502 -3.989 0.6143 0.0000

�(1) 0.9024 0.520 1.284 0.1868 0.0000

�(2) 3.8711 2.272 5.471 0.7821 0.0000

�(3) -0.7195 -1.241 -0.198 0.2549 0.0085

U 0.0344 0.030 0.039 0.0020 0.0000

Deviance = 35.69

Deviance - 2= log[0;?ℎ0] = 258.1

Model: Cox proportional hazards

Deviance = 131.48, Number of time points = 33

Parameter Estimate Score Lower95%cl Upper95%cl Std.error ?

�(1) 0.7325 5.138E-06 0.248 1.217 0.2371 0.0043

�(2) 2.7557 1.886E-06 0.731 4.780 0.9913 0.0093

�(3) -0.5792 5.062E-06 -1.188 0.030 0.2981 0.0615 *

It is very difficult to check goodness of fit when using the simplified GLM procedure in a situation where, as

in this case, the number of covariates is greater than zero, because only a limited number of techniques are

available for checking the deviance residuals as the technique is not simply estimating the parameters of a

theoretical equation for survival as a function of time. The most useful technique is probably to examine the

half-normal residuals plot for apparent linearity. Another indication is the final deviance, and the pattern of

convergence displayed during the iteration to find the minimum deviance. Again, the statistical significance

of the parameter estimates should be taken into account. The ? values reported in the above table refer to a,

approximate two-tailed C test on the ratio of parameter estimate to the corresponding standard error in order

to test the null hypothesis

�0 : The population parameter is not significantly different from zero.

In other words, a ? value less than 0.05 suggests that the parameter estimate could be meaningful, i.e. the

corresponding parameter has been estimated reasonably well and it seems to be significantly different from

zero. However, when ? values exceed 0.05 this is indicated by stars as in the above table, drawing attention

to the fact that the 95% confidence region for that parameter includes zero.
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Theory

Many survival models can be fitted to #D uncensored together with #A right censored survival times with

associated explanatory variables using the GLM technique from SimFIT programs linfit, gcfit in mode 4, or

simstat.

For instance, the SimFIT simplified GLM interface allows you to read in data for the covariates, G, the variable

H which can be either 1 for right-censoring or 0 for failure, together with the times C in order to fit survival

models. With a density 5 (C), survivor function ((C) = 1 − � (C) and hazard function ℎ(C) = 5 (C)/((C) a

proportional hazards model is assumed for C ≥ 0 with

ℎ(C8) = _(C8) exp(
∑
9

V 9G8 9 )

= _(C8) exp(V) G8)

Λ(C) =

∫ C

0

_(D) 3D

5 (C) = _(C) exp(V) G − Λ(C) exp(V) G))

((C) = exp(−Λ(C) exp(V) G)) .

The SimFIT comprehensive GLM procedure allows almost any model to be fitted to survival data, but it

requires that users must understand the numerous choices that have to be made concerning distributions to be

assumed, starting estimates to provide, link functions required, offsets that have to be provided, etc.

For these reasons the SimFIT simplified GLM interface can fit several survival models using the appropriate

choices for error distribution, link function, offset, data transformation, etc. required, as long as data are

provided in the format demonstrated for the SimFIT test file cox.tf1.

The exponential survival model

The exponential model has constant hazard and is particularly easy to fit, since

[ = V) G

5 (C) = exp([ − C exp([))

� (C) = 1 − exp(−C exp([))

_(C) = 1

Λ(C) = C

ℎ(C) = exp([)

and � (C) = exp(−[),

so this simply involves fitting a GLM model with Poisson error type, a log link, and a calculated offset of

log(C).

The selection of a Poisson error type, the log link and the calculation of offsets are all done automatically

by the simplified interface from the data provided, as will be appreciated on fitting the test file cox.tf1.
It should be emphasized that the values for H in the simplified GLM procedure for survival analysis must be

either H = 0 for failure or H = 1 for right censoring, and the actual time for failure C must be supplied paired

with the H values.

Internally, the SimFIT simplified GLM interface reverses the H values to define the Poisson variables and uses

the C values to calculate offsets automatically. Users who wish to use the advanced GLM interface for survival

analysis must be careful to declare the Poisson variables correctly and provide the appropriate offsets as offset

vectors.
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The Weibull survival model

Weibull survival is similarly easy to fit, but is much more versatile than the exponential model on account of

the extra shape parameter U as in the following equations.

5 (C) = UCU−1 exp([ − CU exp([))

� (C) = 1 − exp(−C exp([))

_(C) = UCU−1

Λ(C) = CU

ℎ(C) = UCU−1 exp([)

� (C) = Γ(1 + 1/U) exp(−[/U) .

However, this time, the offset is U log(C), where U has to be estimated iteratively and the covariance matrix

subsequently adjusted to allow for the extra parameter U that has been estimated. The iteration to estimate U

and covariance matrix adjustments are done automatically by the SimFIT simplified GLM interface, and the

deviance is also adjusted by a term −2= log Û.

The extreme value survival model

Extreme value survival is defined by

5 (C) = U exp(UC) exp([ − exp(UC + [))

which is easily fitted, as it is transformed by D = exp(C) into Weibull form, and so can be fitted as a Weibull

model using C instead of log(C) as offset. However it is not so useful as a model since the hazard increases

exponentially and the density is skewed to the left.

The Cox proportional hazards model

This model assumes an arbitrary baseline hazard function _0 (C) so that the hazard function is

ℎ(C) = _0 (C) exp([) .

It should first be noted that Cox regression techniques may often yield slightly different parameter estimates,

as these will often depend on the starting estimates, and also since there are alternative procedures for allowing

for ties in the data. In order to allow for Cox’s exact treatment of ties in the data, i.e., more than one failure or

censoring at each time point, this model is fitted by the SimFIT GLM techniques after first calculating the risk

sets at failure times C8 , that is, the sets of subjects that fail or are censored at time C8 plus those who survive

beyond time C8 . Then the model is fitted using the technique for conditional logistic analysis of stratified data.

The model does not involve calculating an explicit constant as that is subsumed into the arbitrary baseline

function. However, the model can accommodate strata in two ways. With just a few strata, dummy indicator

variables can be defined as in test files cox.tf2 and cox.tf3 but, with large numbers of strata, data should

be prepared as for cox.tf4.

As an example, consider the results shown in the previous table from fitting an exponential, Weibull, then Cox

model to data in the test file cox.tf1. In this case there is little improvement from fitting a Weibull model

after an exponential model, as shown by the deviances and half normal residuals plots. The deviances from

the full models (exponential, Weibull, extreme value) can be compared for goodness of fit, but they can not

be compared directly to the Cox deviance.
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