
SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Simulation, fitting, statistics, and plotting.

William G. Bardsley
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

0.00

0.25

0.50

0.75

1.00

0.00 0.50 1.00 1.50 2.00

Scatchard Plot for the 2 2 isoform

y

y/
x

(µ
M

-1
)

1 Site Model

2 Site Model

T = 21°C
[Ca++] = 1.3×10-7M

100%

80%

60%

40%

20%

0%

PC1
PC2

PC5
PC8

PC6
HC8

PC3
PC4

PC7
HC7

HC4
24A

33B
76B

30B
100A

34

53A

76

30A

61B
60A

27A
27B

52

37B

68

28A

97A
26A

60B
29

36A
36B

31B
31A

35B
32A

32B
35A

72A
72B

99A
99B

37A
47

100B
33A

53B
73

24B
26B

28B
97B

91A
91B

25A
25B

61A
HC5

HC6

P
er

ce
nt

ag
e

S
im

ila
rit

y

Bray-Curtis Similarity Dendrogram

0.00

0.50

1.00

0 1 2 3 4 5

Fitting a Convolution Integral f*g

Time t

f(
t)

, g
(t

)
an

d
f*

g

f(t) = exp(-αt)

g(t) = β2 t exp(-βt)

f*g

0.000

0.100

0.200

0.300

0.400

0.500

-3.0 1.5 6.0 10.5 15.0

Deconvolution of 3 Gaussians

x

y

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

-1.25 0.00 1.25

Orbits for a System of Differential Equations

y(2)

y(
1)

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75

Trinomial Parameter 95% Confidence Regions

px

p y

7,11,2

70,110,20

210,330,60

9,9,2
90,90,20

270,270,60

Reference Manual: Version 8.0.0

Contents

1 Overview 1

1.1 Installation . 2
1.2 Documentation . 2
1.3 Plotting . 3

2 First time user’s guide 7

2.1 The main menu . 7
2.2 The task bar . 9
2.3 The file selection control . 10

2.3.1 Multiple file selection . 12
2.3.1.1 The project archive technique . 12
2.3.1.2 Checking and archiving project files 12

2.4 First time user’s guide to data handling . 13
2.4.1 The format for input data files . 13
2.4.2 File extensions and folders . 13
2.4.3 Advice concerning data files . 13
2.4.4 Advice concerning curve fitting files . 13
2.4.5 Example 1: Making a curve fitting file . 14
2.4.6 Example 2: Editing a curve fitting file . 14
2.4.7 Example 3: Making a library file . 14
2.4.8 Example 4: Making a vector/matrix file . 15
2.4.9 Example 5: Editing a vector/matrix file . 15
2.4.10 Example 6: Saving data-base/spread-sheet tables to files 15

2.5 First time user’s guide to graph plotting . 16
2.5.1 The SimFIT simple graphical interface . 16
2.5.2 The SimFIT advanced graphical interface . 17
2.5.3 PostScript, GSview and SimFIT . 19
2.5.4 Example 1: Creating a simple graph . 21
2.5.5 Example 2: Error bars . 21
2.5.6 Example 3: Histograms and cumulative distributions 22
2.5.7 Example 4: Double graphs with two scales . 22
2.5.8 Example 5: Bar charts . 23
2.5.9 Example 6: Pie charts . 24
2.5.10 Example 7: Surfaces, contours and 3D bar charts 24

2.6 First time user’s guide to simulation . 25
2.6.1 Why fit simulated data ? . 25
2.6.2 Programs makdat and adderr . 25
2.6.3 Example 1: Simulating H = 5 (G) . 25
2.6.4 Example 2: Simulating I = 5 (G, H) . 26
2.6.5 Example 3: Simulating experimental error . 26
2.6.6 Example 4: Simulating differential equations . 27
2.6.7 Example 5: Simulating user-defined equations 28

ii Contents

3 Data analysis techniques 29

3.1 Introduction . 29
3.2 Weighting . 29

3.2.1 Arbitrary weights . 30
3.2.2 Replicate weights . 30
3.2.3 Curve fitting weights . 30

3.3 Principles involved when fitting models to data . 31
3.3.1 Limitations when fitting models . 32
3.3.2 Fitting linear models . 32
3.3.3 Fitting generalized linear models . 33
3.3.4 Fitting nonlinear models . 33
3.3.5 Fitting survival models . 34

3.4 Goodness of fit . 34
3.4.1 The chi-square test for goodness of fit . 35
3.4.2 The C test for parameter redundancy . 35
3.4.3 The � test for model discrimination . 35
3.4.4 Analysis of residuals . 35
3.4.5 How good is the fit ? . 35

3.5 Testing for differences between two parameter estimates 36
3.6 Testing for differences between several parameter estimates 36
3.7 Graphical deconvolution of complex models . 38

4 Linear models 40

4.1 Introduction . 40
4.2 Linear regression . 40
4.3 Polynomial regression . 42
4.4 Robust regression . 44
4.5 Regression on ranks . 47

5 Generalized linear models (GLM) 49

5.1 Introduction . 49
5.2 GLM examples . 51
5.3 The SimFIT simplified Generalized Linear Models interface 55
5.4 Logistic regression . 55
5.5 Conditional binary logistic regression with stratified data 57

6 Nonlinear models: Simple fitting 58

6.1 Introduction . 58
6.1.1 User friendly curve fitting programs . 59
6.1.2 IFAIL and IOSTAT error messages . 59

6.2 Exponential functions . 60
6.3 How to interpret parameter estimates . 61
6.4 How to interpret goodness of fit . 62
6.5 How to interpret model discrimination results . 64
6.6 High/low affinity ligand binding sites . 65
6.7 Cooperative ligand binding . 66
6.8 Cooperativity analysis . 67
6.9 Ligand binding species fractions . 67
6.10 Michaelis-Menten kinetics . 68

6.10.1 Extrapolating Michaelis-Menten kinetics . 68
6.11 Isotope displacement kinetics . 69
6.12 Positive rational functions . 70
6.13 Plotting positive rational functions . 71

6.13.1 Scatchard plots . 71

Contents iii

6.13.2 Semi-log plots . 71
6.13.3 Asymptotic forms . 72
6.13.4 Sigmoidicity . 73

6.14 Nonlinear growth curves . 74
6.15 Nonlinear survival curves . 77
6.16 Nonlinear decay curves . 77
6.17 Accuracy of growth/decay/survival parameter estimates 78

7 Nonlinear models: Advanced fitting 79

7.1 Fitting a function of one variable using qnfit . 79
7.2 Fitting a mixture of two normal distributions . 82

7.2.1 Fitting histogram data . 82
7.2.2 Fitting a cumulative frequency . 84

7.3 Fitting a beta distribution to a sample of observations . 86
7.3.1 Generating random samples . 86
7.3.2 Parameter estimation for statistical distributions 88
7.3.3 Preparing samples of observations for curve fitting 88
7.3.4 Fitting a beta pdf . 89
7.3.5 Fitting a beta cdf . 91
7.3.6 Plotting a combined graph . 92
7.3.7 Practical issues . 94

7.4 Plotting the objective function using qnfit . 95
7.5 Plotting best-fit surfaces using qnfit . 96
7.6 Fitting functions of several variables using qnfit . 97
7.7 Fitting multi-function models using qnfit . 98
7.8 Fitting a convolution integral using qnfit . 99

8 Differential equations 102

8.1 Introduction . 102
8.2 Phase portraits of plane autonomous systems . 102
8.3 Orbits of differential equations . 102
8.4 Fitting differential equations . 103

8.4.1 Fitting a single differential equation using qnfit 104
8.4.1.1 Michaelis-Menten irreversible substrate depletion 104
8.4.1.2 Von Bertalanffy allometric growth model 105
8.4.1.3 Von Bertalanffy allometric growth and decay model 106

8.4.2 Fitting systems of differential equations using deqsol 107

9 Calibration and Bioassay 110

9.1 Introduction . 110
9.2 Calibration curves . 110

9.2.1 Turning points in calibration curves . 111
9.2.2 Calibration using polnom . 111
9.2.3 Calibration using calcurve . 112
9.2.4 Calibration using qnfit . 113

9.3 Dose response curves, EC50, IC50, ED50, and LD50 . 113
9.4 95% confidence regions in inverse prediction . 116
9.5 Partial Least Squares (PLS) . 117

10 Statistical analysis 121

10.1 Introduction . 121
10.1.1 Statistical tests . 121
10.1.2 Multiple tests . 121

10.2 Data exploration . 122
10.2.1 Exhaustive analysis: arbitrary vector . 122

iv Contents

10.2.2 Exhaustive analysis: arbitrary matrix . 124
10.2.3 Exhaustive analysis: multivariate normal matrix 125
10.2.4 t tests on groups across rows of a matrix . 129
10.2.5 Nonparametric tests across rows of a matrix . 130
10.2.6 All possible pairwise tests (= vectors or a library file) 130

10.3 Tests . 130
10.3.1 1-sample C test . 130
10.3.2 1-sample Kolmogorov-Smirnov test . 132
10.3.3 1-sample Shapiro-Wilks test for normality . 133
10.3.4 1-sample Dispersion and Fisher exact Poisson tests 134
10.3.5 Goodness of fit to a Poisson distribution . 135
10.3.6 2-sample unpaired C and variance ratio tests . 136
10.3.7 2-sample paired C test . 138
10.3.8 2-sample Kolmogorov-Smirnov test . 139
10.3.9 2-sample Wilcoxon-Mann-Whitney U test . 140
10.3.10 2-sample Wilcoxon signed-ranks test . 142
10.3.11 Chi-square test on observed and expected frequencies 143
10.3.12 Chi-square, Fisher-exact, and loglinear contingency table tests 143

10.3.12.1 The chi-square contingency table test 145
10.3.12.2 The Fisher exact contingency table test 146
10.3.12.3 The loglinear contingency table test 147

10.3.13 McNemar test . 149
10.3.14 Cochran Q repeated measures test on a matrix of 0,1 values 151
10.3.15 The binomial test . 152
10.3.16 The sign test . 152
10.3.17 The run test . 153
10.3.18 The � test for excess variance . 155
10.3.19 Nonparametric tests using rstest . 156
10.3.20 Runs up or down test for randomness . 156
10.3.21 Median test . 157
10.3.22 Mood’s test and David’s test for equal dispersion 158
10.3.23 Kendall coefficient of concordance . 159

11 Analysis of variance 161

11.1 Introduction . 161
11.2 Variance homogeneity tests (= samples or library file) . 161
11.3 Variance stabilizing transformations . 163

11.3.1 Angular transformation . 163
11.3.2 Square root transformation . 164
11.3.3 Log transformation . 164

11.4 1-way and Kruskal-Wallis (= samples or library file) . 164
11.5 Tukey Q test (= samples or library file) . 166
11.6 Plotting 1-way data . 167
11.7 2-way and the Friedman test (one matrix) . 169
11.8 3-way and Latin Square design (one matrix) . 170
11.9 Groups and subgroups (one matrix) . 171
11.10 Factorial design (one matrix) . 173
11.11 Repeated measures (one matrix) . 175

Contents v

12 Analysis of proportions 178

12.1 Introduction . 178
12.1.1 Dichotomous data . 178
12.1.2 Binomial parameter confidence limits . 180
12.1.3 Differences between binomial parameter estimates 181
12.1.4 Confidence limits for analysis of two proportions 182

12.2 Meta analysis . 183
12.3 Bioassay, estimating percentiles . 187
12.4 Trichotomous data . 187
12.5 Plotting binomial error bars . 188
12.6 Plotting Log-Odds error bars . 188
12.7 Plotting meta analysis error bars . 189

13 Multivariate statistics 190

13.1 Introduction . 190
13.2 Correlation: parametric (Pearson product moment) . 190

13.2.1 Plotting lines on correlation diagrams . 192
13.2.1.1 Ordinary least squares . 194
13.2.1.2 The major axis line . 194
13.2.1.3 The reduced major axis line . 195
13.2.1.4 Plotting scattergrams, clusters, and connections 196

13.2.2 Plotting bivariate confidence ellipses: basic theory 197
13.2.3 Plotting bivariate confidence ellipses: regions . 198

13.3 Correlation: nonparametric (Kendall tau and Spearman rank) 199
13.4 Correlation: partial . 200
13.5 Correlation: canonical . 202
13.6 Cluster analysis: calculating a distance matrix . 204
13.7 Cluster analysis: nearest neighbors . 205
13.8 Cluster analysis: dendrograms . 206

13.8.1 Plotting dendrograms: standard format . 209
13.8.2 Plotting dendrograms: stretched format . 210
13.8.3 Plotting dendrograms: subgroups . 211

13.9 Cluster analysis: classical metric scaling, MDS . 212
13.10 Cluster analysis: non-metric (ordinal) scaling . 212
13.11 Cluster analysis: K-means clustering . 213

13.11.1 Plotting K-Means clusters: UK airports . 218
13.11.2 Plotting K-Means clusters: highlighting centroids 219
13.11.3 Plotting K-Means clusters: variables or scores . 220

13.12 Labeling multivariate plots . 221
13.13 Adjusting multivariate plot labels . 222
13.14 Principal components analysis . 223
13.15 Procrustes analysis . 226
13.16 Varimax and Quartimax rotation . 227
13.17 Multivariate analysis of variance (MANOVA) . 228
13.18 Comparing groups: canonical variates (discriminant functions) 233

13.18.1 Comparing groups: Mahalanobis distances (discriminant analysis) 236
13.18.2 Comparing groups: Assigning new observations 236
13.18.3 Plotting training sets and assigned observations 238

13.19 Factor analysis . 238
13.20 Biplots . 241

vi Contents

14 Time series 246

14.1 Introduction . 246
14.2 Time series data smoothing . 246
14.3 Time series lags and autocorrelations . 246
14.4 Autoregressive integrated moving average models (ARIMA) 249
14.5 Auto- and cross-correlation matrices . 250

15 Survival analysis 253

15.1 Introduction . 253
15.2 Fitting one set of survival times . 253
15.3 Comparing two sets of survival times . 255
15.4 Survival analysis using generalized linear models . 257

15.4.1 The exponential survival model . 258
15.4.2 The Weibull survival model . 258
15.4.3 The extreme value survival model . 259
15.4.4 The Cox proportional hazards model . 259

15.5 Comprehensive Cox regression . 261
15.6 Plotting censored survival data . 262

16 Areas, slopes, lag times and asymptotes 264

16.1 Introduction . 264
16.2 Models used by program inrate . 264

16.2.1 Estimating initial rates using inrate . 265
16.2.2 Lag times and steady states using inrate . 265

16.3 Model-free fitting using compare . 265
16.4 Estimating averages and AUC using deterministic equations 268
16.5 Estimating AUC using average . 269

17 Spline smoothing 270

17.1 Introduction . 270
17.2 User-defined fixed knots . 271
17.3 Automatically calculated knots . 272
17.4 In between knots: d input . 273
17.5 In between knots: d by generalized cross validation . 274
17.6 Using splines . 274
17.7 Advice on which type of spline to use . 275

18 Statistical calculations 276

18.1 Introduction . 276
18.2 Statistical power and sample size . 276

18.2.1 Power calculations for 1 binomial sample . 278
18.2.2 Power calculations for 2 binomial samples . 279
18.2.3 Power calculations for 1 normal sample . 279
18.2.4 Power calculations for 2 normal samples . 280
18.2.5 Power calculations for k normal samples . 281

18.2.5.1 Plotting power as a function of sample size 282
18.2.6 Power calculations for 1 and 2 variances . 283
18.2.7 Power calculations for 1 and 2 correlations . 283
18.2.8 Power calculations for a chi-square test . 284

18.3 Parameter confidence limits . 285
18.3.1 Confidence limits for a Poisson parameter . 285
18.3.2 Confidence limits for a binomial parameter . 285
18.3.3 Confidence limits for a normal mean and variance 286
18.3.4 Confidence limits for a correlation coefficient . 286
18.3.5 Confidence limits for trinomial parameters . 286

Contents vii

18.3.5.1 Plotting trinomial parameter joint confidence regions 287
18.4 Robust analysis of one sample . 287
18.5 Robust analysis of two samples . 289
18.6 Indices of diversity . 290
18.7 Standard and non-central distributions . 291
18.8 Generating random numbers, permutations and Latin squares 291

18.8.1 Plotting random walks . 292
18.9 Kernel density estimation . 293
18.10 Fitting probability distributions . 295
18.11 Fitting a mixture of two normal distributions . 296
18.12 Fitting flow cytometry histograms . 299
18.13 Optimal design for model discrimination . 301
18.14 False discovery rates FDR(BH) . 305

18.14.1 Example 1: FDR(BH) for a vector of ? values . 305
18.14.2 The systematic FDR(BH) procedure . 306
18.14.3 Example 2: FDR(BH) for a matrix of ? values 306

19 Numerical analysis 308

19.1 Introduction . 308
19.2 Zeros of a polynomial of degree n - 1 . 308
19.3 Determinants, inverses, eigenvalues, and eigenvectors . 309
19.4 Singular value decomposition . 309
19.5 Pseudo inverse and rank of a matrix . 310
19.6 LU factorization of a matrix, norms and condition numbers 311
19.7 QR factorization of a matrix . 312
19.8 Cholesky factorization of a positive-definite symmetric matrix 312
19.9 Matrix multiplication . 313
19.10 Evaluation of quadratic forms . 314
19.11 Solving �G = 1 (full rank) . 314
19.12 Solving �G = 1 (!1, !2, !∞norms) . 314
19.13 The symmetric eigenvalue problem . 316
19.14 User-defined models . 316
19.15 Locating a zero of one function of one variable . 317
19.16 Locating zeros of = functions of = variables . 318
19.17 Integrating one function of one variable . 319
19.18 Integrating = functions of < variables . 320
19.19 Bound-constrained quasi-Newton optimization . 322
19.20 Plotting contours for Rosenbrock optimization trajectory 323

20 Graph plotting techniques 325

20.1 Graphical objects and plotting styles . 325
20.1.1 Symbols . 325
20.1.2 Lines: standard types . 326
20.1.3 Lines: extending to boundaries . 327
20.1.4 Text . 328
20.1.5 Fonts, character sizes and line thicknesses . 329
20.1.6 Arrows . 329
20.1.7 Basic plotting styles . 330
20.1.8 Example of plotting without data: Venn diagram 331
20.1.9 Polygons . 332

20.2 Sizes and shapes . 333
20.2.1 Alternative axes and labels . 333
20.2.2 Transformed data . 333
20.2.3 Alternative sizes, shapes and clipping . 335

viii Contents

20.2.4 Rotated and re-scaled graphs . 335
20.2.5 Changed aspect ratios and shear transformations 336
20.2.6 Reduced or enlarged graphs . 337
20.2.7 Split axes . 338
20.2.8 Stepping over intermediate data points . 339

20.3 Equations . 340
20.3.1 Maths . 340
20.3.2 Chemical Formulæ . 341
20.3.3 Composite graphs . 342

20.4 Bar charts and pie charts . 343
20.4.1 Perspective effects . 343
20.4.2 Advanced barcharts . 344
20.4.3 Three dimensional barcharts . 345

20.5 Error bars . 346
20.5.1 Error bars with barcharts . 346
20.5.2 Error bars with skyscraper and cylinder plots . 347
20.5.3 Slanting and multiple error bars . 348
20.5.4 Calculating error bars interactively . 349

20.6 Three dimensional plotting . 350
20.6.1 Surfaces and contours . 350
20.6.2 Three dimensional space curves . 351
20.6.3 Projecting space curves onto planes . 352
20.6.4 Three dimensional scatter diagrams . 353
20.6.5 Two dimensional families of curves . 354
20.6.6 Three dimensional families of curves . 355

20.7 Specialized techniques . 356
20.7.1 Segmented models with cross-over points . 356
20.7.2 Plotting single impulse functions . 357
20.7.3 Plotting periodic impulse functions . 358
20.7.4 Subsidiary figures as insets . 359
20.7.5 Nonlinear growth curves . 359
20.7.6 Immunoassay and dose-response dilution curves 360
20.7.7 Information panels . 361

20.8 Parametric curves . 362
20.8.1 A = A (\) parametric plot 1: Eight leaved rose . 362
20.8.2 A = A (\) parametric plot 2: Logarithmic spiral with tangent 363

21 PostScript procedures 364

21.1 Encapsulated PostScript files . 364
21.1.1 Using editps to manipulate PostScript files . 364
21.1.2 Editing SimFIT Postscript files . 364
21.1.3 Rotating, re-sizing, and changing aspect ratios. 364
21.1.4 Creating simple collages . 364
21.1.5 Creating freestyle collages . 364

21.1.5.1 Creating insets . 365
21.1.5.2 Creating split graphs . 366

21.2 The format of SimFIT PostScript files . 366
21.2.1 Advice about editing PostScript files . 366

21.2.1.1 The percent-hash escape sequence . 367
21.2.1.2 Changing line thickness and plot size 367
21.2.1.3 Changing PostScript fonts . 367
21.2.1.4 Changing title and legends . 368
21.2.1.5 Deleting graphical objects . 368
21.2.1.6 Changing line and symbol types . 369

Contents ix

21.2.1.7 Adding extra text . 370
21.2.1.8 Changing colors . 370

21.3 Standard fonts . 371
21.3.1 Decorative fonts . 372
21.3.2 Plotting characters outside the keyboard set . 372

21.3.2.1 The StandardEncoding Vector . 373
21.3.2.2 The ISOLatin1Encoding Vector . 374
21.3.2.3 The SymbolEncoding Vector . 375
21.3.2.4 The ZapfDingbatsEncoding Vector 376

21.3.3 SimFIT character display codes . 377
21.3.4 editps text formatting commands . 378

21.3.4.1 Special text formatting commands, e.g. left 378
21.3.4.2 Coordinate text formatting commands, e.g. raise 378
21.3.4.3 Currency text formatting commands, e.g. dollar 378
21.3.4.4 Maths text formatting commands, e.g. divide 378
21.3.4.5 Scientific units text formatting commands, e.g. Angstrom 378
21.3.4.6 Font text formatting commands, e.g. roman 378
21.3.4.7 Poor man’s bold text formatting command, e.g. pmb? 379
21.3.4.8 Punctuation text formatting commands, e.g. dagger 379
21.3.4.9 Letters and accents text formatting commands, e.g. Aacute 379
21.3.4.10 Greek text formatting commands, e.g. alpha 379
21.3.4.11 Line and Symbol text formatting commands, e.g. ce 379
21.3.4.12 Examples of text formatting commands 380

21.4 PostScript specials . 381
21.4.1 What specials can do . 381
21.4.2 The technique for defining specials . 381
21.4.3 Examples of PostScript specials . 382

22 Scalable vector graphics (SVG) 383

22.1 SVG: introduction . 383
22.1.1 Bitmaps . 383
22.1.2 Vector graphics . 383
22.1.3 Bogus vector files . 384
22.1.4 Using SVG files in SimFIT . 384
22.1.5 Editing SVG files in SimFIT . 384
22.1.6 Using LATEX . 386
22.1.7 Important differences between EPS and SVG files 386

22.2 SVG: Importing LATEX maths equations . 387
22.2.1 The TEX source . 387
22.2.2 Creating the plot file . 388
22.2.3 Joining the SVG files using EditSVG . 388
22.2.4 Summary of files described in this section . 389

22.3 SVG: Importing LATEX chemical formulas . 390
22.3.1 The TEX source . 390
22.3.2 Creating the plot file . 391
22.3.3 Joining the SVG files using EditSVG . 391
22.3.4 Summary of files used in this section . 392

22.4 SVG: Importing SVG files into SVG files . 393
22.4.1 Fitting exponential functions . 393
22.4.2 Creating the log transform . 394
22.4.3 Joining the SVG files using EditSVG . 395
22.4.4 Summary of files used in this section . 395

22.5 SVG: Using LaTeX to label SVG H axes . 396
22.5.1 The beta probability density function . 396

x Contents

22.5.2 The LaTeX source . 397
22.5.3 Creating the plot file . 397
22.5.4 Joining the SVG files using EditSVG . 398
22.5.5 Summary . 398

22.6 SVG: Editing using text editors, e.g., Notepad . 399
22.6.1 Titles and Legends . 399
22.6.2 Lines and Curves . 401
22.6.3 Character Strings and Fonts . 403

22.7 SVG: Creating collages . 405
22.7.1 Collage 1: Miscellaneous LATEX examples . 406
22.7.2 Collage 2: LATEX maths . 407
22.7.3 Collage 3: LATEX chemistry . 408
22.7.4 Collage 4: Tutorial examples . 409
22.7.5 Collage 5: Differential scaling to create ribbon graphs 410

22.8 SVG: Differential scaling examples . 411
22.8.1 A normal dendrogram . 412
22.8.2 A crowded dendrogram . 414
22.8.3 An extremely crowded plot . 415

A Distributions and special functions 417

A.1 Discrete distribution functions . 417
A.1.1 Bernoulli distribution . 417
A.1.2 Binomial distribution . 417
A.1.3 Multinomial distribution . 418
A.1.4 Geometric distribution . 418
A.1.5 Negative binomial distribution . 418
A.1.6 Hypergeometric distribution . 418
A.1.7 Poisson distribution . 419

A.2 Continuous distributions . 419
A.2.1 Uniform distribution . 420
A.2.2 Normal (or Gaussian) distribution . 420

A.2.2.1 Example 1. Sums of normal variables 420
A.2.2.2 Example 2. Convergence of a binomial to a normal distribution 420
A.2.2.3 Example 3. Distribution of a normal sample mean and variance 420
A.2.2.4 Example 4. The central limit theorem 421

A.2.3 Lognormal distribution . 421
A.2.4 Bivariate normal distribution . 421
A.2.5 Multivariate normal distribution . 421
A.2.6 C distribution . 422
A.2.7 Cauchy distribution . 422
A.2.8 Chi-square distribution . 423
A.2.9 � distribution . 423
A.2.10 Exponential distribution . 423
A.2.11 Beta distribution . 424
A.2.12 Gamma distribution . 424
A.2.13 Weibull distribution . 424
A.2.14 Logistic distribution . 425
A.2.15 Log logistic distribution . 425

A.3 Non-central distributions . 425
A.3.1 Non-central beta distribution . 425
A.3.2 Non-central chi-square distribution . 425
A.3.3 Non-central � distribution . 426
A.3.4 Non-central C distribution . 426

A.4 Special functions . 426

Contents xi

A.4.1 Binomial coefficient . 426
A.4.2 Gamma and incomplete gamma functions . 426
A.4.3 Beta and incomplete beta functions . 427
A.4.4 Exponential integrals . 427
A.4.5 Sine and cosine integrals and Euler’s gamma . 427
A.4.6 Fermi-Dirac integrals . 427
A.4.7 Debye functions . 427
A.4.8 Clausen integral . 427
A.4.9 Spence integral . 427
A.4.10 Dawson integral . 428
A.4.11 Fresnel integrals . 428
A.4.12 Polygamma functions . 428
A.4.13 Struve functions . 428
A.4.14 Kummer confluent hypergeometric functions . 428
A.4.15 Abramovitz functions . 428
A.4.16 Legendre polynomials . 429
A.4.17 Bessel, Kelvin, and Airy functions . 429
A.4.18 Elliptic integrals . 429
A.4.19 Single impulse functions . 430

A.4.19.1 Heaviside unit function . 430
A.4.19.2 Kronecker delta function . 430
A.4.19.3 Unit impulse function . 430
A.4.19.4 Unit spike function . 430
A.4.19.5 Gauss pdf . 430

A.4.20 Periodic impulse functions . 430
A.4.20.1 Square wave function . 431
A.4.20.2 Rectified triangular wave . 431
A.4.20.3 Morse dot wave function . 431
A.4.20.4 Sawtooth wave function . 431
A.4.20.5 Rectified sine wave function . 431
A.4.20.6 Rectified sine half-wave function . 431
A.4.20.7 Unit impulse wave function . 431

B User defined models 432

B.1 Supplying models as a dynamic link library . 432
B.2 Supplying models using standard mathematical notation 432
B.3 Supplying models as ASCII text files . 433

B.3.1 Formatting conventions for user defined models 433
B.3.1.1 Table of user-defined model commands 434
B.3.1.2 Table of synonyms for user-defined model commands 435
B.3.1.3 Error handling in user defined models 436
B.3.1.4 Notation for functions of more than three variables 436
B.3.1.5 The commands put(.) and get(.) 436
B.3.1.6 The command get3(.,.,.) . 436
B.3.1.7 The commands epsabs and epsrel 437
B.3.1.8 The commands blim(.) and tlim(.) 437

B.3.2 Plotting user defined models . 437
B.3.3 Finding zeros of user defined models . 438
B.3.4 Finding zeros of = functions in = variables . 438
B.3.5 Integrating 1 function of 1 variable . 438
B.3.6 Integrating = functions of < variables . 438
B.3.7 Calling sub-models from user-defined models . 438

B.3.7.1 The command putpar . 438
B.3.7.2 The command value(.) . 439

xii Contents

B.3.7.3 The command quad(.) . 439
B.3.7.4 The command convolute(.,.) . 439
B.3.7.5 The command root(.) . 439
B.3.7.6 The command value3(.,.,.) . 440
B.3.7.7 The command order . 440
B.3.7.8 The command middle . 440
B.3.7.9 The syntax for subsidiary models . 440
B.3.7.10 Rules for using sub-models . 441
B.3.7.11 Nesting subsidiary models . 441
B.3.7.12 IFAIL values for D01AJF, D01AEF and C05AZF 441
B.3.7.13 Test files illustrating how to call sub-models 441

B.3.8 Calling special functions from user-defined models 442
B.3.8.1 Table of special function commands 442
B.3.8.2 Using the command middle with special functions 443
B.3.8.3 Special functions with one argument 444
B.3.8.4 Special functions with two arguments 444
B.3.8.5 Special functions with three or more arguments 445
B.3.8.6 Test files illustrating how to call special functions 445

B.3.9 Operations with scalars and vectors . 445
B.3.9.1 The command store(j) . 445
B.3.9.2 The command storef(file) . 446
B.3.9.3 The command poly(x,m,n) . 446
B.3.9.4 The command cheby(x,m,n) . 447
B.3.9.5 The commands l1norm(m,n), l2norm(m,n) and linorm(m,n) . . . 448
B.3.9.6 The commands sum(m,n) and ssq(m,n) 448
B.3.9.7 The command dotprod(l,m,n) . 449
B.3.9.8 Commands to use mathematical constants 449

B.3.10 Integer functions . 449
B.3.11 Logical functions . 450
B.3.12 Conditional execution . 450
B.3.13 Arbitrary functions with arbitrary arguments . 451

B.4 Examples using standard mathematical expressions . 453
B.4.1 Test file usermod1_e.tf1: 1 function of 1 variable 453
B.4.2 Test file line3_e.mod: 3 functions of 1 variable 453
B.4.3 Test file e04fyf_e.mod: 1 function of 3 variables 453
B.4.4 Test file d01fcf_e.mod: 1 function of 4 variables 453
B.4.5 Test file optimum_e.mod: 3 functions of 2 variables 453
B.4.6 Test file d01eaf_e.mod: 10 functions of 4 variables 453
B.4.7 Test file c05nbf_e.mod: 9 functions of 9 variables 454
B.4.8 Test file deqmod2_e.tf2: 2 differential equations 454

B.5 Examples of user-defined models in reverse Polish notation 455
B.5.1 Example 1: a straight line . 455
B.5.2 Example 2: damped simple harmonic motion . 455
B.5.3 Example 3: diffusion into a capillary . 456
B.5.4 Example 4: defining three models at the same time 457
B.5.5 Example 5: Lotka-Volterra predator-prey differential equations 457
B.5.6 Example 6: supplying initial conditions . 459
B.5.7 Example 7: transforming differential equations 459
B.5.8 Example 8: consecutive irreversible chemical reactions 460
B.5.9 Example 9: evaluating a convolution integral . 462

Contents xiii

C Library of models 465

C.1 Mathematical models [Library: Version 2.0] . 465
C.2 Functions of one variable . 465

C.2.1 Differential equations . 465
C.2.2 Systems of differential equations . 466
C.2.3 Special models . 466
C.2.4 Biological models . 467
C.2.5 Biochemical models . 468
C.2.6 Chemical models . 469
C.2.7 Physical models . 469
C.2.8 Statistical models . 470
C.2.9 Empirical models . 471
C.2.10 Mathematical models . 471

C.3 Functions of two variables . 471
C.3.1 Polynomials . 471
C.3.2 Rational functions: . 472
C.3.3 Enzyme kinetics . 472
C.3.4 Biological . 472
C.3.5 Physical . 472
C.3.6 Statistical . 473

C.4 Functions of three variables . 473
C.4.1 Polynomials . 473
C.4.2 Enzyme kinetics . 473
C.4.3 Biological . 473
C.4.4 Statistics . 473

D Auxiliary programs 474

D.1 Recommended software . 474
D.1.1 Ghostscript . 474
D.1.2 GSview . 474
D.1.3 The interface between SimFIT, LATEX , and Dvips 474
D.1.4 SimFIT, Microsoft Office, and OpenOffice . 474

E MS_Office, OpenOffice, and LibreOffice 475

E.1 The easy way to import data into SimFIT . 475
E.1.1 Creating a pie chart . 475
E.1.2 Creating a bar chart . 478

E.2 Definitions . 479
E.2.1 Data tables . 480
E.2.2 Labeled data tables . 480
E.2.3 Missing values . 480
E.2.4 SimFIT data files . 480
E.2.5 SimFIT data files with labels . 481
E.2.6 Clipboard data . 481
E.2.7 Files exported from spreadsheet programs . 481

E.3 Spreadsheet tables . 482
E.4 Using the clipboard to transfer data into SimFIT . 484

E.4.1 Pasting data from the clipboard directly into SimFIT 484
E.4.2 Converting data from the clipboard into a SimFIT file 484

E.5 Using spreadsheet output files to transfer data into SimFIT 485
E.5.1 Space-delimited text files (.txt) . 485
E.5.2 Comma-delimited text files (.csv with standard Excel setup) 485
E.5.3 Semicolon-delimited text files (.csv with continental Excel setup) 485
E.5.4 Tab-delimited files (.txt) . 485

xiv Contents

E.5.5 Unicode (.txt) . 485
E.5.6 Web documents (.xml, .html, .htm, .mht, .mhtml) 485

E.6 Exporting SimFIT data files from Excel . 487
E.6.1 Using simfit4.xls with Excel to create SimFIT data files 487
E.6.2 Using simfit6.xls with Excel to create transformed SimFIT data files 487

E.6.2.1 Invoking the simfit6.xls macro . 487
E.6.2.2 Step 1: Open the simfit6.xls workbook 487
E.6.2.3 Step 2: Select the data table within the user’s workbook 487
E.6.2.4 Step 3: Invoke the simfit6.xls macro 488
E.6.2.5 Using the simfit6.xls macro . 488
E.6.2.6 Filling empty cells found in the data table 488
E.6.2.7 Validation Checks Completed . 489
E.6.2.8 Performing transformations of the data table 489
E.6.2.9 Transposing the SimFIT table . 489
E.6.2.10 Inspecting and saving the modified worksheet 490
E.6.2.11 The History Log . 490
E.6.2.12 Processing very large data tables . 490

E.7 Importing SimFIT results tables into documents and spreadsheets 491
E.7.1 SimFIT results files . 491
E.7.2 Preliminary analysis . 491
E.7.3 The procedure . 492
E.7.4 Example 1 . 494
E.7.5 Example 2 . 496
E.7.6 Example 3 . 497
E.7.7 Summary . 499

E.8 Printing and importing SimFIT graphs into documents . 500
E.8.1 Graphics hardcopy . 500

E.8.1.1 Bitmaps and compressed bitmaps . 500
E.8.1.2 Enhanced metafiles (.emf) . 500
E.8.1.3 Scalable vector graphics (.svg) . 500

E.8.2 PostScript graphics files (.eps) . 500
E.8.2.1 Ghostscript generated files . 501
E.8.2.2 Portable Document graphics files (.pdf) 501
E.8.2.3 Portable network graphics files (.png) 501

E.8.3 Using Encapsulated PostScript (.eps) files directly 501

F The SimFIT package 502

F.1 SimFIT program files . 502
F.1.1 Dynamic Link Libraries . 502
F.1.2 Executables . 503

F.2 SimFIT data files . 506
F.2.1 Example 1: a vector . 507
F.2.2 Example 2: a matrix . 507
F.2.3 Example 3: an integer matrix . 507
F.2.4 Example 4: appending labels . 508
F.2.5 Example 5: using begin ... end to add labels . 508
F.2.6 Example 6: various uses of begin ... end . 508
F.2.7 Example 7: starting estimates and parameter limits 508

F.3 SimFIT auxiliary files . 509
F.3.1 Test files (Data) . 511
F.3.2 Library files (Data) . 516
F.3.3 Test files (Models in reverse Polish) . 516
F.3.4 Test files (Models using expressions) . 517
F.3.5 Miscellaneous data files . 518

Contents xv

F.3.6 Graphics configuration and metafiles . 519
F.3.7 Parameter limits files . 519
F.3.8 Error message files . 519
F.3.9 PostScript example files . 519
F.3.10 SimFIT configuration files . 520
F.3.11 Default files . 520
F.3.12 Temporary files . 520
F.3.13 NAG library files (contents of list.nag) . 521

F.4 Acknowledgements . 523

List of Tables

2.1 Data for a double graph . 22

3.1 Comparing parameter estimates . 38

4.1 Multilinear regression . 42
4.2 Results from polynomial regression . 43
4.3 Robust regression . 47
4.4 Regression on ranks . 48

5.1 GLM example 1: normal errors . 51
5.2 GLM example 2: binomial errors . 52
5.3 GLM example 3: Poisson errors . 53
5.4 GLM contingency table analysis: 1 . 53
5.5 GLM contingency table analysis: 2 . 54
5.6 GLM example 4: gamma errors . 55
5.7 Dummy indicators for categorical variables . 56
5.8 Binary logistic regression . 57
5.9 Conditional binary logistic regression . 57

6.1 Fitting two exponentials: 1. parameter estimates . 61
6.2 Fitting two exponentials: 2. correlation matrix . 62
6.3 Fitting two exponentials: 3. goodness of fit statistics . 63
6.4 Fitting two exponentials: 4. model discrimination statistics 64
6.5 Fitting nonlinear growth models . 76

7.1 Parameters for best-fit Gaussians . 81
7.2 Results from fitting a function of three variables . 97

8.1 Parameters for Michaelis-Menten irreversible substrate depletion 105
8.2 Inverse prediction with the Von Bertalanffy differential equation 106
8.3 Estimating derivatives with the Von Bertalanffy equation 106
8.4 Parameters for growth and decay . 107

9.1 PLS: variables influence on projection . 120

10.1 Exhaustive analysis of an arbitrary vector . 122
10.2 Exhaustive analysis of an arbitrary matrix . 124
10.3 Statistics on paired columns of a matrix . 125
10.4 Hotelling)2 test for �0: means = reference . 126
10.5 Hotelling)2 test for �0: means are equal . 127
10.6 Covariance matrix symmetry and sphericity tests . 128
10.7 t tests on groups across rows of a matrix . 129
10.8 Nonparametric tests across rows . 130

List of Tables xvii

10.9 All possible comparisons . 131
10.10 One sample C test . 131
10.11 Kolomogorov-Smirnov 1-sample and Shapiro-Wilks tests 133
10.12 Poisson distribution tests . 135
10.13 Unpaired C test . 138
10.14 Paired C test . 139
10.15 Kolmogorov-Smirnov 2-sample test . 140
10.16 Wilcoxon-Mann-Whitney U test . 141
10.17 Wilcoxon signed-ranks test . 142
10.18 Chi-square test on observed and expected frequencies . 143
10.19 Chi-square and likelihood ratio contingency table tests: 2 by 2 145
10.20 Fisher exact contingency table test 1 . 146
10.21 Fisher exact contingency table test 2 . 147
10.22 Chi-square and likelihood ratio contingency table tests: 2 by 6 148
10.23 Loglinear contingency table analysis . 148
10.24 McNemar 2 by 2 test . 149
10.25 McNemar 3 by 3 test . 151
10.26 Cochran Q repeated measures test . 151
10.27 Binomial test . 153
10.28 Sign test . 153
10.29 Run test . 154
10.30 � test for exess variance . 155
10.31 Runs up or down test for randomness . 156
10.32 Median test . 157
10.33 Mood-David equal dispersion tests . 158
10.34 Kendall coefficient of concordance: results . 159
10.35 Kendall coefficient of concordance: data pre-ranked . 159
10.36 Kendall coefficient of concordance: data un-ranked . 160

11.1 Bartlett and Levene tests for homogeneity of variance . 162
11.2 ANOVA example 1(a): 1-way and the Kruskal-Wallis test 166
11.3 ANOVA example 1(b): 1-way and the Tukey Q test . 167
11.4 ANOVA example 2: 2-way and the Friedman test . 170
11.5 ANOVA example 3: 3-way and Latin square design . 171
11.6 ANOVA example 4: arbitrary groups and subgroups . 172
11.7 ANOVA example 5: factorial design . 173
11.8 ANOVA example 6: repeated measures . 176

12.1 Analysis of proportions: dichotomous data . 179
12.2 Analysis of proportions: meta analysis . 185
12.3 Analysis of proportions: risk difference . 186
12.4 Analysis of proportion: meta analysis with zero frequencies 187

13.1 Correlation: Pearson product moment analysis . 192
13.2 Correlation: analysis of selected columns . 193
13.3 Correlation: Kendall-tau and Spearman-rank . 200
13.4 Correlation: partial . 200
13.5 Correlation: partial correlation matrix . 201
13.6 Correlation: canonical . 202
13.7 Cluster analysis: distance matrix . 204
13.8 Cluster analysis: nearest neighbors . 206
13.9 Cluster analysis: partial clustering for Iris data . 207
13.10 Cluster analysis: metric and non-metric scaling . 213
13.11 Cluster analysis: K-means clustering . 214

xviii List of Tables

13.12 K-means clustering for Iris data . 215
13.13 Principal components analysis . 223
13.14 Procrustes analysis . 226
13.15 Varimax rotation . 227
13.16 MANOVA example 1a. Typical one way MANOVA layout 228
13.17 MANOVA example 1b. Test for equality of all means . 230
13.18 MANOVA example 1c. The distribution of Wilk’s Λ . 230
13.19 MANOVA example 2. Test for equality of selected means 231
13.20 MANOVA example 3. Test for equality of all covariance matrices 232
13.21 MANOVA example 4. Profile analysis . 233
13.22 Comparing groups: canonical variates . 234
13.23 Comparing groups: Mahalanobis distances . 236
13.24 Comparing groups: Assigning new observations . 237
13.25 Factor analysis 1: calculating loadings . 240
13.26 Factor analysis 2: calculating factor scores . 241
13.27 Singular values for East Jerusalem Households . 244

14.1 Autocorrelations and Partial Autocorrelations . 247
14.2 Fitting an ARIMA model to time series data . 250
14.3 Auto- and cross-correlation matrices . 252

15.1 Survival analysis: one sample . 254
15.2 Survival analysis: two samples . 256
15.3 GLM survival analysis . 259
15.4 Cox regression parameters . 261
15.5 Mantel-Haenzel log rank test . 262

16.1 Comparing two data sets . 268

17.1 Spline calculations . 273

18.1 Robust analysis of one sample . 289
18.2 Robust analysis of two samples . 290
18.3 Indices of diversity . 290
18.4 Latin squares: 4 by 4 random designs . 291
18.5 Latin squares: higher order random designs . 292
18.6 Fitting a mixture of two overlapping normal distributions 298
18.7 Fitting a flow cytometry histogram . 299

19.1 Zeros of a polynomial . 308
19.2 Matrix example 1: Determinant, inverse, eigenvalues, eigenvectors 309
19.3 Matrix example 2: Singular value decomposition . 310
19.4 Matrix example 3: Pseudo inverse and rank . 311
19.5 Matrix example 4: LU factorization and condition number 311
19.6 Matrix example 5: QR factorization . 313
19.7 Matrix example 6: Cholesky factorization . 313
19.8 Matrix example 7: Evaluation of quadratic forms . 314
19.9 Solving �G = 1: square where �−1 exists . 315
19.10 Solving �G = 1: overdetermined in 1, 2 and ∞ norms . 315
19.11 The symmetric eigenvalue problem . 316

F.1 Test file vector.tf1 . 507
F.2 Test file matrix.tf1 . 508
F.3 Test file binomial.tf3 . 508
F.4 Test file cluster.tf1 (original version) . 509

List of Tables xix

F.5 Test file piechart.tf1 . 509
F.6 Test file kmeans.tf1 . 510
F.7 Test file gauss3.tf1 . 510

List of Figures

1.1 Collage 1 . 4
1.2 Collage 2 . 5
1.3 Collage 3 . 6

2.1 The main SimFIT menu . 7
2.2 The SimFIT file selection control . 10
2.3 Five x,y values . 14
2.4 The SimFIT simple graphical interface . 16
2.5 The SimFIT advanced graphical interface . 17
2.6 The SimFIT PostScript driver interface . 20
2.7 The simplot default graph . 21
2.8 The finished plot and Scatchard transform . 21
2.9 A histogram and cumulative distribution . 22
2.10 Plotting a double graph with two scales . 23
2.11 Typical bar chart features . 23
2.12 Typical pie chart features . 24
2.13 Plotting surfaces, contours and 3D-bar charts . 24
2.14 The normal cdf . 25
2.15 Using makdat to calculate a range . 26
2.16 A 3D surface plot . 26
2.17 Adding random error . 27
2.18 The Lotka-Volterra equations and phase plane . 28
2.19 Plotting user supplied equations . 28

3.1 Comparing parameter estimates . 37
3.2 Graphical deconvolution of complex models . 39

4.1 Plots from polynomial regression . 43

6.1 Alternative types of exponential functions . 60
6.2 Fitting exponential functions . 61
6.3 Fitting high/low affinity sites . 65
6.4 Ligand binding species fractional populations . 68
6.5 Extrapolation . 69
6.6 Isotope displacement kinetics . 70
6.7 Fitting positive rational functions . 70
6.8 Original plot and Scatchard transform . 71
6.9 Substrate inhibition plot and semilog transform . 72
6.10 Definition of sigmoidicity . 73
6.11 Typical growth curve models . 74
6.12 Using gcfit to fit growth curves . 74
6.13 Estimating growth curve parameters . 76

List of Figures xxi

7.1 Fitting a sum of three Gaussians . 80
7.2 Further plots after fitting a sum of three Gaussians . 80
7.3 Objective function from an exponential model . 95
7.4 Objective function from Michaelis-Menten models . 96
7.5 Best-fit two variable model surface . 97
7.6 Sequential sections across a best-fit surface . 98
7.7 Fitting three equations simultaneously . 99
7.8 Fitting consecutive chemical reactions . 100
7.9 Fitting a convolution integral . 101

8.1 Phase portraits of plane autonomous systems . 103
8.2 Orbits of differential equations . 104
8.3 Fitting the Von Bertalanffy growth differential equation 105
8.4 Inverse prediction with the Von Bertalanffy differential equation 106
8.5 Fitting the Von Bertalanffy growth and decay differential equation 107
8.6 Fitting the epidemic differential equations . 108

9.1 A linear calibration curve . 111
9.2 A cubic spline calibration curve . 112
9.3 Plotting LD50 data with error bars . 115
9.4 PLS: selecting l factors from k=12 by using the variance explained in X and Y 118
9.5 PLS correlation between scores . 119

10.1 Plotting vectors . 123
10.2 Plot to diagnose multivariate normality . 126
10.3 Goodness of fit to a Poisson distribution . 136
10.4 Observed and Expected frequencies . 144

11.1 Box and whisker plot . 168
11.2 Range and percentiles plot . 168
11.3 Plotting interactions in Factorial ANOVA . 174

12.1 Plotting analysis of proportions data . 180
12.2 Meta analysis and log odds ratios . 186
12.3 Binomial parameter error bars . 188
12.4 Log-Odds error bars . 188
12.5 Log-Odds-Ratios error bars . 189

13.1 Bivariate density surfaces and contours . 191
13.2 Correlations and scattergrams . 196
13.3 Clusters and connections . 196
13.4 Confidence ellipses for a bivariate normal distribution 197
13.5 95% confidence regions . 198
13.6 Canonical correlations for two groups . 203
13.7 Dendrograms and multivariate cluster analysis . 206
13.8 Plotting dendrograms: standard format . 209
13.9 Plotting dendrograms: stretched format . 210
13.10 Plotting dendrograms: thresholds . 211
13.11 Plotting dendrograms: subgroups . 211
13.12 Classical metric and non-metric scaling . 214
13.13 Plotting K-means clusters: individual labels . 215
13.14 Plotting K-means clusters: Fisher Iris data . 216
13.15 Plotting K-means clusters: UK airports . 218
13.16 Plotting K-means clusters: highlighting centroids . 219
13.17 Plotting K-means clusters: variables or scores . 220

xxii List of Figures

13.18 Labelling statistical graphs . 221
13.19 Principal components . 222
13.20 Principal component scores and loadings . 224
13.21 Principal components scree diagram . 225
13.22 MANOVA profile analysis . 232
13.23 Comparing groups: canonical variates and confidence regions 234
13.24 Comparing groups: principal components and canonical variates 235
13.25 Training sets and groups assigned . 238
13.26 Two dimensional biplot for East Jerusalem Households 242
13.27 Three dimensional biplot for East Jerusalem Households 244
13.28 Percentage variance from singular value decomposition 245

14.1 The T4253H data smoother . 247
14.2 Time series before and after differencing . 249
14.3 Times series autocorrelation and partial autocorrelations 249
14.4 Fitting an ARIMA model to time series data . 251

15.1 Analyzing one set of survival times . 254
15.2 Analyzing two sets of survival times . 256
15.3 Cox regression survivor functions . 261
15.4 Plotting censored survival times . 263

16.1 Fitting initial rates . 266
16.2 Fitting lag times . 266
16.3 Fitting burst kinetics . 267
16.4 Model free curve fitting . 267
16.5 Trapezoidal method for areas/thresholds . 269

17.1 Splines: equally spaced interior knots . 272
17.2 Splines: user spaced interior knots . 272
17.3 Splines: automatically spaced interior knots . 273

18.1 Significance level and power . 278
18.2 Power as a function of sample size . 282
18.3 Trinomial parameter joint confidence contours . 288
18.4 Noncentral chi-square distribution . 292
18.5 Random walks . 293
18.6 Kernel density estimation . 294
18.7 Binomial probability distributions . 296
18.8 Beta probability distributions . 297
18.9 Fitting a mixture of two disjoint normal distributions . 297
18.10 Fitting a mixture of two overlapping normal distributions 298
18.11 Flow cytometry . 300
18.12 Fitting 1 site to 2 H/L sites: best fit model . 303
18.13 Fitting 1 site to 2 H/L sites: behaviour of Q . 303
18.14 Fitting 1 site to 2 H/L sites: behaviour of R . 304

19.1 Contour diagram for Rosenbrock optimization trajectory 324

20.1 Symbols, fill styles, sizes and widths. 325
20.2 Lines: standard types . 326
20.3 Lines: extending to boundaries . 327
20.4 Text, maths and accents. 328
20.5 Arrows and boxes . 329
20.6 Basic plotting styles . 330

List of Figures xxiii

20.7 Venn diagrams . 331
20.8 Polygons . 332
20.9 Axes and labels . 333
20.10 Plotting transformed data . 334
20.11 Sizes, shapes and clipping. 335
20.12 Rotating and re-scaling . 335
20.13 Aspect ratios and shearing effects . 336
20.14 Resizing fonts . 337
20.15 Split axes . 338
20.16 Stepping over intermediate points . 339
20.17 Plotting mathematical equations . 340
20.18 Plotting chemical structures . 341
20.19 Chemical formulas . 342
20.20 Perspective in barcharts, box and whisker plots and piecharts 343
20.21 Advanced bar chart features . 344
20.22 Three dimensional barcharts . 345
20.23 Error bars 1: barcharts . 346
20.24 Error bars 2: skyscraper and cylinder plots . 347
20.25 Error bars 3: slanting and multiple . 348
20.26 Error bars 4: calculated interactively . 349
20.27 Three dimensional plotting . 350
20.28 Space curves and projections . 351
20.29 Projecting space curves onto planes . 352
20.30 Three dimensional scatter plot . 353
20.31 Two dimensional families of curves . 354
20.32 Three dimensional families of curves . 355
20.33 Models with cross over points . 356
20.34 Plotting single impulse functions . 357
20.35 Plotting periodic impulse functions . 358
20.36 Subsidiary figures as insets . 359
20.37 Growth curves . 359
20.38 Immunoassay and dose-response dilution curves . 360
20.39 Information panels . 361
20.40 A = A (\) parametric plot 1. Eight leaved Rose . 362
20.41 A = A (\) parametric plot 2. Logarithmic Spiral with Tangent 363

21.1 Insets 1: Exponential fitting and semilog transforms . 365
21.2 Insets 2: Opaque and transparent backgrounds in insets 365

E.1 The main SimFIT menu . 476
E.2 The SimFIT file open control . 476
E.3 Creating a SimFIT pie chart . 477
E.4 Creating a SimFIT bar chart . 479

xxiv List of Figures

Part 1

Overview

SimFIT is a free software Open Source package for simulation, curve fitting, plotting, statistics, and numerical
analysis, supplied in compiled form for end-users, and source form for programmers. It runs in Windows, but
also Linux (under Wine), and Mac (under Crossover). The academic version is completely free, but there is
also a NAG version with additional features which requires the NAG library DLLs.

Applications

analysis inverses, eigenvalues, determinants, SVD, zeros, quadrature, optimization,

biology allometry, growth curves, bioassay, flow cytometry,

biochemistry ligand binding studies, cooperativity analysis, metabolic control modelling,

biophysics enzyme kinetics, initial rates, lag times, asymptotes,

chemistry chemical kinetics, complex equilibria,

ecology Bray-Curtis similarity dendrograms, K-means clusters, principal components,

epidemiology population dynamics, parametric and nonparametric survival analysis,

immunology nonlinear calibration with 95% x-prediction confidence limits,

mathematics plotting phase portraits, orbits, 3D curves or surfaces,

medicine power and sample size calculations for clinical trials,

pharmacology dose response curves, estimating LD50 with 95% confidence limits,

pharmacy pharmacokinetics, estimating AUC with 95% confidence limits,

physics simulating and fitting systems of differential equations,

physiology solute transport, estimating diffusion constants, or

statistics data exploration, tests, fitting generalized linear models.

Summary

SimFIT consists of some forty programs, each dedicated to a special set of functions such as fitting specialized
models, plotting, or performing statistical analysis, but the package is driven from a program manager which
also provides options for viewing results, editing files, using the calculator, printing files, etc.

SimFIT has on-line tutorials describing available functions, and test data files are provided so all that first time
users need to do to demonstrate a program is to select the test file supplied, then observe the analysis. Results
are automatically written to log files, which can be saved to disk, or browsed interactively so that selected
results can be printed or copied to the clipboard.

SimFIT data sets can be stored as ASCII text files, or transferred by the clipboard into SimFIT from spread-
sheets. Macros are provided (e.g., simfit4.xls and simfit6.xls) to create files from data in MS Excel,
and documents are supplied to explain how to incorporate SimFIT graphics into word processors such as MS
Word, or how to use PostScript fonts for special graphical effects.

2 SimFIT reference manual: Part 1

SimFIT has many features such as: wide coverage, great versatility, fast execution speed, maximum likelihood
estimation, automatic fitting by user-friendly programs, constrained weighted nonlinear regression using
systems of equations in several variables, or the ability to handle large data sets.

Students doing statistics for the first time will find it very easy to get started with data analysis, such as
doing C or chi-square tests, and advanced users can supply user defined mathematical models, such as systems
of differential equations and Jacobians, or sets of nonlinear equations in several independent variables for
simulation and fitting.

SimFIT also supports statistical power calculations and many numerical analysis techniques, such as nonlinear
optimization, finding zeros of = functions in = variables, integrating = functions of < variables, calculating
determinants, eigenvalues, singular values, matrix arithmetic, etc.

1.1 Installation

Details for installation and configuration will be found in the files install.pdf and configure.pdf which
are distributed with the package. A summary follows.

1. The installation programs simfit_setup8_x_y.exe, and x64_simfit_setup8_x_y.exe.
These can be obtained (in .zip files) from https://simfit.uk and contain the whole SimFIT package
together with documentation and test files. You should uninstall any existing SimFIT installations before
installing if you want, but the installation program will simply overwrite any existing SimFIT files, as
long as they do not have the read-only attribute. You should install the package in the default top-level
SimFIT folder, say C:\Program Files\Simfit, by double clicking on the installation program and
accepting the default options, unless you have very good reasons not to. The installation program will
create binary, demonstration, documentation, results, and user sub-folders.

2. The program drivers w_simfit.exe, and x64_simfit.exe.
You can make a desktop shortcut to the SimFIT drivers in the SimFIT binary sub-folder if you want to
drive the package from a desk-top icon.

3. The top-level folder.

There should be no files at all in the SimFIT top-level folder.

4. The auxiliary programs.

You can specify your own editor, clipboard viewer, and calculator or use the Windows defaults. To
read the manual you must install the Adobe Acrobat Reader or similar, and for professional PostScript
graphics hardcopy you can also install the GSview/Ghostscript packages.

5. The configuration options.

Run the driver then use the [Configure], [Check] and [Apply] buttons until all paths to auxiliary files are
correct. The [Check] option will tell you if any files cannot be located and will search your computer
for the correct paths and filenames if necessary.

There are SimFIT mirror sites athttps://simfit.silverfrost.com, and also athttps://simfit.usal.es
which also distributes a Spanish language sub-set of SimFIT.

1.2 Documentation

There are several sources of documentation and help. Each individual program has a tutorial describing the
functions provided by that program, and many of the dedicated controls to the more complex procedures have
a menu option to provide help. Also there is a help program which provides immediate access to further
information about SimFIT procedures, test files, and the readme files (which have technical information for
more advanced users). However, the main source of information is the reference manual which is provided in
PostScript (w_manual.ps), and portable document format (w_manual.pdf). Advice about how to use this
manual follows.

Overview 3

The SimFIT manual is in five main sections.

1. Introduction

A very brief overview of the package is given, with collages to illustrate the graphical possibilities, and
advice to help with installation. Then the first time user is guided through some frequently used SimFIT
procedures, such as creating data files, performing curve fitting, plotting graphs, or simulating model
systems. Anybody interested in exploiting the functionality provided by the SimFIT package would be
well advised to work through the examples given, which touch upon many standard procedures, but
with minimal theoretical details.

2. Data Analysis

This takes each SimFIT procedure and explains the theory behind the technique, giving worked examples
of how to use the test files provided with the package to observe the analysis of correctly formatted
data. The document tutorials.pdf describes how to profit from the worked examples provided at
the SimFIT website. Before users attempt to analyze their own data, they should read the description
of how that particular technique performs with the test data provided. It should be obvious that, if
SimFIT fails to read or analyze a user-supplied data set but succeeds with the test data supplied, then
the user-supplied data file is not formatted correctly, so the test files provided should be consulted to
understand the formatting required. Suggestions as to how users might employ SimFIT to analyze their
own data are given.

3. Graphics

This explains how to use the more advanced SimFIT plotting functions and is where users must turn
in order to find out how to get SimFIT to create specialized graphs. Anybody interested in this aspect
should browse the example plots displayed in the manual. Also, this section explains how to edit
PostScript files and create special Postscript graphical effects,

4. Appendices

This contains several appendices dealing with advanced features and listing all the programs and files
that make up the SimFIT package. There are sections which outline the library of mathematical and
statistical models and display the necessary equations. Also, there is a description of the syntax required
to develop user-defined models giving numerous examples, a list of all SimFIT programs and test files,
and discussion of interfaces to other software, like GSview/Ghostscript and Microsoft Office.

5. Index

This has hyperlinks to the appropriate manual page.

1.3 Plotting

SimFIT has a simple interface that enables users to create default plots interactively, but it also has an advanced
users interface for the leisurely sculpturing of masterpieces. To get the most out of SimFIT graphics, users
should learn how to save ASCII text coordinate files for selected plots, bundle them up into library files
or project archives to facilitate plotting many graphs simultaneously, and create configuration files to act as
templates for frequently used plotting styles. Also /simfit/ metafiles can be saved at any point and these can
be input retrospectively to resume editing.

SimFIT can drive any printer and is able to create graphics files in all formats, e.g., .eps, .pdf, .png, .svg,
.emf, .jpg, .tif, .pcx, and .bmp. However, Users should save the SimFIT industry standard encapsulated
PostScript files (*.eps), because they are compact, have unlimited resolution, can be collected into collages,
or transformed into other formats. The .png format for pictures, and .svg format for scientific graphics are
now recommended for the web, and are supported by all modern Windows programs. Windows users who
do not want such professional quality graphics can still save enhanced metafiles (*.emf). In order to give
some idea of the type of plots supported by SimFIT, figures 1.1, 1.2, and 1.3 should be consulted. These
demonstrate typical plots as collages created by SimFIT program editps from SimFIT PostScript files.

4 SimFIT reference manual: Part 1

0.00

0.50

1.00

1.50

2.00

0 10 20 30 40 50

Binding Curve for the 2 2 isoform at 21 C

Concentration of Free Ligand(µM)

L
ig

an
d

B
ou

nd
 p

er
 M

ol
e

of
 P

ro
te

in

1 Site Model

2 Site Model

0.00

0.25

0.50

0.75

1.00

0.00 0.50 1.00 1.50 2.00

Scatchard Plot for the 2 2 isoform

y

y/
x

(µ
M

-1
)

1 Site Model

2 Site Model

T = 21°C
[Ca++] = 1.3×10-7M

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6

Data Smoothing by Cubic Splines

X-values

Y
-v

al
u

es

0.00

0.25

0.50

0.75

1.00

-2.50 -1.25 0.00 1.25 2.50

GOODNESS OF FIT TO A NORMAL DISTRIBUTION

Sample Values (µm)

S
am

pl
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

Sample

N(µ,σ2)
µ = 0
σ = 1

Inhibition Kinetics: v = f([S],[I])

[S]/mM

v(
[S

],
[I

])
/

M
.m

in
-1

0

20

40

60

80

100

0 20 40 60 80

[I] = 0

[I] = 0.5mM

[I] = 1.0mM

[I] = 2.0mM

Absorbance, Enzyme Activity and pH

Fraction Number

A
b

so
rb

an
ce

 a
t

28
0n

m

E
n

zym
e A

ctivity (u
n

its) an
d

 p
H

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00

2.00

4.00

6.00

8.00

Absorbance Enzyme Units pH of Eluting Buffer

Plotting a Surface and Contours for z = f(x,y)

XY

Z

1.000

0.000

1.000

0.000

0

1

Three Dimensional Bar Chart

January

June

1996

1992
May

April
March

February

1993
1994

1995

0%

100%

50%

0.00

0.50

1.00

0 5 10 15 20 25

Survival Analysis

Time
E

st
im

at
ed

 S
ur

vi
vo

r
Fu

nc
tio

n

Kaplan-Meier Estimate

MLE Weibull Curve

Best Fit Line and 95% Limits

x

y

0

5

10

15

0 2 4 6 8 10

SIMFIT 3D plot for z = x2 - y2

XY

Z

1

-1

1

-1
-1

1

0.25

0.50

0.75

1.00

-3 -2 -1 0 1 2

x

φ(x) =
1

σ
p

2π

Z x

�∞
exp

(

�

1
2

�

t�µ
σ

�2
)

dt

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0 10 20 30 40 50

Binomial Probability Plot for N = 50, p = 0.6

x

Pr
(X

 =
 x

)

0

100

200

300

400

500

0 50 100 150 200 250

Using CSAFIT for Flow Cytometry Data Smoothing

Channel Number

N
um

be
r

of
 C

el
ls

x(t), y(t), z(t) curve and projection onto y = - 1

XY

Z

1.000

-1.000

1.000

-1.000
0.000

1.000

0

25

50

75

100

125

0 2 4 6 8 10

Time (weeks)

Pe
rc

en
ta

ge
 o

f
A

ve
ra

ge
 F

in
al

 S
iz

e

MALE

FEMALE

Using GCFIT to fit Growth Curves

1

2

3

4

5

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

Log Odds Plot

log10[p̂/(1 - p̂)]

t/
W

ee
ks

0

20

40

60

80

100

0 20 40 60 80

ANOVA (k = no. groups, n = no. per group)

Sample Size (n)

P
ow

er
 (

%
)

k
=

2
k

=
4

k
=

8
k

=
16

k =
 32

2 = 1 (variance)
 = 1 (difference)

Figure 1.1: Collage 1

Overview 5

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 1.00 2.00 3.00 4.00 5.00

t (min)

x(
t)

, y
(t

),
 z

(t
)

x(t)

y(t)

z(t)

A kinetic study of the oxidation of p-Dimethylaminomethylbenzylamine

"

"

b

b

b

b

"

"b

b

"

"

CH2NH2

CH2N(Me)2

-

[O] "

"

b

b

b

b

"

"b

b

"

"

CH=0

CH2N(Me)2

+ NH3
-

[O] "

"

b

b

b

b

"

"b

b

"

"

C02H

CH2N(Me)2

d
dt

0

@

x
y
z

1

A

=

0

@

�k
+1 k

�1 0
k
+1 (�k

�1�k
+2) k

�2

0 k
+2 �k

�2

1

A

0

@

x
y
z

1

A

;

0

@

x0

y0

z0

1

A

=

0

@

1
0
0

1

A

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

-1.25 0.00 1.25

Orbits for a System of Differential Equations

y(2)

y(
1)

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75

Trinomial Parameter 95% Confidence Regions

px

p y

7,11,2

70,110,20

210,330,60

9,9,2
90,90,20

270,270,60

Using SIMPLOT to plot a Contour Diagram

X

Y

1.000

0.000

1.0000.000

Key Contour
 1 9.025×10-2

 2 0.181
 3 0.271
 4 0.361
 5 0.451
 6 0.542
 7 0.632
 8 0.722
 9 0.812
 10 0.903

1

1

2

2

2

2

3

3

3

4

4

4

5

5

5

6

7

8
9

10

0.0

10.0

20.0

0.00 0.25 0.50 0.75 1.00
0.00

0.20

0.40

0.60

0.80

1.00

Using QNFIT to fit Beta Function pdfs and cdfs

Random Number Values

H
is

to
gr

am
 a

nd
 p

df
 f

it
Step C

urve and cdf fit

-1

0

1

2

-1 0 1 2

Phase Portrait for Lotka-Volterra Equations

y(2)

y(
1)

0.000

0.100

0.200

0.300

0.400

0.500

-3.0 1.5 6.0 10.5 15.0

Deconvolution of 3 Gaussians

x

y

Illustrating Detached Segments in a Pie Chart

January

February

March

April

May

June

July

August

September
October

November

December

Box and Whisker Plot

Month

R
an

g
e,

 Q
u

ar
ti

le
s

an
d

 M
ed

ia
n

s

-2.00

0.25

2.50

4.75

7.00

Ja
nu

ar
y

F
eb

ru
ar

y

M
ar

ch

A
pr

il

M
ay

Bar Chart Features

Overlapping Group

Normal Group

Stack

Hanging Group

Box/Whisker

55%

0%

-35%
-3

0

3

6

9

0 10 20 30 40 50

1-Dimensional Random Walk

Number of Steps

Po
si

tio
n

3-Dimensional Random Walk

XY

Z

1

-11

11

-1
-11

1

Figure 1.2: Collage 2

6 SimFIT reference manual: Part 1

K-Means Clusters

100%

80%

60%

40%

20% 0%

PC1
PC2
PC5
PC8
PC6
HC8
PC3
PC4
PC7
HC7
HC4
24A
33B
76B
30B

100A
34

53A
76

30A
61B
60A
27A
27B

52
37B

68
28A
97A
26A
60B

29
36A
36B
31B
31A
35B
32A
32B
35A
72A
72B
99A
99B
37A

47
100B
33A
53B

73
24B
26B
28B
97B
91A
91B
25A
25B
61A
HC5
HC6

Contours for Rosenbrock Optimization Trajectory

X

Y

-1.500

1.500

1.500-1.500

Key Contour
 1 1.425
 2 2.838
 3 5.663
 4 11.313
 5 22.613
 6 45.212
 7 90.412
 8 1.808×102

 9 3.616×102

 10 7.232×102

1

2

2

3

3

4

4

5

5
6

6

7

7

8

8

9 9

10 10

Diffusion From a Plane Source

3

-3

1.25

0.00
-2

-1
0

1
2

0.25
0.50

0.75
1.00

0.0

1.6

0.4

0.8

1.2

Z

XY

Values

Month 7
Month 6

Month 5
Month 4

Month 3
Month 2

Month 1

Case 1
Case 2

Case 3
Case 4

Case 5

0

11

Simfit Cylinder Plot with Error Bars

0.0

2.0

4.0

6.0

0.0 2.0 4.0 6.0

Slanting and Multiple Error Bars

x

y

Figure 1.3: Collage 3

Part 2

First time user’s guide

2.1 The main menu

The menu displayed in figure 2.1 will be referred to as the main SimFIT menu.

File Edit View Fit Calibrate Plot Statistics Area/Slope Simulate Modules Help A/Z Results Speedup Significant-figures Contact

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Version 8.1.2

sv_simfit is a simplified version

of simfit for inexperienced users

 Open sv_simfit

Summary Tutorials Examples Manual Configure FAQ Recent Editor Explorer Calculator

Figure 2.1: The main SimFIT menu

From this you can select from pop-up menus according to the functions required, and then choose which of
the forty or so SimFIT programs to use. When you run a program you will be in an isolated environment,
dedicated to the chosen program. On exit from the chosen program you return to the main SimFIT menu. If
you get lost in sub-menus and do not know where you are, use the closure cross at the top right corner which
appears when SimFIT programs are active, unless the blank background window has been suppressed.

8 SimFIT reference manual: Part 2

A brief description of the menus and task bar buttons will now be given.

File This option is selected when you want to create a data file by typing in your own data, or
transforming clipboard data or text files with data tables from a spreadsheet. You can also define a set of data
files for a library file.

Edit This option is selected when you want to edit a data file, or create a graphics file from a
PostScript file.

View This option is selected when you want to view any ASCII text files, such as test files, data
files, results files, model files, etc. A particularly useful feature is to be able to view lists of files analyzed
and files created in the current session. Also, if program GSview or some other PostScript browser has been
installed, you can view PostScript files, such as the SimFIT figures and manuals. Adobe Acrobat can also be
used to view *.pdf files.

Fit From this option you can fit things like exponentials, binding models or growth curves,
using dedicated user-friendly programs, or you can fit model-free equations, like polynomials or splines.
Advanced users can do comprehensive curve fitting from libraries or user supplied equations.

Calibrate Choosing this option allows you to perform calibration using lines, polynomials (gentle
curves), logistic polynomials (sigmoid curves), cubic splines (complicated curves), or deterministic models
(if a precise mathematical form is required). You can also analyze dose response curves for minimum values,
half saturation points, half times, IC50, EC50, or LD50 estimates.

Plot Some explanation is required concerning this option. All the SimFIT programs that can
generate graphical display do so in such a way that a default graph is created, and there are limited options
for editing. At this stage you can drive a printer or plotter or make a graphics file, but the output will only
be of draft quality. To sculpture a graph to your satisfaction then obtain publication quality hardcopy, here is
what to do: either transfer directly to advanced graphics or, for each data set or best-fit curve plotted, save the
corresponding coordinates as ASCII text files. When you have such a set of files, you are ready to select the
graph plotting option. Read the ASCII coordinate files into program simplot and edit until the graph meets
your requirements. Then print it or save it as a graphics file. PostScript files are the best graphics files and, to
re-size these, rotate, make collages, overlays, insets and so on, you input them into program editps.

Statistics SimFIT will do all the usual statistical tests, but the organization is very different from
any statistics package. That is because SimFIT is designed as a teaching and research tool to investigate
statistical problems that arise in curve fitting and mathematical modelling; it is not designed as a tool for
routine statistical analysis. Nevertheless, the structure is very logical; there are programs designed around
specific distributions, and there is a program to help you find your way around the statistics options and do all
the usual tests. So, if you want to know how to do a chi-square or C-test, analyze a contingency table, perform
analysis of variance or carry out nonparametric testing, just select program simstat. It tells you about tests
by name or by properties, and it also does some very handy miscellaneous tasks, such as exhaustive analysis
of a sample, multiple correlations and statistical arithmetic. For many users, the program simstat is the only
statistics program they will ever need.

Area/Slope Many experimental procedures call for the estimation of initial rates, lag times, final
asymptotes, minimum or maximum slopes or areas under curves (AUC). A selection of programs to do these
things, using alternative methods, is available from this option.

Simulate If you want to simulate data for a Monte Carlo study, or for graph plotting, program
makdat creates exact data from a library of models, or from a user-supplied model. Random error to simulate
an experiment can then be added by program adderr. There is program deqsol for simulating and fitting
systems of nonlinear differential equations, program makcsa for simulating flow cytometry experiments, and
program rannum for generating pseudo random numbers.

First time user’s guide 9

Modules From this menu you can use your own specified editor, explorer, SimFIT modules or, in
fact, any chosen Windows program. There are specialized SimFIT modules which can be accessed using this
option.

Help From this menu you can run the SimFIT help program and obtain technical data about the
current release.

A/Z This provides a shortcut to named programs in alphabetical order.

Results This option allows you to view, print or save the current and ten most recent results files.
Note that the default is f\$result.txt, but you can configure SimFIT so that, each time you start a program,
you can specify if the results should be stored on a named log file. All SimFIT results files are formatted ready
to be printed out with all tables tabbed and justified correctly for a monospaced font, e.g., Courier. However,
at all stages during the running of a SimFIT program, a default log file is created so that you can always copy
selected results to the clipboard for pasting into a word processor. The main menu task bar also has buttons
to let you view or print any ASCII text file, such as a data or results file.

Speedup This provides a shortcut to the speedup options described in the document speedup.pdf.

2.2 The task bar

At the bottom of the main SimFIT menu will be found a task bar, which is provided to facilitate the interface
between SimFIT and other programs.

Tutorials This option allows you to read any chosen tutorial document as a small pdf file (usually 4
to 6 pages).

Examples This option allows you to read w_examples.pdf, the collected volume of tutorials and
worked examples.

Manual This option allows you to open w_manual.pdf, the pdf version of the SimFIT manual.
The pdf manual has book-marks, and extensive hyperlinks between the contents, list of figures, and index, to
facilitate on-line use. You should open the SimFIT manual at the start of a SimFIT session, then keep the
manual open/minimized on the main Windows task bar, so that it is always ready for reference. The manual
contains details of all the SimFIT numerical procedures, statistical test theory, mathematical equations and
analytical and plotting facilities, and has more details than the SimFIT help program.

Configure This option starts up the SimFIT configuration procedure. Use this to configure SimFIT
to your own requirements. Note that, if you select the [Check] option and SimFIT reports missing files,
you can specify files exactly or just provide a search path. The [Apply] option must be used to change the
configuration by creating a new configuration file w_simfit.cfg.

FAQ This option allows you to run the frequently asked questions section of the SimFIT help
program which gives useful advice about the SimFIT procedures but is not so comprehensive as the reference
manual, which should be consulted for details, and to see worked examples.

Recent This option allows you to view, save, print, or copy to the clipboard your recent files
analyzed, files created, or SimFIT results files.

Editor This option opens your chosen text editor program, which you can specify using the
[Configure] option. There are many excellent free text editors, such as emacs, which can be specified, and
which are far more powerful than Windows Notepad. You should never edit any SimFIT test file or model file
and, to protect against this, experienced users could decide to make all the SimFIT test files read-only.

10 SimFIT reference manual: Part 2

Explorer This option opens your chosen disk explorer program, which you can specify using the
[Configure] option.

Calculator This option opens your chosen calculator program, which you can specify using the
[Configure] option.

Some things you can specify from this option are as follows.

❍ Switching on or off the displaying of start-up messages, or saving of results files.

❍ Suppressing or activating warning messages.

❍ Changing the size of fonts in menus, or the percentage of screen area used for plotting.

❍ Checking for consistent paths to auxiliary programs, and locating incorrectly specified files.

❍ Altering the specification of auxiliary programs and modules.

❍ Adjusting the variable colors on the SimFIT color palette.

❍ Setting the default symbols, line-types, colors, fill-styles and labels for plotting.

❍ Defining mathematical constants that are used frequently for data transformation.

2.3 The file selection control

The SimFIT file dialogue control is displayed in figure 2.2.

File Edit View Help

OK

Browse Keyboard Paste Demo NAG

Analyzed Created

Previous << Next >> Swap_Type Step from Analyzed file list item 1

Open ...

C:\Program Files\Simfit\dem\normal.tf1

Figure 2.2: The SimFIT file selection control

This control helps you to create new files (i.e., in the Save As . . . mode) or analyze existing files (i.e., in the
Open . . . mode). The top level [File], [Edit], [View], and [Help] menus allow you to select appropriate
test files to use for practise or browse to understand the formatting. Below this is an edit box and a set of
buttons which will now be described.

File Name You can type the name of a file into the edit box but, if you do this, you must type in the

First time user’s guide 11

full path. If you just type in a file name you will get an error message, since SimFIT will not let you create
files in the SimFIT folder, or in the root, to avoid confusion.

OK This option indicates that the name in the edit box is the file name required.

Browse This option simply transfers you to the Windows control but, when you know how to use
the SimFIT file selection control properly, you will almost never use the Windows control.

Keyboard This option allows you to type in a data set from the keyboard. It is only useful if you
understand the file format required and have very small samples. It creates a temporary file in your usr folder.

Paste This option is only activated when SimFIT detects ASCII text data on the clipboard and,
if you choose it, then SimFIT will attempt to analyze the clipboard data. If the clipboard data are correctly
formatted, SimFIT will create a temporary file, which you can subsequently save if required. If the data are not
properly formatted, however, an error message will be generated. When highlighting data in your spreadsheet
to copy to the clipboard, write to a comma delimited ASCII text file, or use a with a macro like simfit6.xls,
you must be very careful to select the columns for analysis so that they all contain exactly the same number
of rows.

Demo This option provides you with a set of test files that have been prepared to allow you to see
SimFIT in action with correctly formatted data. Obviously not all the files displayed are consistent with all
the possible program functions. With programs like simstat, where this can happen, you must use the [Help]
option to decide which file to select. When you use a SimFIT program for the first time, you should use this
option before analyzing your own data.

NAG This option provides you with a set of test files that have been prepared to allow you to use
SimFIT to see how to use NAG library routines.

Analyzed This history option allows you to choose from a list of the last files that SimFIT has analyzed,
but the list does not contain files recently saved.

Created This history option allows you to choose from a list of the last files that SimFIT has created,
but the list does not contain files recently analyzed. Of course, many files will first be created then subsequently
analyzed, when they would appear in both Analyzed and Created lists.

Previous This option allows you to scroll backwards through recent files and edit the filename, if
required, before selecting.

Next This option allows you to scroll forwards through recent files and edit the filename, if
required, before selecting.

Swap Type This option toggles between Created and Analyzed file types.

If you name files sensibly, like results.1, results.2, results.3, and so on, and always give your data short
meaningful titles describing the data and including the date, you will find the [Back], [Next], [Created] and
[Analyzed] buttons far quicker and more versatile than the [Browse] pipe to Windows.

12 SimFIT reference manual: Part 2

2.3.1 Multiple file selection

It often happens that users need to select multiple files. Examples could be:

❏ collecting a set of graphics files together in order to create a composite graph in simplot;

❏ selecting a family of vector files for analysis of variance or correlation analysis;

❏ building a consistent package of PostScript files to generate a collage using editps, or

❏ gathering together results files for fitting several model functions to experimental data in qnfit.

The problem with the Windows multiple file selection protocol is that it does not offer a convenient mechanism
for selecting subsets from a pool of related files, nor does it provide the opportunity to select files of restricted
type, vector files only, for instance. The SimFIT library file method is the best technique to submit a selected
set of files for repeated analysis, but it is not so versatile if users want to add or subtract files to a basic set
interactively, which requires the project archive technique.

2.3.1.1 The project archive technique

The SimFIT project archive technique has been developed to meet these needs. Where the multiple selection
of files is called for, a menu is presented offering users the opportunity to input a library file, or a set of
individually chosen files, or to initiate a project.

The project archive technique provides these opportunities:

❍ choosing individual files by the normal procedure;

❍ selecting files by multiple file selection using the shift and control keys;

❍ deleting and restoring/moving individual files;

❍ suppressing multiple files from the project, or

❍ harvesting files from a project list.

2.3.1.2 Checking and archiving project files

Before files are accepted into a project, a quick check is undertaken to ensure that files are consistent with the
type required. Further, users are able to add files to project lists interactively after files have been created,
e.g., after saving ASCII text coordinate files to replot using simplot. The project archives for recent files are
as follows:

a_recent.cfg: any type of file
c_recent.cfg: covariance matrix files
f_recent.cfg: curve fitting files
g_recent.cfg: graphics ASCII coordinate files
m_recent.cfg: matrix files for statistics
p_recent.cfg: encapsulated PostScript files
v_recent.cfg: vector files for statistics.

Files added to a project archive are kept in the order of addition, which sometimes permits duplication but
keeps files grouped conveniently together for multiple selection. Search paths and file types can be set from
the normal file selection control and missing files are deleted from the archives.

First time user’s guide to data handling 13

2.4 First time user’s guide to data handling

Data must be as tables of numerical data (with no missing values) in ASCII text format, as will be clear by
using the [View] button on the main SimFIT menu to browse the test files. Such files can be created using any
text editor but are best made by using the SimFIT editors, or transferring data from a spreadsheet using the
clipboard and maksim, or a macro such as simfit6.xls. First observe the notation used by SimFIT when
creating data tables. Scientific/computer notation is used for real numbers, where E+mn means 10 to the
power mn. Examples: 1.23E-02 = 0.0123, 4.56E+00 = 4.56 and 7.89E+04 = 78900.0. This notation confuses
non-scientists and inexperienced computer users, but it has the advantage that the numbers of significant
figures and orders of magnitude can be seen at a glance. However, correlation coefficients and probabilities
are output in decimal notation to four decimal places, which is about the limit for meaningful significance
tests, while integers are usually displayed as such. Note that formatting of input data is not so strict: you
can use any formatting convention to represent numbers in your own data tables, as SimFIT converts all data
supplied into double precision numbers for internal calculations. For instance: 1, 1.0, 1.0E+00, 10.0E-01,
and 0.1E+01 are all equivalent. Either commas or spaces can be used to separate numbers in input lists, but
commas must not be used as decimal points in data files. For instance: 1 2 3 and 1,2,3 are equivalent.

2.4.1 The format for input data files

The SimFIT data file format is as follows.

a) Line 1: Informative title for the data set (≤ 80 characters)
b) Line 2: Number of rows (<) Number of columns (=) (dimensions of the data set)
c) Lines 3 to < + 2: Block of data elements (as a < by = matrix)
d) Line < + 3: Number of further text lines (:)
e) Lines < + 4 to < + 3 + :: extra text controlling program operation or describing the data.

2.4.2 File extensions and folders

SimFIT does not add file extensions to file names, nor is it sensitive to the data file extensions. So you should
use the extension .txt if you want your text editor or word processor to create, or read SimFIT files. However,
you will be prompted to use accepted file extensions (.eps, .jpg, .bmp) for graphics files, and SimFIT will
refuse to open executable files (.exe, .dll, .bat, .obj, .com), or create files in the root directory (e.g., C:),
or the SimFIT folder (e.g., C:\Program Files\Simfit). Data files should be given meaningful names, e.g.,
data.001, data.002, data.003, data.004, first.set, second.set, third.set, fourth.set, etc., so
that the names or extensions are convenient for copying/deleting.

2.4.3 Advice concerning data files

a) Use an informative title for your data and include the date of the experiment.
b) The first extra text line controls some programs, e.g., calcurve in expert mode, but most programs ignore

the extra text. This is where you enter details of your experiment.
c) If you enter a vector into programs makmat/editmt, do not rearrange into increasing or decreasing order

if you wish to do run, paired C or any test depending on natural order.
d) With big data sets, make small files (makfil/makmat), then join them together (editfl/editmt).

2.4.4 Advice concerning curve fitting files

a) Use makfil to make a main master file with G and H values and with all B = 1. Keep replicates in the
natural order in which they were made to avoid bias in the run test.

b) Enter all your data, not means of replicates, so the run and sign tests have maximum power and the
correct numbers of degrees of freedom are used in statistics. If you do not have sample variances from
replicates, try an appropriate multiple of the measured response (7% ?) as a standard deviation estimate.
Nothing is saved by using means and standard errors of means but, if you do this, the parameter estimates
will be alright, but statistics will be biased.

14 SimFIT reference manual: Part 2

c) To change values, units of measurement, delete points, add new data, change weights, etc., input the
main master file into editfl.

d) If you have single measurements (or < 5 replicates ?), fit the main master file with all B = 1 and compare
the result with B = 7%|H | say, obtained using editfl.

e) If you have sufficient replicates (≥ 5 ?) at each G, input the main master file into editfl and generate a file
with B = sample standard deviations. Compare with results from, e.g., smoothed weighting.

f) For files with means and std. dev., or means ± 95% confidence limits for error bars, use editfl on the
data, or generate interactively from replicates using the graphics [Advanced] option.

2.4.5 Example 1: Making a curve fitting file

1.00

2.00

3.00

4.00

5.00

1.00 2.00 3.00 4.00 5.00

x

y

Figure 2.3: Five x,y values

Select makfil and request to create a file, say fivexy.1st, containing
five pairs of G, H values and choosing to set all B = 1. When asked, give
the data an informative title such as ...Five x,y values..., and
then proceed to type in the following five G, H values (which contain a
deliberate mistake).
x y
1 1
2 2
3 3
4 5
5 4
When finished request a graph, which will clearly show the mistake as
in the dotted line in figure 2.3, namely, that the H values are reversed
at the last two G values. Of course you could correct the mistake at this
stage but, to give you an excuse to use the curve fitting file editor, you
should now save the file fivexy.1st in its present form.

2.4.6 Example 2: Editing a curve fitting file

Read the file, fivexy.1st, that you have just created into editfl, and ask to create a new file, say fivexy.2nd.
Then change the values of H at lines 4 and 5 so that the H values are equal to the G values. Now you should
see the perfectly straight continuous line as in figure 2.3 instead of the bent dotted line. You are now finished,
but before you exit please note some important features about program editfl.

1) This editor takes in an old file which is never altered in any way.
2) After editing to change the data and title, a new file is created with the edited data.
3) In this way your original data are never lost, and you can always delete the original file when you are

sure that the editing is correct.
4) There are a vast number of powerful editing options, such as fusing files, changing baselines, scaling

into new units, weighting, creating means and standard errors or error bar files from groups of replicates.

2.4.7 Example 3: Making a library file

Select maklib and make a library file, say mylib.1st, with the title ...Two data sets... and containing
the two files you have just made. Browse this file in the SimFIT file viewer and you will discover that it looks
like the following:

Two data sets

fivexy.1st

fivexy.2nd

You could have made this file yourself with the edit or notepad Windows tools, as it is just a title and two
filenames. Now, to appreciate the power of what you have just done, select program simplot, choose a
standard G, H plot and read in this library file, mylib.1st, to get a plot like figure 2.3.

First time user’s guide to data handling 15

2.4.8 Example 4: Making a vector/matrix file

Select makmat and request to make a vector file called, for instance, vector.1st, with a title, say
...Some numbers between 0 and 1..., then type in ten numbers between 0 and 1. For example:

0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5

Save this file then make another one called, for example, vector.2nd with the numbers

0.975, 0.95, 0.925, 0.9, 0.85, 0.8, 0.75, 0.7, 0.6, 0.5

We shall use these two vector files later to practise statistical tests.

2.4.9 Example 5: Editing a vector/matrix file

Read in the file called fivexy.1st which you made previously and do the same editing that you did with
editfl to correct the mistakes. Now you will be able to appreciate the similarities and differences between
makfil/editfl and makmat/editmt: makfil/editfl have dedicated functions to handle files with column 1 in
increasing order and column 3 positive, while makfil/editfl can handle arbitrary matrices and vectors.

2.4.10 Example 6: Saving data-base/spread-sheet tables to files

Since spread-sheet and data-base programs can write out tables in ASCII text format, it is easy to transform
them into SimFIT style. For instance, read fivexy.2nd into maksim and, after discarding the two header
and trailer lines, you can create a data file in SimFIT format. maksim is much more than just a utility for
re-formatting, it can also do selections of sub-sets of data for statistical analysis according to the following
rules.

a) Only hard returns on the input file can act as row separators.
b) Non-printing characters, except hard returns, act as column separators.
c) Spaces or commas are interpreted as column separators and double commas are interpreted as bracketing

an empty column.
d) Each row of the input table is regarded as having as many columns as there are words separated by

commas or spaces.
e) Commas must not be used as decimal points or as thousands separators in numbers. For example, use

0.5 (not 0,5 or 1/2) for a half, and 1000000 (not 1,000,000) for a million.
f) Single column text strings must be joined and cannot contain spaces or commas. For example, use strings

like "Male.over.40" (not "Male over 40") for a label or cell entry.
g) Simple tables of numbers can be entered directly, but titles, row and column counters, trailing text and

the like must be deleted until every row has the same number of columns before selection of sub-matrices
can commence.

h) Row and column entries can be selected for inclusion in an output file as long as both the row and column
Boolean selection criteria are satisfied. To achieve this it is often best to start by globally suppressing all
rows and columns and then including as required, e.g., columns 3 and 4, all rows with Smith in column
1, all rows with values between 40 and 60 in column 2.

In order to understand the functionality provided by maksim you should create some tables using a text editor
such as Windows notepad then copy to the clipboard and read into maksim. There are also special test files,
maksim.tf1, maksim.tf2, maksim_1.html, and maksim_2.html that are designed to exploit and illustrate
some of the the procedures available in maksim.

Note that program maksim does not allow editing, for that you use your text editor. It does have a useful visual
interface for browsing smallish ASCII text tabular data, so that you can see at any stage what the sub-matrix
of selected data looks like. Like all SimFIT editors, it will never discard or overwrite your primary data file.

16 SimFIT reference manual: Part 2

2.5 First time user’s guide to graph plotting

There are three basic graphical operations as follows.

1) Obtaining a set of coordinates to be plotted.
Every SimFIT program that creates graphs lets you print a default graph, or save ASCII coordinate files,
which are tables of coordinates. This phase is easy, but name files systematically.

2) Transferring the graph to a peripheral.
If you have a PostScript printer, use the SimFIT driver not the Windows driver. If not, drive your printer
directly or, for more options, use PostScript output with program GSview.

3) Including graphics files in documents.
Bitmap files (*.bmp) are fine for photographs and histology slides, but are inappropriate for scientific
graphs, since they are large and give poor resolution when printed. Vector files (e.g., PostScript
files) are better as they are compact, easily edited, and give publication quality hardcopy. Windows
word processing packages can import PostScript files but, to view them on screen, you may have to use
program GSview to add a preview section. The best graphics files for Windows users with no PostScript
facilities are either *.png or *.svg

2.5.1 The SimFIT simple graphical interface

The SimFIT simple graphical interface, displayed in figure 2.4 for data in gcfit.tf2, best fit logistic curve,

Help

Edit

Advanced

EPS

Windows

Cancel

Data and best-fit curve

Time

Si
ze

0.0 2.5 5.0 7.5 10.0

0.00

0.30

0.60

0.90

1.20

Figure 2.4: The SimFIT simple graphical interface

and asymptote obtained using gcfit, provides the options now described.

Help This provides a short tutorial about SimFIT graphics.

Edit This provides only very simple options for editing the graph.

First time user’s guide to graph plotting 17

Advanced This lets you create ASCII coordinate files, which can be added to your project archive for
retrospective use, and is the most powerful option in the hands of experienced users. Alternatively, you can
transfer directly into simplot for immediate editing.

EPS This creates a temporary PostScript file which can be viewed, saved to file, printed using
GSview, or copied directly to a PostScript printer, for the highest possible quality.

Windows This is provided for users who do not have PostScript facilities. Only two of the options
should be contemplated; *.png or *.svg.

Cancel This returns you to the executing program for further action.

2.5.2 The SimFIT advanced graphical interface

The SimFIT advanced graphical interface, displayed in figure 2.5, results from transferring the data from

Text

=>Text

Text# = 0

A/L/B

=>A/L/B^

<=A/L/B_

A/L/B# = 0

Object

=>Object

Object# = 0

Panel

=>Panel

X = 0
Y = 1

Help

Menu

Titles

Legends

Labels

Style

Data

Colours

Transform

Configure

EPS

Windows

SVG

Quit

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0 2.0 4.0 6.0 8.0 10.0

Data and best-fit curve

Time

S
iz

e

Figure 2.5: The SimFIT advanced graphical interface

figure 2.4 directly into simplot, providing further options, as now described.

The advanced graphics left hand options

Help This provides help details that can also be obtained by a right mouse click within the
plotting area.

Menu This provides for editing from a menu without having to redraw the graph after each edit,
and is designed to save time for advanced users plotting many large data sets.

Titles This allows you to edit the plot titles.

18 SimFIT reference manual: Part 2

Legends This allows you to edit the plot legends.

Labels This allows you to change the range of data plotted, and alter the number or type of tick
marks and associated labels.

Style This allows you to alter the aspect ratio of the plot and perform clipping. A graph paper
effect can be added to aid the placement of graphical objects, and offsets or frames can be specified.

Data This allows you to change line or symbol types, add or suppress error bars, edit current
data values, add new data sets, or save edited data sets.

Colors This allows you to specify colors.

Transform This allows you to specify changes of coordinates. Note that there is a specific title and set
of plot legends for each transformation, so it makes sense to choose a transformation before editing the titles
or legends.

Configure This allows you to create configuration files containing all the details from editing the
current plot, or you can read in existing configuration files from previous editing to act as templates.

EPS PostScript hardcopy, as for the PostScript option with simple graphics.

Windows Windows hardcopy, as for the Windows option with simple graphics.

SVG Advanced SVG editing including stretching to change aspect ratios.

Quit This prompts you to save a configuration file, then closes down the current graph.

The advanced graphics right hand options

Text This allows you to select a text string to label features on the graph.

T = # This indicates which text string is currently selected. Only one string can be selected at
any time.

A/L/B This allows you to select an arrow, line, or box to label features on the graph.

A = # This indicates which arrow, line, or box is currently selected. Only one arrow, line, or box
can be selected at any time.

Object This allows you to select a graphical object to label features of the graph.

0 = # This indicates which graphical object is currently selected. Only one graphical object can
be selected at any time.

Panel This allows you to specify an information panel linking labels to line types, symbols,
fill-styles, etc., to identify the data plotted.

X = # This is - the coordinate for the current hot spot.

Y = # This is the . coordinate for the current hot spot.

First time user’s guide to graph plotting 19

Moving graphical objects

The right hand buttons in figure 2.5 allow you to move graphical objects about. The way this works is that
the red arrow can be dragged anywhere on the graph, and its tip defines a hot spot with the coordinates just
discussed. This hot spot is coupled to the current, text, arrow, line, box, graphical object that has been selected
and also to the left hand buttons. Help and hardcopy are also controlled by left hand buttons. Note that the
appropriate right hand buttons must be used to make a specific text string, arrow, line, box, or graphical object
the selected one before it can be coupled to the hot spot. Also, observe that, to drag a horizontal outline box
in order to surround a text string, the head and tail moving buttons are coupled to opposite corners of the
horizontal rectangle.

2.5.3 PostScript, GSview and SimFIT

SimFIT is now distributed with the Ghostscript dlls so it is no longer necessary to install the Ghostscript
package. EPS standard PostScript files are created in a special format to facilitate introducing maths, or
symbols like pointing hands or scissors (ZapfDingbats) retrospectively. Note the following advice.

a) The default display uses TrueType fonts which are not exactly the same dimensions as PostScript fonts,
so text strings on the display and in the PostScript hardcopy will have identical starting coordinates,
orientation, and color, but slightly differing sizes. Before making PostScript hardcopy, check the
PostScript display to make sure that the text strings are not under- or over-sized.

b) To get the full benefit from PostScript install the GSviewprogram which drives all devices from PostScript
files.

c) Save ASCII coordinate files from the default plot or transfer directly into simplot.
d) Collect your selected ASCII coordinate files into a set and input them individually or collectively (as a

library file or project archive) into program simplot.
e) Edit the graph on screen until it is in the shape and form you want, using the ordinary alphabet and

numbers at this stage where you want Greek, subscripts, superscripts, etc.
f) Now edit to change characters into subscripts, Greek, maths, as required, or add accents like acute, grave,

tilde, and finally save or print.
g) With the file, you can make slides, posters, incorporate into documents, create hardcopy of any size or

orientation (using program editps), transform into another format, view on screen, drive a non-PostScript
printer, etc.

The SimFIT PostScript driver interface

The SimFIT PostScript driver interface, displayed in figure 2.6, which can be used from either the simple or
advanced graphics controls, provides the options now described. x

Shape This allows you to switch between portrait or landscape, but it also offers enhanced options
where you can stretch, slide or clip the PostScript output without changing the aspect ratio of the fonts or
plotting symbols. This is very useful with crowded graphs such as dendrograms, as explained further on
page 210, or with map plotting, as discussed on page 218 where aspect ratios have to be altered so as to be
geometrically correct.

X,Yoffset This allows you to set a fixed offset if the defaults are not satisfactory, but it is better to
leave the defaults and edit retrospectively using editps.

Scale axes This allows you to set a fixed scaling factor if the defaults are not satisfactory, but it is
better to leave the defaults and edit retrospectively using editps.

Line width This allows you to set a fixed line width for all hardcopy, i.e. both Windows and PostScript,

20 SimFIT reference manual: Part 2

Shape

X,Y offset

Scale axes

Line width

Font

File

PS

PDF

Quit

The SIMFIT PostScript driver

Orientation
Stretch/clip/slide
Number of colors
Font type
Font size
X-axis offset
Y-axis offset

Portrait
Suppressed
72
Helvetica
1.00
1.00
3.50

[File] means save As a *.eps file then make
bmp/jpg/pcx/pdf/tif/png/svg files if required

[PS] means use your PS-driver to view/print/
add previews, or Save As...

[PDF] means transform into PDF then use your
PDF-reader to view/print, or Save As...

Figure 2.6: The SimFIT PostScript driver interface

if the default is not satisfactory. However, note that the relative line widths are not affected by this setting,
and if extreme line widths are selected, SimFIT will re-set line widths to the defaults on start up.

Font This allows you to set the default font type, which would normally be Helvetica for clarity,
or Helvetica Bold for presentation purposes such as slides.

File This allows you to create a PostScript file, but it is up to you to add the extension .eps to
indicate that the file will be in the encapsulated PostScript format with a BoundingBox.

EPS This allows you to visualize the PostScript file using your PostScript viewer, which would
normally be GSview. If GSview is not configured the pdf equivalent will be displayed.

PDF This allows you to copy the PostScript file (as PDF) directly to your PDF-reader.

Quit This returns you to the executing program for further action.

Note that all the parameters controlling PostScript output are written to the file w_ps.cfg, and a detailed
discussion of SimFIT PostScript features will be found in the appendix (page 366).

First time user’s guide to graph plotting 21

2.5.4 Example 1: Creating a simple graph

Original x,y Coordinates

x

y

0.18

0.61

1.05

1.48

1.92

0.2 11.7 23.1 34.5 46.0

Figure 2.7: The simplot default graph

From the main SimFIT menu select [Plot], then
simplot, and choose to create a graph with stan-
dard G, H axes. Input the library file w_simfig1.tfl
which identifies simplot.tf1, simplot.tf2, and
simplot.tf3, which now display as figure 2.7.
Here, simplot has used defaults for the title, leg-
ends, plotting symbols, line types and axes. This is
how simplot works. Every graphical object such as
a data set, a file with error bars, a best-fit curve, etc.
must be contained in a correctly formatted ASCII
plotting coordinates text file. Normally these would
be created by the SimFIT programs, and you would
make a library file with the objects you want to plot.
Then you would choose the shape, style, axes, ti-
tles, plotting symbols, line-types, colors, extra text,
arrows, accents, math symbols, Greek, subscripts,
superscripts and so on and, when the plot is ready, a printer would be driven or a graphics file created. Finally,
before quitting the graph, a configuration file would be written for re-use as a template. To see how this
works, read in the configuration file w_simfig1.cfg to get figure 2.8, while with w_simfig2.cfg you will
get the corresponding Scatchard plot.

0.00

0.50

1.00

1.50

2.00

0 10 20 30 40 50

Binding Curve for the 2 2 isoform at 21 C

Concentration of Free Ligand(µM)

L
ig

an
d

B
ou

nd
 p

er
 M

ol
e

of
 P

ro
te

in

1 Site Model

2 Site Model

0.00

0.25

0.50

0.75

1.00

0.00 0.50 1.00 1.50 2.00

Scatchard Plot for the 2 2 isoform

y

y/
x

(µ
M

-1
)

1 Site Model

2 Site Model

T = 21°C
[Ca++] = 1.3×10-7M

Figure 2.8: The finished plot and Scatchard transform

2.5.5 Example 2: Error bars

Figure 2.8 has three objects; means and error bars in simplot.tf1, with best fit curves for two possible
models in simplot.tf2, and simplot.tf3. Actually, you can make a file like simplot.tf1 yourself.
The file mmfit.tf4 contains curve fitting data, and you make a file with means and 95% confidence
limits from this using program editfl. The procedure used in SimFIT is always to do curve fitting us-
ing all replicates, not means. Then, when a plot is needed, a file with error bars is generated. To see
how this is done, choose the [Edit] option from the main menu, read mmfit.tf4 into program editfl,
then select the option to create a file with means and error bars for plotting and create an error bar file
like simplot.tf1 from replicates in mmfit.tf4. This illustrates a very important principle in SimFIT.

You never input data consisting of means from replicates into SimFIT programs. So, if you calculate means

from groups of replicates yourself, you are doing something wrong, as SimFIT always performs analysis using

complete data sets. For instance, means with error bars for plotting can always be calculated on demand

from replicates (arranged in nondecreasing order), e.g., using the [Data] option in program simplot.

22 SimFIT reference manual: Part 2

2.5.6 Example 3: Histograms and cumulative distributions

To illustrate histograms we will use normal.tf1, with fifty random numbers from a normal distribution
(` = 0, f = 1), generated by program rannum. Choose [Statistics] from the main menu, then simstat

and pick the option to test if a sample is from a normal distribution. Read in normal.tf1, create a histogram
with twelve bins between −3.0 and 3.0, then display the plots as in figure 2.9.

FITTING A NORMAL DISTRIBUTION TO A HISTOGRAM

Sample Values (µM)

F
re

qu
en

cy

0

5

10

15

-3.00 -1.50 0.00 1.50 3.00 0.00

0.25

0.50

0.75

1.00

-2.50 -1.25 0.00 1.25 2.50

GOODNESS OF FIT TO A NORMAL DISTRIBUTION

Sample Values (µm)
S

am
pl

e
D

is
tr

ib
ut

io
n

F
un

ct
io

n

Sample

N(µ,σ2)
µ = 0
σ = 1

Figure 2.9: A histogram and cumulative distribution

A best fit pdf curve can also be created using qnfit and a pdf file, e.g., with error bars calculated using a
binomial distribution as in figure 2.9 Note that, whereas the histogram is easy to interpret but has an ambiguous
shape, the cumulative distribution has a fixed shape but is featureless. There is much to be said for showing
best fit pdfs and cdfs side by side as in figure 2.9 since, in general, statistical tests for goodness of fit of a
pdf to a distribution should be done on the cumulative distribution, which does not suffer from the ambiguity
associated with histograms. However trends in data are more easily recognized in histograms from large
samples than in cumulative distributions, i.e., stair step plots.

2.5.7 Example 4: Double graphs with two scales

Frequently different scales are required, e.g., in column chromatography, with absorbance at 280=< repre-
senting protein concentration, at the same time as enzyme activity eluted, and the pH gradient. Table 2.1 is
typical where absorbance could require a scale of zero to unity, while enzyme activity uses a scale of zero to

Fraction Number Absorbance Enzyme Activity Buffer pH

1 0.0 0.1 6.0

2 0.1 0.3 6.0

3 1.0 0.2 6.0

4 0.9 0.6 6.0

5 0.5 0.1 6.2

6 0.3 0.8 6.7

7 0.1 1.5 7.0

8 0.3 6.3 7.0

9 0.4 8.0 7.0

10 0.2 5.5 7.0

11 0.1 2.0 7.2

12 0.1 1.5 7.5

13 0.3 0.5 7.5

14 0.6 1.0 7.5

15 0.9 0.5 7.5

Table 2.1: Data for a double graph

eight, and pH could be on a scale of six to eight. If absorbance and activity were plotted on the same scale

First time user’s guide to graph plotting 23

Original x,y Coordinates

x

y

E
-xtra axis

0.00

0.25

0.50

0.75

1.00

1.0 4.5 8.0 11.5 15.0
0.10

2.08

4.05

6.03

8.00

Absorbance, Enzyme Activity and pH

Fraction Number

A
b

so
rb

an
ce

 a
t

28
0n

m

E
n

zym
e A

ctivity (u
n

its) an
d

 p
H

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00

2.00

4.00

6.00

8.00

Absorbance Enzyme Units pH of Eluting Buffer

Figure 2.10: Plotting a double graph with two scales

the plot would be dominated by activity, so you could change the units of enzyme activity to be compatible
with the absorbance scale. However, to illustrate how to create a double graph, a plot with absorbance on
the left hand axis and enzyme activity and pH together on the right hand axis will be constructed. Obviously
this requires three separate objects, i.e., files for program simplot. You could create the following files using
program makmat, and the data in table 2.1.
File 1: The first column together with the second column (as in plot2.tf1)
File 2: The first column together with the third column (as in plot2.tf2)
File 3: The first column together with the fourth column (as in plot2.tf3)

Select program simplot and choose to make a double graph. Input the first file (absorbance against fraction)
scaled to the left hand axis with the other two scaled to the right hand axis to get the left panel of figure 2.10.
To transform the left plot into the finished product on the right panel in figure 2.10 proceed as follows:

a) Edit the overall plot title and both plot legends.
b) Edit the data ranges, notation and offset on the axes.
c) Edit the three symbol and line types corresponding to the three files.
d) Include an information panel and edit the corresponding keys.
e) Choose HelveticaBold when creating the final PostScript file.

2.5.8 Example 5: Bar charts

Binomial Samples (p=0.5, size=20)

Successive Samples

N
u

m
b

er
 o

f
S

u
cc

es
se

s
in

 2
0

T
ri

al
s

0

4

8

12

16

A B C D E F G H I J K L M N O P Q R S T

Box and Whisker Plot

Month

R
an

g
e,

 Q
u

ar
ti

le
s

an
d

 M
ed

ia
n

s

-2.00

0.25

2.50

4.75

7.00

January

F
ebruary

M
arch

A
pril

M
ay

Figure 2.11: Typical bar chart features

Figure 2.11was made by simplot using the Advanced Bar Chartoption withbarchart.tf1 andbarchart.tf5.
The first plot illustrates groupings, while the second is a box and whisker plot with ranges, quartiles, and

24 SimFIT reference manual: Part 2

median. To see the possibilities, plot and browse the barchart.tf? test files. An easy way to prepare
advanced bar chart files is to read in a matrix then save an advanced bar chart file. You can supply labels on
the file, and change the position of the horizontal axis (the G-axis) to create hanging bar effects.

2.5.9 Example 6: Pie charts

Pie Chart Fill Styles

Style 1

Style 2

Style 3

Style 4

Style 5

Style 6

Style 7

Style 8

Style 9

Style 10

Pie key 1

Pie key 2

Pie key 3

Pie key 4

Pie key 5

Pie key 6

Pie key 7

Pie key 8

Pie key 9

Pie key 10

Illustrating Detached Segments in a Pie Chart

January

February

March

April

May

June

July

August

September
October

November

December

Figure 2.12: Typical pie chart features

Figure 2.12 was produced using the Advanced Pie Chart plotting option in simplot and piechart.tf1 and
piechart.tf2. By consulting the w_readme.* files or browsing these test files the convention for fill styles,
labels, colors, segment offsets, etc. will be obvious. An easy way to create advanced pie chart files is to read
in a vector with positive segment sizes then save an advanced pie chart.

2.5.10 Example 7: Surfaces, contours and 3D bar charts

Plotting a Surface and Contours for z = f(x,y)

XY

Z

1.000

0.000

1.000

0.000

0

1

Three Dimensional Bar Chart

June
May

April
March

February
January

Year 1
Year 2

Year 3
Year 4

Year 5

0%

100%

50%

Figure 2.13: Plotting surfaces, contours and 3D-bar charts

Figure 2.13 illustrates a surface plot made using surface.tf1 with the Surface/Contour option in program
simplot, together with a three dimensional bar chart resulting from barcht3d.tf1 (after editing legends).
Surface plotting requires a mathematical expression for I = 5 (G, H) and the program makdat should be used,
since it is too tedious to type in sufficient data to generate a smooth surface. Three dimensional bar chart files
do not usually require so much data, so they can easily be typed in, using program makmat. The format for
surface plotting files will be found in the w_readme.* files. You will find that, once a surface file has been
input into simplot, it is possible to plot just the surface, contours only, surface with contours, or a skyscraper
plot. There are also many features to rotate the plot, change the axes, edit the legends, choose colors, add
special effects, etc. Run all the surface.tf? files to appreciate the possibilities.

First time user’s guide to simulation 25

2.6 First time user’s guide to simulation

Simulation in SimFIT involves creating exact data then adding pseudo random error to simulate experimental
error. Exact data can be generated from a library of models or user-defined models.

2.6.1 Why fit simulated data ?

Statistical tests used in nonlinear regression are not exact, and optimization is not guaranteed to locate the
best-fit parameters. This depends on the information content of your data and parameter redundancy in the
model. To see how reliable your results are, you could perform a sensitivity analysis, to observe how results
change as the data set is altered, e.g., by small variations in parameter values. For instance, suppose hlfit

concludes that ligand binding data requires two binding sites by an � or run test, but only one binding constant
is accurately determined as shown by a C test. You can then use makdat to make an exact data set with the
best-fit parameters found by hlfit, use adderr to simulate your experiment, then fit the data using hlfit. If you
do this repeatedly, you can collect weighted sums of squares, parameter estimates, C and � values and run
test statistics, so judging the reliability of the result with your own data. This is a Monte Carlo method for
sensitivity analysis.

2.6.2 Programs makdat and adderr

makdat makes exact 5 (G), 6(G, H) or ℎ(G, H, I) data. You choose from a library of models or supply your
own model, then input parameter values and calculate, e.g., H = 5 (G) for a range -start ≤ G ≤ -stop, either
by fixing -start, -stop, or by choosing .start = 5 (-start), .stop = 5 (-stop), then allowing makdat to find
appropriate values for -start and -stop. You must provide starting estimates for -start, -stop to use the
second method, which means that you must understand the mathematics of the model. With complicated
models or differential equations, fix -start and -stop and observe how the graph of H = 5 (G) changes as you
change parameters and/or end points. When you have a good idea where your end points lie, try the option
to fix H and calculate -start and -stop. This is needed when 5 (G) is not monotonic in the range of interest.
Output files from program makdat contain exact data, which can then be input into program adderr to add
random errors.

2.6.3 Example 1: Simulating H = 5 (G)

0.25

0.50

0.75

1.00

-3 -2 -1 0 1 2

x

φ(x) =
1

σ
p

2π

Z x

�∞
exp

(

�

1
2

�

t�µ
σ

�2
)

dt

Figure 2.14: The normal cdf

The procedure is to select a model equation, set the
model parameters to fixed values,decide on the range
of G to explore, then plot the graph and save a file
if appropriate. For example, run the program mak-

dat, select functions of one variable, pick statistical
distributions, choose the normal cdf, decide to have
a zero constant term, set the mean ?(1) = 0, fix the
standard deviation ?(2) = 1, input the scaling factor
?(3) = 1 and then generate figure 2.14. Observe
that there are two distinct ways to choose the range
of G values; you can simply input the first and last
G values, or you can input the first and last H values
and let makdat find the corresponding G values nu-
merically. This requires skill and an understanding
of the mathematical behavior of the function chosen.
Once you have simulated a model satisfactorily you
can save a curve fitting type file which can be used
by program adderr to add random error.

26 SimFIT reference manual: Part 2

0.00

0.20

0.40

0.60

0.80

1.00

0.0 2.0 4.0 6.0 8.0 10.0

dy/dx = Aym - Byn

x

y

Figure 2.15: Using makdat to calculate a range

To illustrate the process of finding a range of G for
simulation when this depends on fixed values of H,
that is to find G = G(H) when there is no simple
explicit expression for G(H), consider figure 2.15.
Here the problem is to find G = G(H) when H is the
solution to the Von Bertalanffy growth differential
equation

3H

3G
= �H< − �H=,

where � > 0, � > 0 and = > <. After setting
the parameters � = � = < = 1, = = 2, and initial
condition H0 = 0.001, for instance, program makdat

estimated the following results:
-start = 0, -stop = 5, H1 = 0.1 : G1 = 2.3919,
-start = 0, -stop = 9, H2 = 0.9 : G2 = 6.7679,
providing the roots required to simulate this equation
between the limits H1 = 0.1 and H2 = 0.9.

Note that, when attempting such root-finding calculations, makdat will attempt to alter the starting estimates
if a root cannot be located by decreasing -start and increasing -stop, but it will not change the sign of these
starting estimates. In the event of problems locating roots, there is no substitute for plotting the function to
get some idea of the position of the roots, as shown in figure 2.15.

2.6.4 Example 2: Simulating I = 5 (G, H)

SIMFIT 3D plot for z = x2 - y2

XY

Z

1

-1

1

-1
-1

1

Figure 2.16: A 3D surface plot

Simulating a function of two variables is very
straightforward, and as a example we shall gener-
ate data for the function

I = G2 − H2

illustrated in figure 2.16. Again use makdat but
this time select a function of two variables and then
choose a polynomial of degree two. Do not include
the constant term but choose the set of values ?(1) =
0, ?(2) = 0, ?(3) = 1, ?(4) = 0 and ?(5) = −1.
Now choose the extreme values of G = −1 to G = 1

and H = −1 to H = 1 with 20 divisions, i.e., 400
coordinates in all. Note that you can show the data
in figure 2.16 as a surface, a contour, a surface with
contours or a bar chart (skyscraper plot). You should
plot the wire frame with a monochrome printer but
the facet or patch designs can be used with a color
printer. After simulating a surface you can save the coordinates for re-use by program simplot.

2.6.5 Example 3: Simulating experimental error

The output files from program makdat contain exact data for H = 5 (G), which is useful for graphs or data
simulation. You may, however, want to add random error to exact data to simulate experimental error. To do
this, the output file then becomes an input file for program adderr. After adding random error, the input file
is left unchanged and a new output file is produced.

Model −→ makdat −→ Exact
data

−→ adderr −→ Simulated
data

First time user’s guide to simulation 27

There are numerous ways to use program adderr, including generating replicates. If in doubt, pick 7%
constant relative error with 3–5 replicates, as this mimics many situations. Note: constant relative error
cannot be used where H = 0 (which invokes a default value). Read the test file adderr.tf1 into program
adderr and explore the various ways to add error. In most experiments a useful model for the variance of
observations is

+ (H) = f2
0 + f2

1 H
2,

so that the error resembles white noise at low response levels with a transition to constant relative error at
high response levels. Constant variance (f1 = 0) fails to account for the way variance always increases as the
signal increases, while constant relative error (f0 = 0) exaggerates the importance of small response values.
However, a useful way to simulate error is to simulate four or five replicates with five to ten percent constant
relative error as this is often fairly realistic. Using program adderr you can also simulate the effect of outliers
or use a variety of error generating probability density functions, such as the Cauchy distribution (page 422)
which is a often a better model for experimental error.

Exact Data and Added Error

x

y

0.00

0.50

1.00

1.50

2.00

0 10 20 30 40 50

Figure 2.17: Adding random error

Points for plotting can be spaced by a SimFIT al-
gorithm to ensure continuity under transformations
of axes, but to simulate experiments a geometric,
or uniform spacing should be chosen. Then exact
data simulated by program makdat is perturbed by
program adderr. This is the method used to cre-
ate many SimFIT test files, e.g., mmfit.tf4 from
mmfit.tf3, as in figure 2.17. There are many ways
to use program adderr, and care is needed to sim-
ulate realistically. If constant relative error is used,
it is easy to preserve a mental picture of what is
going on, e.g., 10% error conveys a clear meaning.
However this type of error generation exaggerates
the importance of small H values, biasing the fit in
this direction. Constant variance is equally unreal-
istic, and over-emphasizes the importance of large H
values. Outliers can also be simulated.

2.6.6 Example 4: Simulating differential equations

The best way to see how this is done is to run deqsol with the library of models provided. These are supplied
with default choices of parameters and ranges so you can quickly see how to proceed. Try, for instance the
Briggs-Haldane scheme which has five differential equations for substrate, product and enzyme species. The
program can also be used for fitting data. So, to explore the fitting options, choose to simulate/fit a system of
two differential equations and select the Lotka-Volterra predator-prey scheme

3H1/3G = ?1H1 − ?2H1H2

3H2/3G = −?3H2 + ?4H1H2.

After you have simulated the system of equations and seen how the phase portrait option works you can try to
fit the data sets in the library file deqsol.tfl. More advanced users will appreciate that a valuable feature of
deqsol is that the program can simulate and fit linear combinations of the system of equations as defined by
a transformation matrix. This is very valuable in areas like chemical kinetics where only linear combinations
of intermediates can be measured, e.g., by spectroscopy. This is described in the w_readme files and can
be explored using the test file deqmat.tf1. Figure 2.18 illustrates the simulation of a typical system, the
Lotka-Volterra predator prey equations. After simulating the Lotka-Volterra equations you can select fitting
and read in the library test file deqsol.tfl with predator-prey data for fitting. Much pleasure and instruction
will result from using program deqsol with the library models provided and then, eventually, with your own
models and experimental data.

28 SimFIT reference manual: Part 2

The Lotka Volterra Equations

t

Pr
ed

at
or

 a
nd

 P
re

y

0

100

200

0 2 4 6 8 10

Phase Portrait for Lotka Volterra Equations

Predator

Pr
ey

0

100

200

0 100 200

Figure 2.18: The Lotka-Volterra equations and phase plane

2.6.7 Example 5: Simulating user-defined equations

Figure 2.19 illustrates how to use usermod simulate a simple system of models. First select to simulate a set

-1.00

-0.50

0.00

0.50

1.00

-5.00 -2.50 0.00 2.50 5.00

x

y
=

 f(
x)

cos x sin x
0.5 cos 2x 0.5 sin 2x

Figure 2.19: Plotting user supplied equations

of four equations, then read in the test file usermodn.tf1 which defines the four trigonometric functions
5 (1) = ?1 cos G, 5 (2) = ?2 sin G, 5 (3) = ?3 cos 2G, 5 (4) = ?4 sin 2G.

Part 3

Data analysis techniques

3.1 Introduction

Before attempting to analyze your own experimental results you must be clear as to the nature of your data,
as this will dictate the possible types of procedures that can be used. So we begin with the usual textbook
classification of data types.

The classification of a variable - with scores G� and G� on two objects A and B will usually involve one of
the following scales.

1. A nominal scale can only have G� = G� or G� ≠ G� , such as male or female.

2. An ordinal scale also allows G� > G� or G� < G� , for instance bright or dark.

3. An interval scale assumes that a meaningful difference can be defined, so that A can be G� − G� units
different from B, as with temperature in degrees Celsius.

4. A ratio scale has a meaningful zero point so that we can say A is G�/G� superior to B if G� > G� and
G� ≠ 0, as with temperature in degrees Kelvin.

To many, these distinctions are too restrictive, and variables on nominal and ordinal scales are just known
as categorical or qualitative variables, while variables on interval or ratio scales are known as quantitative
variables. Again, variables that can only take distinct values are known as discrete variables, while variables
that can have any values are referred to as continuous variables. Binary variables, for instance, can have only
one of two values, say 0 or 1, while a categorical variable with : levels will usually be represented as a set of
: (0, 1) dummy variables where only one can be nonzero at each category level. Alternatively, taking a very
broad and simplistic view, we could also classify experiments into those that yield objective measurements
using scientific instruments, like spectrophotometers, and those that generate numbers in categories, i.e.,
counts. Measurements tend to require techniques such as analysis of variance or deterministic model fitting,
while counts tend to require analysis of proportions or analysis of contingency tables. Of course, it is very
easy to find exceptions to any such classifications; for instance modeling the size of a population using a
continuous growth model when the population is a discrete not a continuous variable, but some commonsense
is called for here.

3.2 Weighting

Frequently in data analysis functions are defined as weighted sums of = sub-functions as in

5 (G) = F1 51 (G) + F2 52 (G) + · · · + F= 5= (G)
= 51(G)/B21 + 52 (G)/B22 + · · · + 5= (G)/B2=,

where the weighting factors F8 or B8 are nonnegative numbers. There are three distinct ways this is done, and
SimFIT users must be careful that weights are being used in the correct way for the procedure selected.

30 SimFIT reference manual

3.2.1 Arbitrary weights

In this situation a user suspects that some data points are more accurate than others, and uses weighting
factors to emphasize the importance of accurate observations, or down-weight possible outliers. As this
procedure is subjective, the performance of statistical tests may be compromised. An extreme case which is
often encountered is where users decide to eliminate selected observations because they probably represent
artifacts.

3.2.2 Replicate weights

Weights F8 are used by SimFIT in multivariate statistics where means of replicates are used either to compress
data sets, or because individual observations are no longer available. To appreciate the motivation for this
type of weighting consider the situation where there are = sample means Ḡ8 , each obtained using a sample size
=8 , and it is required to calculate the overall mean Ḡ as follows

Ḡ =

=∑
8=1

=8 Ḡ8/
=∑
8=1

=8 .

Here the overall mean is obtained as a weighted sum of the individual sample means and we have

F8 = =8/
=∑
8=1

=8 , and

=∑
8=1

F8 = 1.

With weights used in this way, setting F8 = 0 on the data file is a convenient way to suppress observations
while F8 = =8 allows for replicates.

3.2.3 Curve fitting weights

Weights B8 are used by SimFIT in curve fitting to minimize the weighted sum of squares objective function

,((& =

=∑
8=1

F8 (H8 − 5 (G8 |Θ)2

=

=∑
8=1

(
H8 − 5 (G8 |Θ

B8

)2

,

with respect to a parameter vector Θ, where the B8 would be the estimated standard deviation of the responses
H8 when the independent variable is G8 , or perhaps some function of the observations or best-fit model. The
motivation for this is the hope that this is equivalent to Maximum Likelihood Estimation.

This follows by analogy from the definition of a chi-squared variable with = degrees of freedom as the sum of
squares of = standardized normal variates, i.e.

j2
= =

=∑
8=1

(
G8 − `8
f8

)2

,

but using this analogy could be pushing interpretation too far as, in practise, neither the means `8 or variances
f2
8 are available, only estimates. Accordingly, in curve fitting there are essentially four possibilities.

1. Using the observations.

The weights are calculated according to a formula such as

F8 = 1/(� + �H2
8),

Fitting models to data 31

where � represents an error component with constant variance, and � accounts for an error component
with constant relative error. If parameters � and � can be estimated independently, and not from the
data, and this model for the experimental error can be justified independently then this is a sensible way
to proceed. However, estimating � and � at the same time as model fitting decreases the degrees of
freedom, greatly decreases the accuracy of parameter estimates, and is very questionable, as weights
are changed for each iteration of the optimization.

2. Using the best-fit model.

The weights are calculated according to a similar formula such as

F8 = 1/(� + � 5 (G8 |Θ̂)2) .

This is even more questionable than the previous method because it assumes a correct model has
been identified, and it means that weights are even more drastically altered at each iteration of the
optimization. Setting � = 0 and � = 1, or some other scalar for example, is known as chi-square
minimization, but this procedure greatly exaggerates the importance of small observations.

3. Using standard errors.

In this case the weights would be
F8 = 1/B28 ,

where the B8 are standard errors calculated from replicates. Perhaps this is the safest way, but only as
long as the replicates at each design points are sufficiently numerous to allow a meaningful estimate of
the standard errors. An absolute minimum sample size of 3, and preferably very much greater than 5 is
required.

4. Constant weighting.

Taking the option
F8 = 1

does not represent absence of weighting: it involves the assumption that the sample variance is constant,
and not a function of the independentvariable. Just as the assumption of fixed relative error leads to over-
emphasizing low value observations, the assumption of constant variance places too much emphasis
on large observations when, as every experimentalist knows, there is usually a minimum variance
component at low values, but approximately relative error takes over at large values.

3.3 Principles involved when fitting models to data

A frequently occurring situation is where an investigator has a vector of = observations H1, H2, . . . , H=, with
errors n8 , at settings of some independent variable G8 which are supposedly known exactly, and wishes to fit
a model 5 (G) to the data in order to estimate < parameters \1, \2, . . . , \< by minimizing some appropriate
function of the residuals A8 . If the true model is 6(G) and a false model 5 (G) has been fitted, then the
relationship between the observations, errors and residuals A8 would be

H8 = 6(G8) + n8
A8 = H8 − 5 (G8)

= 6(G8) − 5 (G8) + n8 .

That is, the residuals would be sums of a model error term plus a random error term as follows

Model Error = 6(G8) − 5 (G8)
Random Error = n8 .

If the model error term is appreciable, then fitting is a waste of time, and if the nature of the error term is not
taken into account, any parameters estimated are likely to be biased. An important variation on this theme is
when the control variables G8 are not known with high precision, as they would be in a precisely controlled

32 SimFIT reference manual

laboratory experiment, but are themselves random variables as in biological experiments, and so best regarded
as covariates rather than independent variables. The principle used most often in data fitting is to choose those
parameters that make the observations as likely as possible, that is, to appeal to the principle of maximum
likelihood. This is seldom possible to do as the true model is generally unknown so that an approximate
model has to be used, and the statistical nature of the error term is not usually known with certainty. A
further complication is that iterative techniques must often be employed to estimate parameters by maximum
likelihood, and these depend heavily on starting estimates and frequently locate false local minima rather than
the desired global minimum. Again, the values of parameters to be estimated often have a physical meaning,
and so are constrained to restricted regions of parameter space, which means that constrained regression has
to be used, and this is much more problematical than unconstrained regression.

3.3.1 Limitations when fitting models

It must be emphasized that, when fitting a function of : variables such as

H = 5 (G1, G2, . . . , G: , \1, \2, . . . , \<)

to = data points in order to estimate < parameters, a realistic approach must be adopted to avoid over-
interpretation as follows.

❍ Independent variables

If the data H are highly accurate measurements, i.e. with high signal to noise ratios (page 276), and the
variables G can be fixed with high precision, then it is reasonable to regard G as independent variables
and attempt to fit models based upon physical principles. This can only be the case in disciplines such
as physics and chemistry where the H would be quantities such as absorption of light or concentrations,
and the G could be things like temperatures or times. The model would then be formulated according
to the appropriate physical laws, such as the law of mass action, and it would generally be based on
differential equations.

❍ Covariates

In biological experiments, the the data H are usually much more noisy and there may even be random
variation in the G variables. Then it would be more appropriate to regard the G as covariates and only
fit simple models, like low order rational functions or exponentials. In some cases models such as
nonlinear growth models could be fitted in order to estimate physically meaningful parameters, such
as the maximum growth rate, or final asymptotic size but, in extreme cases, it may only make sense to
fit models like polynomials for data smoothing, where the best-fit parameters are purely empirical and
cannot be interpreted in terms of established physical laws.

❍ Categorical variables

Where categorical variables are encountered then parallel shift models must be fitted. In this case each
variable with ; levels is taken to be equivalent to ; dummy indicator variables which can be either 0 or
1. However one of these is then suppressed arbitrarily to avoid aliasing and the levels of categorical
variables are simply interpreted as factors that contribute to the regression constant. Clearly this is a
very primitive method of analysis which easily leads to over-interpretation where there are more than a
couple of variables and more than two or three categories.

In all cases, the number of observations must greatly exceed the number of parameters that are to be estimated,
say for instance by a factor of ten.

3.3.2 Fitting linear models

If the assumed model is of the form

5 (G) = \1q1(G) + \2q2(G) + · · · + \<q<(G)

Fitting models to data 33

it is linear in the parameters \ 9 , and so can be easily fitted by linear regression if the errors are normally
distributed with zero mean and known variance f2

8 , since maximum likelihood in this case is equivalent to
minimizing the weighted sum of squares

,((& =

=∑
8=1

(
H8 − 5 (G8)

f8

)2

with respect to the parameters. SimFIT provides model free fitting by cubic splines, simple linear regression
as in

5 (G) = \1 + \2G,

multilinear regression
5 (G) = \1G1 + \2G2 + · · · + \<G<,

polynomial regression
5 (G) = \1 + \2G + \3G

2 + · · · + \<G<−1,

and also transformed polynomial regression, where new variables are defined by

- = - (G)
. = . (H)

and a polynomial is fitted to . (-). Models like these are used for data smoothing, preliminary investigation,
and fitting noisy data over a limited range of independent variable. That is, in situations where developing
meaningful scientific models may not be possible or profitable. With linear models, model discrimination is
usually restricted to seeing if some reduced parameter set is sufficient to explain the data upon using the �
test, C tests are employed to check for parameter redundancy, and goodness of fit tends to be based on chi-
square tests on,((& and normality of studentized residuals. The great advantage of linear regression is the
attractively simple conceptual scheme and ease of computation. The disadvantage is that the models are not
based on scientific laws, so that the parameter estimates do not have a physical interpretation. Another serious
limitation is that prediction is not possible by extrapolation, e.g., if growth data are fitted using polynomials
and the asymptotic size is required.

3.3.3 Fitting generalized linear models

These models are mostly used when the errors do not follow a normal distribution, but the explanatory
variables are assumed to occur linearly in a model sub-function. The best known example would be logistic
regression, but the technique can also be used to fit survival models. Because the distribution of errors may
follow a non-normal distribution, various types of deviance residuals are used in the maximum likelihood
objective function. Sometimes these techniques have special advantages, e.g., predicting probabilities of
success or failure as a functions of covariates after binary logistic regression is certain to yield probability
estimates between zero and one because the model

−∞ < log

(
H

1 − H

)
< ∞

implies that 0 < H < 1.

3.3.4 Fitting nonlinear models

Many models fitted to data are constructed using scientific laws, like the law of mass action, and so these will
usually be nonlinear and may even be of rather complex form, like systems of nonlinear differential equations,
or convolution integrals, and they may have to be expressed in terms of special functions which have to
evaluated by numerical techniques, e.g., inverse probability distributions. Success in this area is heavily
dependent on having accurate data over a wide range of the independent variable, and being in possession of
good starting estimates. Often, with simple models like low order exponentials

5 (G) = �1 exp(−:1G) + �2 exp(−:2G) + · · · + �< exp(−:<G),

34 SimFIT reference manual

rational functions

5 (G) = +1G

 1 + G
+ +2G

 2 + G
+ · · · + +<G

 < + G ,

or growth models

5 (G) = �

1 + � exp(−:G) ,

good starting estimates can be estimated from the data and, where this is possible, SimFIT has a number of
dedicated user-friendly programs that will perform all the necessary scaling. However, for experts requiring
advanced fitting techniques a special program qnfit is provided.

3.3.5 Fitting survival models

There are four main techniques used to analyze survival data.

1. Estimates of proportions of a population surviving as a function of time are available by some technique
which does not directly estimate the number surviving in a populations of known initial size, rather,
proportions surviving are inferred by indirect techniques such as light scattering for bacterial density
or enzyme assay for viable organisms. In such instances the estimated proportions are not binomial
variables so fitting survival models directly by weighted least squares is justified, especially where
destructive sampling has to be used so that autocorrelations are less problematical. Program gcfit is
used in mode 2 for this type of fitting (see page 77).

2. A population of individuals is observed and information on the times of censoring (i.e. leaving the
group) or failure are recorded, but no covariates are measured. In this case, survival density functions,
such as the Weibull model, can be fitted by maximum likelihood, and there are numerous statistical and
graphical techniques to test for goodness of fit. Program gcfit is used in mode 3 for this type of fitting
(see page 253).

3. When there are covariates as well as survival times and censored data, then survival models can be
fitted as generalized linear models. The SimFIT GLM simplified interface module is used for this type
of analysis (see page 257).

4. The Cox proportional hazards model does not attempt to fit a complete model, but a partial model
can be fitted by the method of partial likelihood as long as the proportional hazards assumption is
justified independently. Actually, after fitting by partial likelihood, a piece-wise hazard function can be
estimated and residuals can then be calculated. The SimFIT GLM simplified interface module is used
for this type of analysis (page 259).

3.4 Goodness of fit

After a model has been fitted to data it is important to assess goodness of fit, which can only be done if
assumptions are made about the model and the distribution of experimental errors. If a correct linear model
is fitted to data, and the errors are independently normally distributed with mean zero and known standard
deviation which is used for weighting, then a number of exact statistical results apply. If there are< parameters
and = experimental measurements, the sum of weighted squared residuals,((& is a chi-square variable with
= − < degrees of freedom, the < ratios

C8 =
\8 − \̂8
B̂8

involving the exact parameters \8 , estimated parameters \̂8 , and estimated standard errors B̂8 are C distributed
with = − < degrees of freedom and, if fitting a model with <1 parameters results in ,((&1 but fitting the
next model in the hierarchy with <2 parameters gives the weighted sum of squares,((&2, then

� =
(,((&1 −,((&2)/(<2 − <1)

,((&2/(= − <2)

Fitting models to data 35

is � distributed with <2 − <1 and = − <2 degrees of freedom. When = ≫ < the weighted residuals will be
approximately unit normal variables (` = 0, f = 1), their signs will be binomially distributed with parameters
= and 0.5, the runs minus 1 given = will be binomially distributed with parameters = − 1 and 0.5, while the
runs given the number of positive and negative signs will follow a more complicated distribution (page 153).

With nonlinear models and weights estimated from replicates at distinct G8 , i.e., not known exactly, statistical
tests are no longer exact. SimFIT programs allow you to simulate results and see how close the statistics are
to the exact ones. There are program to evaluate the probability density (or mass) function and the cumulative
distribution function for a chosen distribution, as well as calculating percentage points. In addition, you can
use program makmat to make files containing your statistics, and these numbers can then be tested to see if
they are consistent with the chosen distribution.

3.4.1 The chi-square test for goodness of fit

Let ,((& = weighted sum of squares and #�$� = no. degrees of freedom (no. points - no. parameters).
If all B = 1, ,((&/#�$� estimates the (constant) variance f2. You can compare it with any independent
estimate of the (constant) variance of response H. If you had set B = exact std. dev., ,((& would be a
chi-square variable, and you could consider rejecting a fit if the probability of chi-square exceeding ,((&
(i.e., %(j2 ≥ ,((&)) is <.01(1% significance level) or <0.05(5% significance level). Where standard error
estimates are based on 3–5 replicates, you can reasonably decrease the value of WSSQ by 10–20% before
considering rejecting a model by this chi-square test.

3.4.2 The C test for parameter redundancy

The number) = (parameter estimate)/(standard error) can be referred to the C distribution to assess any
parameter redundancy, where %(C ≤ −|) |) = %(C ≥ |) |) = U/2. Two tail ? values are defined as ? = U,
and parameters are significantly different from 0 if ? <.01(1%) (<.05(5%)). Parameter correlations can be
assessed from corresponding elements of the correlation matrix.

3.4.3 The � test for model discrimination

The � test just described is very useful for discriminating between models with up to 3 or 4 parameters. For
models with more than 4 parameters, calculated � test statistics are no longer approximately � distributed,
but they do estimate the extent to which model error is contributing to excess variance from fitting a deficient
model. It is unlikely that you will ever have data that is good enough to discriminate between nonlinear
models with much more than 5 or 6 parameters in any case.

3.4.4 Analysis of residuals

The plot of residuals (or better weighted residuals) against dependent or independent variable or best-fit
response is a traditional (arbitrary) approach that should always be used, but many prefer the normal or
half normal plots. The sign test is weak and should be taken rather seriously if rejection is recommended
(%(signs ≤ observed) <.01 (or .05)). The run test conditional on the sum of positive and negative residuals
is similarly weak, but the run test conditional on observed positive and negative residuals is quite reliable,
especially if the sample size is fairly large (> 20 ?). Reject if %(runs ≤ observed) is < .01 (1%) (or < .05
(5%))

3.4.5 How good is the fit ?

If you set B = 1, ,((&/#�$� should be about the same as the (constant) variance of H. You can consider
rejecting the fit if there is poor agreement in a variance ratio test. If B = sample standard deviation of H (which
may be the best choice ?), then ,((& is approximately chi-square and should be around #�$�. Relative
residuals do not depend on B. They should not be larger than 25%, there should not be too many symbols
, *, or ***** in the residuals table and also, the average relative residual should not be much larger

36 SimFIT reference manual

than 10%. These, and the R-squared test, are all convenient tests for the magnitude of the difference between
your data and the best-fit curve.

A graph of the best-fit curve should show the data scattered randomly above and below the fitted curve, and
the number of positive and negative residuals should be about the same. The table of residuals should be free
from long runs of the same signs, and the plot of weighted residuals against independent variable should be
like a sample from a normal distribution with ` = 0 and f = 1, as judged by the Shapiro-Wilks test, and the
normal or half normal plots. The sign, run and Durbin-Watson tests help you to detect any correlations in
the residuals.

3.5 Testing for differences between two parameter estimates

This can sometimes be a useful simple procedure when you wish to compare two parameters resulting from
a regression, e.g., the final size from fitting a growth curve model, or perhaps two parameters that have been
derived from regression parameters e.g., AUC from fitting an exponential model, or LD50 from bioassay. You
input the two parameters, the standard error estimates, the total number of experimental observations, and the
number of parameters estimated from the regression. A C test (page 136) for equality is then performed using
the correction for unequal variances. Such C tests depend on the asymptotic normality of maximum likelihood
parameters, and will only be meaningful if the data set is fairly large and the best fit model adequately
represents the data. Furthermore, C tests on parameter estimates are especially unreliable because they ignore
non-zero covariances in the estimated parameter variance-covariance matrix.

3.6 Testing for differences between several parameter estimates

To take some account of the effect of significant off-diagonal terms in the estimated parameter variance-
covariance matrix you will need to calculate a Mahalanobis distance between parameter estimates e.g., to test
if two or more curve fits using the same model but with different data sets support the presence of significant
treatment effects. For instance, after fitting the logistic equation to growth data by nonlinear regression, you
may wish to see if the growth rates, final asymptotic size, half-time, etc. have been affected by the treatment.
Note that, after every curve fit, you can select an option to add the current parameters and covariance matrix
to your parameter covariance matrix project archive, and also you have the opportunity to select previous fits
to compare with the current fit. For instance, you may wish to compare two fits with < parameters, � in the
first set with estimated covariance matrix �� and � in the second set with estimated covariance matrix ��.
The parameter comparison procedure will then perform a C test for each pair of parameters, and also calculate
the quadratic form

& = (� − �)) (�� + ��)−1(� − �)

which has an approximate chi-square distribution with < degrees of freedom. You should realize that the rule
of thumb test using non-overlapping confidence regions is more conservative than the above C test; parameters
can still be significantly different despite a small overlap of confidence windows.

This technique must be used with care when the models are sums of functions such as exponentials, Michaelis-
Menten terms, High-Low affinity site isotherms, Gaussians, trigonometric terms, and so on. This is because
the parameters are only unique up to a permutation. For instance, the terms �8 and :8 are linked in the
exponential function

5 (C) =
<∑
8=1

�8 exp(−:8 C)

but the order implied by the index 8 is arbitrary. So, when testing if �1 from fitting a data set is the same
as �1 from fitting another data set it is imperative to compare the same terms. The user friendly programs
exfit, mmfit, and hlfit attempt to assist this testing procedure by rearranging the results into increasing order
of amplitudes �8 but, to be sure, it is best to use qnfit, where starting estimates and parameter constraints
can be used from a parameter limits file. That way there is a better chance that parameters and covariance

Fitting models to data 37

matrices saved to project archives for retrospective testing for equality of parameters will be consistent, i.e.
the parameters will be compared in the correct order.

Figure 3.1 illustrates a common problem, where the same model has been fitted to alternative data sets and it

0.0

0.5

1.0

1.5

0 2 4 6 8 10

Comparing Parameter Estimates for Logistic Models

t

D
at

a
an

d
B

es
t-

F
it

C
ur

ve
s

gcfit.tf2 data
gcfit.tf3 data
gcfit.tf4 data
gcfit.tf2 fit
gcfit.tf3 fit
gcfit.tf4 fit

Figure 3.1: Comparing parameter estimates

is wished to decide if one or more parameters differ significantly.

In this case, the logistic model defined as

5 (C) = ?1

1 + ?2 exp(−?3C)

was simulated using makdat and adderr then fitted by gcfit, and the main interest is to decide if the estimated
final asymptote i.e. ?̂1 differs significantly for the test files gcfit.tf2 and gcfit.tf3 which actually have
identical parameters ?1 = 1, while gcfit.tf4 has a slightly larger asymptotic value ?1 = 1.25, the other
parameters being identical ?2 = 10 and ?3 = 1.

Table 3.1 illustrates how this technique works.
The data were fitted using gcfit using the option to store parameter estimates and covariance matrices. Then
the global tests for different parameter sets, and C tests for individual parameter differences were performed,
leading to the results indicated.

Clearly the parameter estimates for test files gcfit.tf2 and gcfit.tf3 indicate no significant differences,
while gcfit.tf4 differed significantly from both of these, due to a larger value for the asymptote ?1 for
gcfit.tf4.

38 SimFIT reference manual

Mahalanobis chisquare, and corrected pairwise t tests for

differences between parameters(A,B) and covariances(Ca,Cb).

Comparison 1: Parameters from gcfit.tf3 (A) and gcfit.tf2 (B)

Q = (AB)^T(Ca+Cb)^(1)(AB) = 2.193, NDOF = 3

Probability(Chisquare >= Q) = 0.5333

Index A B A B t DOF p

1 0.9956 0.9989 0.0033 0.2567 53 0.7984

2 10.15 9.89 0.2600 0.7224 40 0.4743

3 0.9848 0.9881 0.0033 0.1164 37 0.9908

Comparison 2: Parameters from gcfit.tf4 (A) and gcffit.tf2 (B)

Q = (AB)^T(Ca+Cb)^(1)(AB) = 749.2, NDOF = 3

Probability(Chisquare >= Q) = 0.0000 Reject H0 at 1% sig.level

Index A B A B t DOF p

1 1.224 0.9989 0.2251 19.17 57 0.0000 *****
2 10.04 9.89 0.15 0.3823 50 0.7038

3 0.969 0.9881 0.0191 0.06294 46 0.9501

Comparison 3: Parameters from gcfit.tf4 (A) and gcfit.tf3 (B)

Q = (AB)^T(Ca+Cb)^(1)(AB) = 1064.0, NDOF = 3

Probability(Chisquare >= Q) = 0.0000 Reject H0 at 1% sig.level

Index A B A B t DOF p

1 1.224 0.9956 0.2284 16.21 59 0.0000 *****
2 10.04 10.15 0.1100 0.443 52 0.6596

3 0.969 0.9848 0.0158 0.09271 52 0.9265

Table 3.1: Comparing parameter estimates

3.7 Graphical deconvolution of complex models

Many decisions depend on differentiating nested models, e.g., polynomials, or models in sequence of increas-
ing order, e.g., sums of Michaelis-Mentens or exponentials, and you should always use the option in qnfit,
exfit, mmfit and hlfit (see page 38) to plot the terms in the sum as what can loosely be described as a graphical
deconvolution before accepting the results of an � test to support a richer model.

The advantage of the graphical deconvolution technique is that you can visually assess the contribution of
individual component functions to the overall sum, as in figure 3.2 which shows the graphical deconvolution
of best fit curves as follows.

1. Fitting a sum of three Gaussian pdfs to the test file gauss3.tf1 using qnfit (page 79).

2. Fitting a double exponential function to the test file exfit.tf4 using exfit (page 60).

3. Fitting a double binding site curve to the test file hotcold.tf1 using mmfit in isotope displacement
mode (page 69).

Graphical deconvolution, which displays graphs for the individual components making up a composite
functions defined as the sum of these components, should always be done after fitting sums of monomials,
Michaelis-Mentens, High/Low affinity sites, exponentials, logistics or Gaussians, to assess the contribution of
the individual components to the overall fit, before accepting statistical evidence for improved fit. Many claims
for three exponentials or Michaelis-Mentens would not have been made if this simple graphical technique had
been used.

Fitting models to data 39

0.000

0.100

0.200

0.300

0.400

0.500

-3.0 1.5 6.0 10.5 15.0

Deconvolution of 3 Gaussians

x

y

0.00

1.00

2.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Deconvolution of Exponentials

x

y

0

8

16

-2 -1 0 1 2 3 4 5

Isotope Displacement Kinetics

log10[Cold]

-d
[H

ot
]/

dt

Data
Best Fit
Component 1
Component 2

Figure 3.2: Graphical deconvolution of complex models

Part 4

Linear models

4.1 Introduction

A linear model is one of the form

5 (G) = \1q1(G) + \2q2(G) + · · · + \=q= (G)

where the = parameters \8 are to be estimated, while the = functions q8 (G) are known functions of the
independent variable G. Examples would be polynomials or multilinear models, and models of this type are
particularly easy to fit and often yield unique solutions, which explains why they are often used in situations
where they are not strictly justified.

4.2 Linear regression

Program linfit fits a multilinear model in the form

H = V0G0 + V1G1 + V2G2 + · · · + V<G<,

where G0 = 1, but you can choose interactively whether or not to include a constant term V0, you can decide
which variables are to be included, and you can use a weighting scheme if this is required. For each regression
sub-set, you can observe the parameter estimates and standard errors, '-squared, Mallows �? (page 65), and
�#$+� table, to help you decide which combinations of variables are the most significant. Unlike nonlinear
regression, multilinear regression, which is based on the assumptions

. = -V + n,
E(n) = 0,

Var(n) = f2�,

allows us to introduce the hat matrix
� = - (-) -)−1-) ,

then define the leverages ℎ88 , which can be used to asses influence, and the studentized residuals

'8 =
A8

f̂
√

1 − ℎ88
,

which may offer some advantages over ordinary residuals A8 for goodness of fit assessment from residuals
plots. In the event of weighting being required, . , - and n above are simply replaced by ,

1
2. , ,

1
2 - , and

,
1
2 n .

Model discrimination is particularly straightforward with multilinear regression, and it is often important to
answer questions like these.

Linear regression 41

• Is a particular parameter well-determined ?

• Should a particular parameter be included in the regression ?

• Is a particular parameter estimate significantly different between two data sets ?

• Does a set of parameter estimates differ significantly between two data sets ?

• Are two data sets with the same variables significantly different ?

To assess the reliability of any parameter estimate, SimFIT lists the estimated standard error, the 95%
confidence limits, and the two tail ? value for a C test (page 136). If the ? value for a parameter is appreciably
greater than 0.05, the parameter can be regarded as indistinguishable from zero, so you should consider
suppressing the the corresponding variable from the regression and fitting again. To select a minimum
significant set of variables for regression you should perform the � test (page 155) and, to simplify the
systematic use of this procedure, SimFIT allows you to save sets of parameters and objective functions after
a regression so that these can be recalled retrospectively for the � test. With large numbers of variables it is
very tedious to perform all subsets regression and a simple expedient would be to start by fitting all variables,
then consider for elimination any variables with ill-defined parameter estimates. It is often important to see
if a particular parameter is significantly different between two data sets, and SimFIT provides the facility
to compare any two parameters in this way, as long as you know the values, standard errors, and numbers
of experimental points. This procedure (page 36) is very over-simplified, as it ignores other parameters
estimated in the regression, and their associated covariances. A more satisfactory procedure is to compare
full sets of parameters estimated from regression using the same model with different data sets, and also using
the estimated variance-covariance matrices. SimFIT provides the facility to store parameters and variance-
covariance matrices in this way (page 36), and this is a valuable technique to asses if two data sets are
significantly different, assuming that if two sets of parameter estimates are significantly different, then the
data sets are significantly different.

Two well documented and instructive data sets will be found in linfit.tf1 and linfit.tf2 but be warned;
real life phenomena are nonlinear, and the multilinear model is seldom the correct one. In fact the data in
linfit.tf1 have a singular design matrix, which deserves comment. It sometimes happens that data have
been collected at settings of the variables that are not independent. This is particularly troublesome with
what are known as (badly) designed experiments, e.g., 0 for female, 1 for male and so on. Another common
error is where percentages or proportions in categories are taken as variables in such a way that a column in
the design matrix is a linear combination of other columns, e.g., because all percentages add up to 100 or
all proportions add up to 1. When the SimFIT regression procedures detect singularity you will be warned
that the covariance matrix is singular and that the parameter standard errors should be ignored. However,
with multilinear regression, the fitting still takes place using the singular value decomposition (SVD) and
parameters and standard errors are printed. However only some parameters will be estimable and you should
redesign the experiment so that the covariance matrix is of full rank and all parameters are estimable. If
SimFIT warns you that a covariance matrix cannot be inverted or that SVD has to be used then you should not
carry on regardless: the results are likely to be misleading so you should redesign the experiment so that all
parameters are estimable.

As an example, after fitting the test file linfit.tf2, table 4.1 results. From the table of parameter estimates
it is clear that the estimated parameter confidence limits all include zero, and that all the parameter ? values
all exceed 0.05. So none of the parameters are particularly well-determined. However, from the �? value,
half normal residuals plot and ANOVA table, with overall ? value less than 0.05 for the � value, it appears
that a multilinear model does fit the overall data set reasonably well. The fact that the leverages are all of
similar size and that none of the studentized residuals are of particularly large absolute magnitude (all less
than 2) suggests that none of the data points are could be considered as outliers. Note that program linfit also
lets you explore generalized linear modelling (GLM), reduced major axis regression (minimizing the sum of
areas of triangles formed between the best-fit line and data points), orthogonal regression (minimizing the
sum of squared distances between the best-fit line and the data points), and robust regression in the !1 or !∞
norms as, alternatives to the usual !2 norm.

42 SimFIT reference manual

Number of parameters = 5, Rank = 5, Number of points = 13, NDOF = 8

ResidualSSQ = 47.8636, Mallows’ Cp = 5.0, Rsquared = 0.9824

Parameter Value Lower95%cl Upper95%cl Std.Error p

Constant 62.4054 99.1786 223.989 70.071 0.3991 ***
B(1) 1.5511 0.16634 3.26855 0.74477 0.0708 *
B(2) 0.510168 1.15889 2.17923 0.723788 0.5009 ***
B(3) 0.101909 1.63845 1.84227 0.754709 0.8959 ***
B(4) 0.144061 1.77914 1.49102 0.709052 0.8441 ***

Number Yvalue Theory Residual Leverage Studentized

1 78.5 78.4952 0.00476042 0.550285 0.00290214

2 74.3 72.7888 1.5112 0.333243 0.756625

3 104.3 105.971 1.67094 0.576942 1.05027

4 87.6 89.3271 1.7271 0.295237 0.841081

5 95.9 95.6492 0.250756 0.357601 0.127906

6 109.2 105.275 3.92544 0.124156 1.71482

7 102.7 104.149 1.44867 0.367076 0.74445

8 72.5 75.675 3.17499 0.40854 1.6878

9 93.1 91.7217 1.37835 0.294305 0.6708

10 115.9 115.618 0.281548 0.700403 0.210293

11 83.8 81.809 1.99098 0.425508 1.07391

12 113.3 112.327 0.972989 0.262983 0.463352

13 109.4 111.694 2.29433 0.30372 1.12411

ANOVA

Source NDOF SSQ MeanSSQ Fvalue p

Total 12 2715.76

Regression 4 2667.9 666.975 111.479 0.0000

Residual 8 47.8636 5.98295

Table 4.1: Multilinear regression

4.3 Polynomial regression

Program polnom sequentially fits polynomials of degree = = 0, 1, 2, 3, 4, 5, 6 of the type

?(G) = ?0 + ?1G + ?2G
2 + · · · + ?=G=,

using Chebyshev polynomials)8 (.) as follows

) (Ḡ) = 0.5�1)0 (Ḡ) + �2)1 (Ḡ) + �3)2 (Ḡ) + · · · + �=+1)= (Ḡ)

for numerical stability, where

Ḡ =
(G − G<8=) − (G<0G − G)

G<0G − G<8=
.

Note that, as G<8= ≤ G ≤ G<0G , then −1 ≤ Ḡ ≤ 1, and after fitting, polnom maps) (Ḡ) back into ?(G).
Polynomials are not mathematical models as such because they are too flexible and cannot model the sort of
horizontal asymptotes frequently encountered with experimental data, e.g. growth curves. However, as long
as low degrees are used and curves with turning points are treated with care, they can be used for calibration
or deciding if a there is a trend in noisy data sets. Here a major issue is deciding on the minimum degree
that is justified statistically, and table 4.2 illustrates how polnom does this. In this case the data are from
polnom.tf1 suggesting that degree 2 is justified, and the analysis using e02adf.tf1 indicates very clearly
from inspecting graphs for degrees 0, 1, 2, and 3 that here degree 3 is required, as will be seen from figure 4.1.

Linear regression 43

n Chebyshev coefficients A0, A1,..., An

0 0.3111269

1 16.033596 7.9079669

2 12.736903 4.8193935 1.44559

3 12.734680 4.8131684 1.4591 0.008377

4 12.761856 4.834225 1.43871 0.055083 0.059560

5 12.654161 4.6601972 1.38581 0.087456 0.035275 0.2297923

n SIGMA change WSSQ %change P(C>=WSSQ) 5% Fval (F>=Fval) 5%

0 36.70338 22901.34 0.0000 no

1 8.083255 77.98 1045.424 95.44 0.0000 no 334.500 0.0000 yes

2 0.991432 87.73 14.74406 98.59 0.4700 yes 1048.572 0.0000 yes

3 1.025319 3.42 14.7179 0.18 0.3977 yes 0.024878 0.8769 no

4 1.051113 2.52 14.36291 2.41 0.3488 yes 0.321311 0.5805 no

5 0.999964 4.87 11.99915 16.46 0.4457 yes 2.363927 0.1501 no

Results for weighted fitting (w = 1/s^2)

Parameter Value Std.Error Lower95%cl Upper95%cl p

p(0) 0.103471 0.00320912 0.0966304 0.110311 0.0000

p(1) 2.12035 0.0197309 2.07829 2.1624 0.0000

p(2) 0.115647 0.00357137 0.123259 0.108035 0.0000

Table 4.2: Results from polynomial regression

0

10

20

30

40

0 2 4 6 8 10

Best Fit Polynomials of Degree 0, 1, 2, and 3

x

y

n = 0

n = 1

n = 2

n = 3

Figure 4.1: Plots from polynomial regression

44 SimFIT reference manual

4.4 Robust regression

Robust techniques are required when in the linear model

. = -V + n

the errors n are not normally distributed. There are several alternative techniques available, arising from
a consideration of the objective function to be minimized by the fitting technique. One approach seeks to
suppress the well known effect that outliers bias parameter estimates by down-weightingextreme observations,
and yet another technique uses regression on ranks. First we consider the ?-norm of a =-vector G, which is
defined as

| |G | |? =

(
=∑
8=1

|G8 |?
)1/?

,

and the objective functions required for maximum likelihood estimation. There are three cases.

1. The !1 norm.
If the errors are bi-exponentially distributed (page 423) then the correct objective function is the sum
of the absolute values of all the residuals

=∑
8=1

|. − - V̂|.

2. The !2 norm.
If the errors are normally distributed with known variances f8 (page 420) then the correct objective
function, just as in weighted least squares, is

=∑
8=1

[(. − - V̂)/f8]2.

3. The !∞ norm.
If the errors are uniformly distributed (page 420) then the correct objective function is the largest
absolute residual

max
=

|. − - V̂|.

Although SimFITprovides options for !1 and !∞ fitting by iterative techniques, parameter standard error
estimates and analysis of variance tables are not calculated. The techniques can be used to assess how serious
the effects of outliers are in any given data set, but otherwise they should be reserved for situations where
either a bi-exponential or uniform distribution of errors seems more appropriate than a normal distribution of
errors.

In actual experiments it is often the case that there are more errors in the tails of the distribution than are
consistent with a normal distribution, so that the error distribution is more like a Cauchy distribution (page 422)
than a normal distribution. For such circumstances a variety of techniques exist for dampening down the
effect of such outliers. One such technique is bounded influence regression, which leads to "-estimates , but
it should be obvious that

Garbage In = Garbage Out
.

No automatic technique can extract meaningful results from bad data and, where possible, serious experi-
mentalists should, of course, strive to identify outliers and remove them from the data set, rather than use
automatic techniques to suppress the influence of outliers by down-weighting. Robust regression is a technique
for when all else fails, outliers cannot be identified independently and deleted, so the experimentalist is forced
to analyze noisy data sets where analysis of the error structure is not likely to be meaningful as sufficient

Robust regression 45

replicates cannot be obtained. An abstract of the NAG G02HAF documentation is now given to clarify the
options, and this should be consulted for more details and references.

If A8 are calculated residuals, F8 are estimated weights, k(.) and j(.) are specified functions, q(.) is the unit
normal density and Φ(.) the corresponding distribution function, f is a parameter to be estimated, and U1,
U2 are constants, then there are three main possibilities.

1. Schweppe regression

=∑
8=1

k(A8/(fF8))F8G8 9 = 0, 9 = 1, 2, . . . , <

Φ(U1) = 0.75

U2 =
1
=

=∑
8=1

F2
8

∫ ∞

−∞
j(I/F8)q(I) 3I

2. Huber regression

=∑
8=1

k(A8/f)G8 9 = 0, 9 = 1, 2, . . . , <

Φ(U1) = 0.75

U2 =

∫ ∞

−∞
j(I)q(I) 3I

3. Mallows regression

=∑
8=1

k(A8/f)F8G8 9 = 0, 9 = 1, 2, . . . , <

1
=

=∑
8=1

Φ(U1/
√
F8) = 0.75

U2 =
1
=

=∑
8=1

F8

∫ ∞

−∞
j(I)q(I) 3I

The estimate for f can be obtained at each iteration by the median absolute deviation of the residuals

f̂ = median
8

(|A8 |)/U1

or as the solution to
=∑
8=1

j(A8/(f̂F8))F2
8 = (= − :)U2

where : is the column rank of - .

For the iterative weighted least squares regression used for the estimates there are several possibilities for the
functions k and j, some requiring additional parameters 2, ℎ1, ℎ2, ℎ3, and 3.

(a) Unit weights, equivalent to least-squares.

k(C) = C, j(C) = C2/2

(b) Huber’s function

k(C) = max(−2,min(2, C)), j(C) =
{
C2/2, |C | ≤ 3

32/2, |C | > 3

46 SimFIT reference manual

(c) Hampel’s piecewise linear function

kℎ1 ,ℎ2 ,ℎ3
(C) = −kℎ1 ,ℎ2 ,ℎ3

(−C) =

C, 0 ≤ C ≤ ℎ1

ℎ1, ℎ1 ≤ C ≤ ℎ2

ℎ1(ℎ3 − C)/(ℎ3 − ℎ2), ℎ2 ≤ C ≤ ℎ3

0, ℎ3 < C

j(C) =
{
C2/2, |C | ≤ 3

32/C, |C | > 3

(d) Andrew’s sine wave function

k(C) =
{

sin C, −c ≤ C ≤ c

0, |C | > c
j(C) =

{
C2/2, |C | ≤ 3

32/2, |C | > 3

(e) Tukey’s bi-weight

k(C) =
{
C(1 − C2)2, |C | ≤ 1

0, |C | > 1
j(C) =

{
C2/2, |C | ≤ 3

32/2, |C | > 3

Weights F8 require the definition of functions D(.) and 5 (.) as follows.

(i) Krasker-Welsch weights

D(C) = 61 (2/C)
61 (C) = C2 + (1 − C2) (2Φ(C) − 1) − 2Cq(C)
5 (C) = 1/C

(ii) Maronna’s weights

D(C) =
{
2/C2, |C | > 2
1, |C | ≤ 2

5 (C) =
√
D(C)

Finally, in order to estimate the parameter covariance matrix, two diagonal matrices � and % are required as
follows.

1. Average over the A8

Schweppe Mallows

�8 =
©
«

1
=

=∑
9=1

k′(A 9/(f̂F8)ª®¬
F8 �8 =

©
«

1
=

=∑
9=1

k′(A 9/f̂)ª®¬
F8

%8 =
©
«

1
=

=∑
9=1

k2 (A 9/(f̂F8)ª®¬
F2
8 %8 =

©
«

1
=

=∑
9=1

k2(A 9/(f̂)ª®¬
F2
8

2. Replace expected value by observed

Schweppe Mallows

�8 = k
′(A8/(f̂F8)F8 �8 = k

′(A8/f̂)F8
%8 = k

2 (A8/(f̂F8)F2
8 %8 = k

2(A8/(f̂)F2
8

Table 4.3 illustrates the use of robust regression using the test file g02haf.tf1. Note that the output lists all
the settings used to configure NAG routine G02HAF and, in addition, it also presents the type of results usually

Regression on ranks 47

G02HAF settings: INDW > 0, Schweppe with KraskerWelsch weights

IPSI = 2, Hampel piecewise linear

ISIG > 0, sigma using the chi function

INDC = 0, Replacing expected by observed

H1 = 1.5, H2 = 3.0, H3 = 4.50

CUCV = 3.0, DCHI = 1.5, TOL = 0.00005

Number of parameters = 3, Rank = 3, Number of points = 8, NDOF = 5

ResidualSSQ = 0.464, Mallows’ Cp = 3.0, Rsquared = 0.9844

Final sigma value = 0.2026

Parameter Value 95% conf. limits Std.error p

Constant 4.042 3.944 4.141 0.03842 0.0000

B(1) 1.308 1.238 1.378 0.02720 0.0000

B(2) 0.7519 0.6719 0.8319 0.0312 0.0000

Number Yvalue Theory Residual Weighting

1 2.1 1.982 0.1179 0.5783

2 3.6 3.486 0.1141 0.5783

3 4.5 4.599 0.9872 0.5783

4 6.0 6.103 0.002564 0.5783

5 1.3 1.426 0.1256 0.4603

6 1.9 2.538 0.6385 0.4603

7 6.7 6.659 0.04103 0.4603

8 5.5 5.546 0.04615 0.4603

ANOVA

Source NDOF SSQ Mean SSQ Fvalue p

Total 7 29.66

Regression 2 29.19 14.6 157.3 0.0000

Residual 5 0.4639 0.09278

Table 4.3: Robust regression

associated with standard multilinear regression. Of course these calculations should be interpreted with great
caution if the data sample has many outliers, or has errors that depart widely from a normal distribution. It
should be noted that, in the SimFITimplementation of this technique, the starting estimates required for the
iterations used by the robust estimation are first calculated automatically by a standard multilinear regression.
Another point worth noting is that users of all SimFITmultilinear regression analysis can either supply a matrix
with a first column of G1 = 1 and suppress the option to include a constant in the regression, or omit the first
column for G1 = 1 from the data file, whereupon SimFITwill automatically add such a column, and do all the
necessary adjustments for degrees of freedom.

4.5 Regression on ranks

It is possible to perform regression where observations are replaced by ranks, as illustrated for test data
g08raf.tf1, and g08rbf.tf1 in table 4.4.
It is assumed that a monotone increasing differentiable transformation ℎ exists such that

ℎ(.8) = G)8 V + n8

for observations .8 given explanatory variables G8 , parameters V, and random errors n8 , when the following
can be estimated, and used to test �0 : V = 0.

48 SimFIT reference manual

File: G08RAF.TF1 (1 sample, 20 observations)

parameters = 2, distribution = logistic

CTS = 8.221, NDOF = 2, P(chisq >= CTS) = 0.0164

Score Estimate Std.Err. zvalue p

1.048 0.8524 1.249 0.6824 0.4950 ***
64.33 0.1139 0.04437 2.567 0.0103

CV matrices: upper triangle for scores, lower for parameters

0.67326 4.1587

1.5604 533.67

0.012160 0.0019686

File: G08RBF.TF1 (1 sample, 40 observations)

parameters = 1, gamma = 0.00005

CTS = 2.746, NDOF = 1, P(chisq >= CTS) = 0.0975

Score Estimate Std.Err. zvalue p

4.584 5.990 0.3615 1.657 0.0975 *

CV matrices: upper triangle for scores, lower for parameters

7.6526

0.13067

Table 4.4: Regression on ranks

➀ -) 0, the score statistic.

➁ -) (� − �)- , the estimated variance covariance matrix of the scores.

➂ V̂ = "-) 0, the estimated parameters.

➃ " = (-) (� − �)-)−1, the estimated variance covariance matrix of V̂.

➄ �)(= V̂)"−1 V̂, the j2 test statistic.

➅ V̂8/
√
"88 , the approximate I statistics.

Here " and 0 depend on the ranks of the observations, while � depends on the the distribution of n , which
can be assumed to be normal, logistic, extreme value, or double-exponential, when there is no censoring.
However, table 4.4 also displays the results from analyzing g08rbf.tf1, which contains right censored data.
That is, some of the measurements were capped, i.e., an upper limit to measurement existed, and all that can
be said is that an observation was at least as large as this limit. In such circumstances a parameter W must be
set to model the distribution of errors as a generalized logistic distribution, where as W tends to zero a skew
extreme value is approached, when W equals one the distribution is symmetric logistic, and when W tends to
infinity the negative exponential distribution is assumed.

Part 5

Generalized linear models (GLM)

5.1 Introduction

This technique is intermediate between linear regression, which is trivial and gives uniquely determined
parameter estimates but is rarely appropriate, and nonlinear regression, which is very hard and does not
usually give unique parameter estimates, but is justified with normal errors and a known model. The SimFIT
generalized models interface can be used from gcfit, linfit or simstat as it finds many applications, ranging
from bioassay to survival analysis.

To understand the motivation for this technique, it is usual to refer to a typical doubling dilution experiment
in which diluted solutions from a stock containing infected organisms are plated onto agar in order to count
infected plates, and hence estimate the number of organisms in the stock. Suppose that before dilution the
stock had # organisms per unit volume, then the number per unit volume after G = 0, 1, . . . , < dilutions will
follow a Poisson dilution with `G = #/2G . Now the chance of a plate receiving no organisms at dilution G
is the first term in the Poisson distribution, that is exp(−`G), so if ?G is the probability of a plate becoming
infected at dilution G, then

?G = 1 − exp(−`G), G = 1, 2, . . . , <.

Evidently, where the ?G have been estimated as proportions from HG infected plates out of =G plated at dilution
G, then # can be estimated using

log[− log(1 − ?G)] = log# − G log 2

considered as a maximum likelihood fitting problem of the type

log[− log(1 − ?G)] = V0 + V1G

where the errors in estimated proportions ?G = HG/=G are binomially distributed. So, to fit a generalized
linear model, you must have independent evidence to support your choice for an assumed error distribution
for the dependent variable . from the following possibilities:

❏ normal

❏ binomial

❏ Poisson

❏ gamma

in which it is supposed that the expectation of . is to be estimated, i.e.,

� (.) = `.

50 SimFIT reference manual

The associated pdfs are parameterized as follows.

normal : 5. =
1

√
2c f

exp

(
− (H − `)2

2f2

)

binomial: 5. =

(
#

H

)
cH (1 − c)#−H

Poisson: 5. =
`H exp(−`)

H!

gamma: 5. =
1

Γ(a)

(
aH

`

)a
exp

(
− aH
`

)
1
H

It is a mistake to make the usual unwarranted assumption that measurements imply a normal distribution,
while proportions imply a binomial distribution, and counting processes imply a Poisson distribution, unless
the error distribution assumed has been verified for your data. Another very questionable assumption that has
to made is that a predictor function [exists, which is a linear function of the < covariates, i.e., independent
explanatory variables, as in

[=

<∑
9=1

V 9G 9 .

Finally, yet another dubious assumption must be made, that a link function 6(`) exists between the expected
value of . and the linear predictor. The choice for

6(`) = [

depends on the assumed distribution as follows. For the binomial distribution, where H successes have been
observed in # trials, the link options are the logistic, probit or complementary log-log

logistic: [= log

(
`

− `

)

probit: [= Φ
−1

(`
#

)
complementary log-log: [= log

(
− log

(
1 − `

#

))
.

Where observed values can have only one of two values, as with binary or quantal data, it may be wished
to perform binary logistic regression. This is just the binomial situation where H takes values of 0 or 1,
is always set equal to 1, and the logistic link is selected. However, for the normal, Poisson and gamma
distributions the link options are

exponent: [= `0

identity: [= `

log: [= log(`)
square root: [=

√
`

reciprocal: [=
1
`
.

In addition to these possibilities, you can supply weights and install an offset vector along with the data set,
the regression can include a constant term if requested, the constant exponent 0 in the exponent link can be
altered, and variables can be selected for inclusion or suppression in an interactive manner. However, note
that the same strictures apply as for all regressions: you will be warned if the SVD has to be used due to
rank deficiency and you should redesign the experiment until all parameters are estimable and the covariance
matrix has full rank, rather than carry on with parameters and standard errors of limited value.

Generalized linear models (GLM) 51

5.2 GLM examples

The test files to investigate the GLM functions are:
glm.tf1: normal error and reciprocal link
glm.tf2: binomial error and logistic link (logistic regression)
glm.tf3: Poisson error and log link
glm.tf4: gamma error and reciprocal link
where the data format for : variables, observations H and weightings B is

G1, G2, . . . , G: , H, B

except for the binomial error which has

G1, G2, . . . , G: , H, #, B

for H successes in # independent Bernoulli trials. Note that the weights F used are actually F = 1/B2 if
advanced users wish to employ weighting, e.g., using B as the reciprocal of the square root of the number of
replicates for replicate weighting, except that when B ≤ 0 the corresponding data points are suppressed. Also,
observe the alternative measures of goodness of fit, such as residuals, leverages and deviances. The residuals
A8 , sums of squares ((& and deviances 38 and overall deviance ��+ depend on the error types as indicated
in the examples.

GLM example 1: G02GAF, normal errors

Table 5.1 has the results from fitting a reciprocal link with mean but no offsets to glm.tf1. Note that the

Number of parameters = 2, Rank = 2, Number of points = 5, NDOF = 3

Parameter Value 95% conf. limits Std.error p

Constant 0.02387 0.03272 0.01503 0.002779 0.0033

B(1) 0.06381 0.05542 0.07221 0.002638 0.0002

WSSQ = 0.3872, S = 0.1291, A = 1.0

Number Yvalue Theory Devresid Leverage

1 25.00 25.04 0.03866 0.9954

2 10.0 9.639 0.3613 0.4577

3 6.0 5.968 0.03198 0.2681

4 4.0 4.322 0.3221 0.1666

5 3.0 3.388 0.3878 0.1121

Table 5.1: GLM example 1: normal errors

scale factor (S = f2) can be input or estimated using the residual sum of squares ((& defined as follows

normal error: A8 = H8 − ˆ̀8

((& =

=∑
8=1

A8 .

GLM example 2: G02GBF, binomial errors

Table 5.2 shows the results from fitting a logistic link and mean but no offsets to glm.tf2. The estimates are

52 SimFIT reference manual

Number of parameters = 2, Rank = 2, Number of points = 3, NDOF = 1

Parameter Value 95% conf. limits Std.error p

Constant 2.868 4.415 1.322 0.1217 0.0270

B(1) 0.4264 2.457 1.604 0.1598 0.2283 ***
Deviance = 0.07354

Number Yvalue Theory Devresid Leverage

1 19.0 18.45 0.1296 0.7687

2 29.0 30.1 0.2070 0.422

3 24.0 23.45 0.1178 0.8092

Table 5.2: GLM example 2: binomial errors

defined as follows

binomial error: 38 = 2

{
H8 log

(
H8

ˆ̀8

)
+ (C8 − H8) log

(
C8 − H8
C8 − ˆ̀8

)}

A8 = sign(H8 − ˆ̀8)
√
38

��+ =

=∑
8=1

38 .

GLM example 3: G02GCF, Poisson errors

Table 5.3 shows the results from fitting a log link and mean but no offsets to glm.tf3. The definitions are

Poisson error: 38 = 2

{
H8 log

(
H8

ˆ̀8

)
− (H8 − ˆ̀8)

}

A8 = sign(H8 − ˆ̀8)
√
38

��+ =

=∑
8=1

38,

but note that an error message is output to warn you that the solution is overdetermined, i.e., the parameters and
standard errors are not unique. To understand this, we point out that the data in glim.tf3 are the representation
of a contingency table using dummy indicator variables (page 55) as will be clear from table 5.4. Thus,
in order to obtain unique parameter estimates, it is necessary to impose constraints so that the resulting

constrained system is of full rank. Let the singular value decomposition (SVD) %∗ be represented, as in
G02GKF, by

%∗
=

(
�−1%)

1

%)
0

)
,

and suppose that there are < parameters and the rank is A, so that there need to be =2 = < − A constraints, for
example, in a < by =2 matrix � where

�) V = 0.

Then the constrained estimates V̂2 are given in terms of the SVD parameters V̂BE3 by

V̂2 = �V̂BE3

= (� − %0(�) %0)−1�)) V̂BE3,

while the variance-covariance matrix + is given by

+ = �%1�
−2%)1 �

) ,

Generalized linear models (GLM) 53

Number of parameters = 9, Rank = 7, Number of points = 15, NDOF = 8

Parameter Value 95% conf. limits Std.error p

Constant 2.598 2.538 2.657 0.02582 0.0000

B(1) 1.262 1.161 1.363 0.04382 0.0000

B(2) 1.278 1.177 1.378 0.04362 0.0000

B(3) 0.05798 0.09595 0.2119 0.06675 0.4104 ***
B(4) 1.031 0.9036 1.158 0.05509 0.0000

B(5) 0.291 0.1223 0.4598 0.07317 0.0041

B(6) 0.9876 0.8586 1.117 0.05593 0.0000

B(7) 0.488 0.3322 0.6437 0.06754 0.0001

B(8) 0.1996 0.4080 0.008754 0.09035 0.0582 *
Deviance = 9.038, A = 1.0

Number Yvalue Theory Devresid Leverage

1 141.0 133.0 0.6875 0.6035

2 67.0 63.47 0.4386 0.5138

3 114.0 127.4 1.207 0.5963

4 79.0 77.29 0.1936 0.5316

5 39.0 38.86 0.02218 0.4820

6 131.0 135.1 0.3553 0.6083

7 66.0 64.48 0.1881 0.5196

8 143.0 129.4 1.175 0.6012

9 72.0 78.52 0.7465 0.5373

10 35.0 39.48 0.7271 0.4882

11 36.0 39.9 0.6276 0.3926

12 14.0 19.04 1.213 0.2551

13 38.0 38.21 0.03464 0.3815

14 28.0 23.19 0.9675 0.2825

15 16.0 11.66 1.203 0.2064

Table 5.3: GLM example 3: Poisson errors

Test file loglin.tf1 Test file glm.tf3

141 67 114 79 39 1 0 0 1 0 0 0 0 141 1

131 66 143 72 35 1 0 0 0 1 0 0 0 67 1

36 14 38 28 16 1 0 0 0 0 1 0 0 114 1

1 0 0 0 0 0 1 0 79 1

1 0 0 0 0 0 0 1 39 1

0 1 0 1 0 0 0 0 131 1

0 1 0 0 1 0 0 0 66 1

0 1 0 0 0 1 0 0 143 1

0 1 0 0 0 0 1 0 72 1

0 1 0 0 0 0 0 1 35 1

0 0 1 1 0 0 0 0 36 1

0 0 1 0 1 0 0 0 14 1

0 0 1 0 0 1 0 0 38 1

0 0 1 0 0 0 1 0 28 1

0 0 1 0 0 0 0 1 16 1

Table 5.4: GLM contingency table analysis: 1

54 SimFIT reference manual

provided that (�) %−1
0
) exists. This approach is commonly used in log-linear analysis of contingency tables,

but it can be tedious to first fit the overdetermined Poisson GLM model then apply a matrix of constraints as
just described. For this reason SimFIT provides an automatic procedure (page 147) to calculate the dummy
indicator matrix from the contingency table then fit a log-linear model and apply the further constraints that
the row sum and column sum are zero. Table 5.5 illustrates how this is done with loglin.tf1.

Number of rows = 3, Number of columns = 5

Deviance (D) = 9.038, NDOF = 8, p = P(chisq>=D) = 0.3391

Parameter Estimate Std.Err. ..95% con. lim.... p

Constant 3.983 0.0396 3.89 4.07 0.0000

Row 1 0.3961 0.0458 0.29 0.502 0.0000

Row 2 0.4118 0.0457 0.306 0.517 0.0000

Row 3 0.8079 0.0622 0.951 0.664 0.0000

Col 1 0.5112 0.0562 0.382 0.641 0.0000

Col 2 0.2285 0.0727 0.396 0.0608 0.0137 *
Col 3 0.468 0.0569 0.337 0.599 0.0000

Col 4 0.03155 0.0675 0.187 0.124 0.6527 ***
Col 5 0.7191 0.0887 0.924 0.515 0.0000

Data Model Delta Residual Leverage

141 132.99 8.01 0.6875 0.6035

67 63.47 3.53 0.4386 0.5138

114 127.38 13.38 1.2072 0.5963

79 77.29 1.71 0.1936 0.5316

39 38.86 0.14 0.0222 0.4820

131 135.11 4.11 0.3553 0.6083

66 64.48 1.52 0.1881 0.5196

143 129.41 13.59 1.1749 0.6012

72 78.52 6.52 0.7465 0.5373

35 39.48 4.48 0.7271 0.4882

36 39.90 3.90 0.6276 0.3926

14 19.04 5.04 1.2131 0.2551

38 38.21 0.21 0.0346 0.3815

28 23.19 4.81 0.9675 0.2825

16 11.66 4.34 1.2028 0.2064

Table 5.5: GLM contingency table analysis: 2

GLM example 4: G02GDF, gamma errors

Table 5.6 shows the results from fitting a reciprocal link and mean but no offsets to glm.tf4. Note that with
gamma errors, the scale factor (a−1) can be input or estimated using the degrees of freedom, :, and

â−1
=

=∑
8=1

[(H8 − ˆ̀8]/ ˆ̀8]2

− : .

gamma: 38 = 2

{
log(ˆ̀8) +

(
H8

ˆ̀8

)}

A8 =
3(H

1
3

8
− ˆ̀8

1
3)

ˆ̀8
1
3

��+ =

=∑
8=1

38

Generalized linear models (GLM) 55

Number of parameters = 2, Rank = 2, Number of points = 10, NDOF = 8

Parameter Value 95% conf. limits Std.error p

Constant 1.441 0.08812 2.97 0.663 0.0615 *
B(1) 1.287 2.824 0.2513 0.6669 0.0898 *

Adjusted Deviance = 3.503E+01, S = 1.074E+00, A = 1.000E+00

Number Yvalue Theory Devresid Leverage

1 1.0 6.48 1.391 0.2

2 0.3 6.48 1.923 0.2

3 10.5 6.48 0.5236 0.2

4 9.7 6.48 0.4318 0.2

5 10.9 6.48 0.5678 0.2

6 0.62 0.694 0.1107 0.2

7 0.12 0.694 1.329 0.2

8 0.09 0.694 1.482 0.2

9 0.5 0.694 0.31 0.2

10 2.14 0.694 1.366 0.2

Table 5.6: GLM example 4: gamma errors

5.3 The SimFIT simplified Generalized Linear Models interface

Although generalized linear models have widespread use, specialized knowledge is sometimes required to
prepare the necessary data files, weights, offsets, etc. For this reason, there is a simplified SimFIT interface
to facilitate the use of GLM techniques in such fields as the following.

• Bioassay, assuming a binomial distribution and using logistic, probit, or log-log models to estimate
percentiles, such as the LD50 (page 110).

• Logistic regression and binary logistic regression.

• Logistic polynomial regression,generating new variables interactively as powers of an original covariate.

• Contingency table analysis, assuming Poisson errors and using log-linear analysis to quantify row and
column effects (page 143).

• Survival analysis, using the exponential, Weibull, extreme value, and Cox (i.e., proportional hazard)
models (page 253).

Of course, by choosing the advanced interface, users can always take complete control of the GLM analysis,
but for many purposes the simplified interface will prove much easier to use for many routine applications.
Some applications of the simplified interface will now be presented.

5.4 Logistic regression

Logistic regression is an application of the previously discussed GLM procedure assuming binomial errors
and a logistic link. It is widely used in situations where there are binary variables and estimates of odds ratios
or log odds ratios are required. A particularly useful application is in binary logistic regression where the H8
values are all either 0 or 1 and all the #8 values are equal to 1, so that a probability ?̂8 is to be estimated as a
function of some variables. Frequently the covariates are qualitative variables which can be included in the
model by defining appropriate dummy indicator variables. For instance, suppose a factor has < levels, then
we can define < dummy indicator variables G1, G2, . . . , G< as in Table 5.7. The data file would be set up as if
to estimate all < parameters for the < factor levels but because only < − 1 of the dummy indicator variables

56 SimFIT reference manual

Level G1 G2 G3 . . . G<
1 1 0 0 . . . 0
2 0 1 0 . . . 0
3 0 0 1 . . . 0
.
< 0 0 0 . . . 1

Table 5.7: Dummy indicators for categorical variables

are independent, one of them would have to be suppressed if a constant were to be fitted, to avoid aliasing,
i.e., the model would be overdetermined and the parameters could not be estimated uniquely. Suppose, for
instance, that the model to be fitted was for a factor with three levels, i.e.,

log

{
� (H)

1 − � (H)

}
= 00 + 01G1 + 02G2 + 03G3

but with G1 suppressed. Then the estimated parameters could be interpreted as log odds ratios for the factor
levels with respect to level 1, the suppressed reference level. This is because for probability estimates ?̂1, ?̂2

and ?̂3 we would have the odds estimates

?̂1

1 − ?̂1

= exp(00)

?̂2

1 − ?̂2

= exp(00 + 02)

?̂3

1 − ?̂3

= exp(00 + 03)

and estimates for the corresponding log odds ratios involving only the corresponding estimated coefficients

log

{
?̂2/(1 − ?̂2)
?̂1/(1 − ?̂1)

}
= 02

log

{
?̂3/(1 − ?̂3)
?̂1/(1 − ?̂1)

}
= 03.

Even with quantitative, i.e., continuous data, the best-fit coefficients can always be interpreted as estimates for
the log odds ratios corresponding to unit changes in the related covariates.

As an example of simple binary logistic regression, fit the data in test file logistic.tf1 to obtain the results
shown in table 5.8. The parameters are well determined and the further step was taken to calculate an expected
frequency, given the parameter estimates. It frequently happens that, after fitting a data set, users wish to
predict the binomial probability using the parameters estimated from the sample. That is, given the model

log

(
� (H)

1 − � (H)

)
= V0 + V1G1 + V2G2 + . . . + V<G<

= [,

where H is recorded as either 0 (failure) or 1 (success) in a single trial, then the binomial probability ? would
be estimated as

?̂ =
exp([̂)

1 + exp([̂) ,

where [̂ is evaluated using parameter estimates with user supplied covariates. In this case, with a constant
term and G1 = G2 = 1, then ?̂ = 0.04761.

Generalized linear models (GLM) 57

Number of parameters = 3, Rank = 3, Number of points = 39, NDOF = 36

Parameter Value 95% conf. limits Std.error p

Constant 9.520 16.06 2.981 3.224 0.0055

B(1) 3.877 0.9868 6.768 1.425 0.0100

B(2) 2.647 0.7975 4.496 0.9119 0.0063

Deviance = 2.977E+01

x(0) = 1.0, coefficient = 9.520 (the constant term)

x(1) = 1.0, coefficient = 3.877

x(2) = 1.0, coefficient = 2.647

Binomial N = 1

y(x) = 4.761E02, Binomial probability p = 0.04761

Table 5.8: Binary logistic regression

5.5 Conditional binary logistic regression with stratified data

A special case of multivariate conditional binary logistic regression is in matched case control studies, where
the data consist of strata with cases and controls, and it is wished to estimate the effect of covariates, after
allowing for differing baseline constants in each stratum. Consider, for example, the case of B strata with =:
cases and <: controls in the :th stratum. Then, for the 9th person in the :th stratum with 2-dimensional
covariate vector G 9 : , the probability %: (G 9 :) of being a case is

%: (G 9 :) =
exp(U: + V) G 9 :)

1 + exp(U: + V) G 9 :)

where U: is a stratum specific constant. Estimation of the 2 parameters V8 can be accomplished by maximizing
the conditional likelihood, without explicitly estimating the constants U: .

As an example, fit the test file strata.tf1 to obtain the results shown in table 5.9. Note that the input file

Number of parameters = 2, Number of points = 7, NDOF = 5

Parameter Value 95% conf. limits Std.error p

B(1) 0.5223 4.096 3.051 1.39 0.7226 ***
B(2) 0.2674 2.446 1.911 0.8473 0.7651 ***

Deviance = 5.475E+00

Strata Cases Controls

1 2 2

2 1 2

Table 5.9: Conditional binary logistic regression

must use the B variable, i.e. the last column in the data file, to indicate the stratum to which the observation
corresponds, and since the model fitted is incomplete, goodness of fit analysis is not available.

Part 6

Nonlinear models: Simple fitting

6.1 Introduction

Linear regression is trivial and gives unique solutions, but constrained nonlinear regression is extremely
complicated and does not give unique solutions. So you might ask: Why bother with nonlinear regression

? The answer is that nature is nonlinear, so nonlinear regression is the only approach open to honest
investigators. Sometimes it is possible to transform data and use linear techniques, as in generalized linear
interactive modelling (GLM), but this just bypasses the central issue; finding a mathematical model derived
using established physical laws, and involving constants that have a well defined physical meaning. Logistic
regression, for instance, involving fitting a polynomial to transformed data, may seem to work; but the
polynomial coefficients have no meaning. Estimating rate constants, on the other hand, allows comparisons to
be made of kinetic, transport or growth processes under different treatments, and helps to explain experimental
results in terms of processes such as diffusion or chemical reaction theory.

Nonlinear regression involves the following steps.

1. Obtaining data for responses H8 , 8 = 1, 2, . . . , = at exactly known values of fixed variables G8 .

2. Estimating weighting factors F8 = 1/B28 , where the B8 are standard deviations, or smoothed estimates,
obtained by analyzing the behaviour of replicates at the fixed G8 values if possible, or B8 = 1 otherwise.

3. Selecting a sensible deterministic model from a set of plausible mathematical models for

H8 = 5 (G8 ,ΘΘΘ) + n8 ,

whereΘΘΘ = \1, \2, . . . , \: are parameters, and n8 are uncorrelated errors with zero mean.

4. Choosing meaningful starting parameter estimates for the unknown parameter vector ΘΘΘ.

5. Normalizing the data so that internal parameters, objective function and conditionnumber of the Hessian
matrix are of order unity (in internal coordinates) at the solution point.

6. Assessing goodness of fit by examining the weighted residuals

A8 = (H8 − 5 (G8 , Θ̂ΘΘ))/B8

where Θ̂ΘΘ is the best fit parameter vector.

7. Investigating parameter redundancy by examining the weighted sum of squared residuals,((&

,((& =

=∑
8=1

A2
8 ,

and the estimated parameter variance-covariance matrix.

Nonlinear models: Simple fitting 59

Curve fitting is controversial, so the SimFIT philosophy will be stated at this point.

Weighting should only be attempted by users who have at least four replicates per design point and are

prepared to investigate the relative effects of alternative weighting schemes.

Caution is needed when interpreting goodness of fit statistics, and users should demand convincing evidence

before concluding that models with more than say four parameters are justified.

If there are no parameter constraints, a modified Gauss-Newton or Levenburg-Marquardtmethod can be used,

but if constraints are required a sequential quadratic programming or quasi-Newton method should be used.

You must have good data over a wide range to define asymptotes etc., fit all replicates, not means, and use

sensible models and starting estimates.

6.1.1 User friendly curve fitting programs

Unfortunately, G8 cannot be fixed exactly, F8 have to be estimated, we are never certain that 5 (.) is the correct
model, experimental errors are not uncorrelated and normally distributed, and,((& minimization is is not
guaranteed to give a unique or sensible solution with nonlinear models. Nevertheless SimFIT has these linear
and nonlinear regression programs that greatly simplify model fitting and parameter estimation.

linfit linear/multi-linear regression and generalized linear modelling (GLM)
exfit sum of exponentials, choosing from 6 possible types (unconstrained)
gcfit growth models (exponential, monomolecular, Richards, Von Bertalanffy, Gompertz, Logistic,

Preece-Baines) with or without constant terms (unconstrained)
hlfit sum of high/low affinity ligand binding sites with a constant term (constrained)
mmfit sum of Michaelis-Menten functions (constrained)
polnom polynomials (Chebyshev) in sequence of increasing degree (unconstrained)
rffit positive = : = rational functions (constrained)
sffit saturation function for positive or negative binding cooperativity (constrained)
csafit flow cytometry histograms with stretch and shift (constrained)
inrate Hill-=/Michaelis-Menten/line/quadratic/lag-phase/monomolecular (unconstrained)

The user-friendly nonlinear regression programs calculate starting estimates, scale data into internal coordi-
nates, then attempt to minimize the objective function,((&/#�$�, which has expectation 1 with correct
model and weights. However, if incorrect models or weights are used, or ,((&/#�$� ≪ 1.0E-6, or ≫
1.0E6, the programs may not converge. If you have insufficient replicates to estimate weights and have set
B = 1, the programs do unweighted regression, replacing the chi-square test by calculation of the average 2E%

2E% = 100

√
,((&/#�$�
(1/=) ∑=

8=1 |H8 |
, and #�$� = = − no. of parameters.

These programs must be supplied with all observations, not means of replicates or else biased statistics
will be output and, after fitting, options are available to plot residuals, identify outliers, calculate error bars
interactively from groups of replicates (arranged in nondecreasing order), etc.

6.1.2 IFAIL and IOSTAT error messages

As curve fitting is iterative you are likely to encounter error messages when curve fitting as follows. IFAIL
errors flag computational failure, and will occur if the data lead to a singularity in evaluating some expression.
For instance, the formula H = 1/G will lead to overflow when G becomes so small that H would exceed the
largest number allowed on your computer. IFAIL messages look like this:

FATAL : IFAIL = 1 from C05AZF/ZSOLVE.

which means that a fault leading to IFAIL = 1 on exit from C05AZF has occurred in subroutine ZSOLVE. The
order of severity of SimFIT error messages is

60 SimFIT reference manual

ADVICE < CAUTION < WARNING « FATAL

then self-explanatory text. If a nonzero IFAIL value is returned and you want to know what it means, you
can look it up in the NAG library handbook by simply searching for the routine on the web. For instance,
searching for C05AZF should lead you to an appropriate web document, e.g.,
http://www.nag.co.uk/numeric/fl/manual/C05/C05azf.pdf,
where you can find out what C05AZF does and what the IFAIL message indicates.

IOSTAT errors flag input or output failure, and will occur if a program is unable to read data correctly
from files, e.g., because the file is formatted incorrectly, end-of-file has been encountered leading to negative
IOSTAT, or data has become corrupted, e.g., with letters instead of numbers.

The following sections take each of the user friendly programs in turn and suggest ways you can practise with
the test files. Finally we briefly turn to specialized models, and comprehensive curve fitting for experts.

6.2 Exponential functions

Graphs for the exponential function

5 (C) = �1 exp(−:1C) + �2 exp(−:2C) + · · · + �= exp(−:=C) + �

are shown in figure 6.1. Note that all these curves can be fitted by exfit, but with different strategies for initial

Type1: Exponential Decay

t

f(
t)

0

1

0 1 2 3

Type 2: Exponential Decay to a Baseline

t

f(
t)

0

1

2

0 1 2 3

Type 3: Exponential Growth

t

f(
t)

0

1

0 1 2 3

Type 4: Exponential Growth from a Baseline

t

f(
t)

0

1

2

0 1 2 3

Type 5: Up-Down Exponential

t

f(
t)

0

1

0 1 2 3 4 5

Type 6: Down-Up Exponential

t

f(
t)

0

1

2

0 1 2 3 4 5

Figure 6.1: Alternative types of exponential functions

parameter estimates and scaling, depending on curve type.

Types 1 and 2 are the familiar exponential declines to zero or an asymptote that are often used for pharma-
cokinetic elimination studies.

Types 3 and 4 are typically used for growth or accumulation situations.

Types 5 and 6 are used in absorption elimination or chemical intermediate studies and require at least two
exponentials. For intermediate cases where compartments are not empty or chemical species are not zero

Nonlinear models: Simple fitting 61

at zero time, and it usual to follow fitting these models by a relaxation step to accommodate variants of the
schemes illustrated.

0.00

1.00

2.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

t

f(
t)

Figure 6.2: Fitting exponential functions

The test file exfit.tf4 has data for the function

5 (C) = exp(−C) + exp(−5C)

obtained by using adderr to add error to the exact
data in exfit.tf3 prepared by makdat. So you read
this data into exfit, select models of type 1, and then
request exfit to fit 1 exponential then 2 exponentials,
using a short random search. The result is shown in
figure 6.2, namely, the fit with two exponentials is
sufficiently better than the fit with 1 exponential that
we can assume an acceptable model to be

5 (C) = �1 exp(−:1C) + �2 exp(−:2C) .

Now do it again, but this time pay more attention
to the goodness of fit criteria, residuals, parameter
estimates and statistical analysis. Get the hang of the
way SimFIT does goodness of fit, residuals display,
graph plotting and statistics, because all the curve
fitting programs adopt a similar approach. As for
the other test files, exfit.tf1 and exfit.tf2 are
for 1 exponential, while exfit.tf5 and exfit.tf6 are double exponentials for models 5 and 6. Linked
sequential exponential models should be fitted by program qnfit not program exfit, since the time constants
and amplitudes are not independent in such cases. Program exfit can also be used in pharmacokinetics to
estimate time to half maximum response and �*�.

6.3 How to interpret parameter estimates

The meaning of the results generated by program exfit after fitting two exponentials to exfit.tf4 will now be
explained, as a similar type of analysis is generated by all the user-friendly curve fitting programs. Consider,
first of all Table 6.1 listing parameter estimates which result from fitting two exponentials. The first column

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 0.852552 0.0677105 0.713371 0.991733 0.0000

A(2) 1.17644 0.0747539 1.02278 1.3301 0.0000

k(1) 6.79336 0.854392 5.03713 8.54959 0.0000

k(2) 1.11206 0.0510998 1.00702 1.21709 0.0000

AUC 1.18339 0.0147104 1.15316 1.21363 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 0.035983

Final time point (B) = 1.611

Area over range (A,B) = 0.938322

Average over range (A,B) = 0.595754

Table 6.1: Fitting two exponentials: 1. parameter estimates

gives the estimated values for the parameters, i.e., the amplitudes �(8) and decay constants : (8), although it
must be appreciated that the pairwise order of these is arbitrary. Actually program exfit will always try to
rearrange the output so that the amplitudes are in increasing order, and a similar rearrangement will also occur
with programs mmfit and hlfit. For situations where �(8) > 0 and : (8) > 0, the area from zero to infinity, i.e.

62 SimFIT reference manual

the �*�, can be estimated, as can the area under the data range and the average function value (page 268)
calculated from it. The parameter �*� is not estimated directly from the data, but is a secondary parameter
estimated algebraically from the primary parameters. The standard errors of the primary parameters are
obtained from the inverse of the estimated Hessian matrix at the solution point, but the standard error of the
�*� is estimated from the partial derivatives of �*� with respect to the primary parameters, along with
the estimated variance-covariance matrix (page 116). The 95% confidence limits are calculated from the
parameter estimates and the C distribution (page 422), while the ? values are the two-tail probabilities for the
estimates, i.e., the probabilities that parameters as extreme or more extreme than the estimated ones could have
resulted if the true parameter values were zero. The windows defined by the confidence limits are useful for a
quick rule of thumb comparison with windows from fitting the same model to another data set; if the windows
are disjoint then the corresponding parameters differ significantly, although there are more meaningful tests
(page 36). Clearly, parameters with ? < 0.05 are well defined, while parameters with ? > 0.05 must be
regarded as ill-determined.

Expert users may sometimes need the estimated correlation matrix

�8 9 =
�+8, 9√
�+88�+ 9 9

,

where −1 ≤ �8 9 ≤ 1, �88 = 1, which is shown in Table 6.2

Parameter correlation matrix

1.0000

0.8757 1.0000

0.5962 0.8995 1.0000

0.8478 0.9485 0.8199 1.0000

Table 6.2: Fitting two exponentials: 2. correlation matrix

6.4 How to interpret goodness of fit

Table 6.3, displaying the results from analyzing the residuals after fitting two exponentials to exfit.tf4, is
typical of many SimFIT programs. Residuals tables should always be consulted when assessing goodness of fit.
Several points should be remembered when assessing such residuals tables, where there are # observations
H8 , with weighting factors B8 , theoretical values 5 (G8), residuals A8 = H8 − 5 (G8), weighted residuals A8/B8 , and
where : parameters have been estimated.

● The chi-square test (page 143) using

,((& =

#∑
8=1

(
H8 − 5 (G8)

B8

)2

is only meaningful if the weights defined by the B8 supplied for fitting are good estimates of the standard
deviations of the observations at that level of the independent variable; say means of at least five
replicates. Inappropriate weighting factors will result in a biased chi-square test. Also, if all the B8
are set equal to 1, unweighted regression will be performed and an alternative analysis based on the
coefficient of variation will be performed.

● The '2 value is the square of the correlation coefficient (page 190) between data and best fit points. It
only represents a meaningful estimate of that proportion of the fit explained by the regression for simple
unweighted linear models, and should be interpreted with restraint when nonlinear models have been
fitted.

Nonlinear models: Simple fitting 63

Analysis of weighted residuals: WSSQ = 24.397

p = P(chisq. >= WSSQ) = 0.5533

Rsquared, [corr.coeff.(bestfit,observed)]^2 = 0.9934

Largest absolute relative residual = 11.99%

Smallest absolute relative residual = 0.52%

Average absolute relative residual = 3.87%

Absolute relative residuals in range 0.10.2 = 3.33%

Absolute relative residuals in range 0.20.4 = 0.00%

Absolute relative residuals in range 0.40.8 = 0.00%

Absolute relative residuals > 0.8 = 0.00%

Number of negative residuals (m) = 15

Number of positive residuals (n) = 15

Number of runs observed (r) = 16

p = P(runs =< r : given m and n) = 0.5759

5% lower tail point = 11

1% lower tail point = 9

p = P(runs =< r : given m plus n) = 0.6445

p = P(signs =< least number observed) = 1.0000

DurbinWatson test statistic = 1.8061

ShapiroWilks W statistic = 0.9387

p = Significance level of W = 0.0840

Akaike AIC (Schwarz SC) statistics = 1.79794 (7.40273)

Verdict on goodness of fit = incredible

Table 6.3: Fitting two exponentials: 3. goodness of fit statistics

● The results based on the absolute relative residuals 08 defined using machine precision n as

08 =
2|A8 |

max(n, |H8 | + | 5 (G8) |)

do not have statistical relevance, but they do have obvious empirical justification, and they must be
interpreted with commonsense, especially where the data and/or theoretical values are very small.

● The probability of the number of runs observed given < negative and = positive residuals is a very
useful test for randomly distributed runs (page 153), but the probability of runs given # = < + =, and
also the overall sign test (page 152) are weak, except for very large data sets.

● The Durbin-Watson test statistic

�, =

#−1∑
8=1

(A8+1 − A8)2

#∑
8=1

A2
8

is useful for detecting serially correlated residuals, which could indicate correlated data or an inappro-
priate model. The expected value is 2.0, and values less than 1.5 suggest positive correlation, while
values greater than 2.5 suggest negative serial correlation.

● Where # , the number of data points, significantly exceeds :, the number of parameters estimated, the
weighted residuals are approximately normally distributed, and so the Shapiro-Wilks test (page 133)
should be taken seriously.

● The Akaike ��� statistic
��� = # log(,((&/#) + 2:

64 SimFIT reference manual

and Schwarz Bayesian criterion (�

(� = # log(,((&/#) + : log#

are only really meaningful if minimizing ,((& is equivalent to Maximum Likelihood Estimation.
Note that only differences between ��� with the same data, i.e. fixed # , are relevant, as in the evidence
ratio �', defined as �' = exp[(��� (1) − ��� (2))/2].

● The final verdict is calculated from an empirical look-up table, where the position in the table is
a weighted mean of scores allocated for each of the tests listed above. It is qualitative and rather
conservative, and has no precise statistical relevance, but a good result will usually indicate a well-
fitting model.

● As an additional measure, plots of residuals against theory, and half-normal residuals plots (figure10.1)
can be displayed after such residuals analysis, and they should always be inspected before concluding
that any model fits satisfactorily.

● With linear models, SimFIT also calculates studentized residuals and leverages, while with generalized
linear models (page 49), deviance residuals can be tabulated.

6.5 How to interpret model discrimination results

After a sequence of models have been fitted, tables like Table 6.4 are generated. First of all, note that the above

WSSQprevious (WSSQ1) = 224.923

WSSQcurrent (WSSQ2) = 24.397

Number of parametersprevious (M1) = 2

Number of parameterscurrent (M2) = 4

Number of data points (NPTS) = 30

Akaike AICprevious = 64.4368

Akaike AICcurrent = 1.79794

Evidence ratio (ER) = 3.99817E+13

Schwarz SCprevious = 67.2392

Schwarz SCcurrent = 7.40273

Mallows Cp = 213.701

Mallows ratio (Cp/M1) = 106.851

Numerator degrees of freedom = 2

Denominator degrees of freedom = 26

F test statistic (FS) = 106.851

p = P(F >= FS) = 0.0000

1 p = P(F =< FS) = 1.0000

5% upper tail point = 3.36902

1% upper tail point = 5.52633

Conclusion based on F test

Reject previous model at 1% significance level

There is strong support for the extra parameters

Tentatively accept the current best fit model

Table 6.4: Fitting two exponentials: 4. model discrimination statistics

model discrimination analysis is only strictly applicable for nested linear models with known error structure,
and should be interpreted with restraint otherwise. Now, if ,((&1 with <1 parameters is the previous

Nonlinear models: Simple fitting 65

(possibly deficient) model, while,((&2 with <2 parameters is the current (possibly superior) model, so that
,((&1 > ,((&2, and <1 < <2, then

� =
(,((&1 −,((&2)/(<2 − <1)

,((&2/(# − <2)

should be � distributed (page 423) with <2 − <1 and # − <2 degrees of freedom, and the � test (page 155)
for excess variance can be used. Alternatively, if ,((&2/(# − <2) is equivalent to the true variance, i.e.,
model 2 is equivalent to the true model, the Mallows �? statistic

�? =
,((&1

,((&2/(# − <2)
− (# − 2<1)

can be considered. This has expectation <1 if the previous model is sufficient, so values greater than <1,
that is �?/<1 > 1, indicate that the current model should be preferred over the previous one. However,
graphical deconvolution, as illustrated on page 38, should always be done wherever possible, as with sums
of exponentials, Michaelis-Mentens, High-Low affinity sites, sums of Gaussians or trigonometric functions,
etc., before concluding that a higher order model is justified on statistical grounds.

6.6 High/low affinity ligand binding sites

The binding of ligands to receptors can be defined in terms of a binding polynomial ?(G) in the free ligand
activity G, as follows

?(G) = 1 + 1G + 2G
2 + · · · + =G=

= 1 + �1G + �1�2G
2 + · · · +

=∏
8=1

�8G
=

= 1 +
(
=

1

)
�1G +

(
=

2

)
�1�2G

2 + · · · +
(
=

=

) =∏
8=1

�8G
=,

where the only difference between these alternative expressions concerns the meaning and interpretation of
the binding constants. The fractional saturation is just the scaled derivative of the log of the polynomial with
respect to log(G). If the binding polynomial has all real factors, then the fractional saturation H as a function
of free ligand is indistinguishable from independent high/low affinity sites or uniformly negative cooperativity
with Hill slope � everywhere less than or equal to unity.

0

1

2

0 1 2 3 4 5

x

f(
x)

Figure 6.3: Fitting high/low affinity sites

So, as the high/low sites model is just a weighted sum
of 1-site models, the general model for a mixture of
= high/low affinity sites is

5 (G) = 01 1G

1 + 1G
+ 02 2G

1 + 2G
+ · · · + 0= =G

1 + =G
+ �

but usually it is only possible to differentiate between
the cases = = 1 and = = 2. The test files hlfit.tf1
and hlfit.tf2 are for 1 site, while hlfit.tf3 has
data for 2 sites and hlfit.tf4 has the same data
with added error. When fitting this model you should
normalize the data if possible to zero baseline, that
is 5 (0) = 0, or alternatively � = 0, and explore
whether two independent sites give a better fit than
one site. So, read hlfit.tf4 into program hlfit, ask
for lowest order 1, highest order 2 and the case where
� is not varied but is fixed at � = 0. The outcome is

66 SimFIT reference manual

illustrated in figure 6.3 and, from the statistics, you
will learn that independent low and high affinity sites
are justified in this case. To interpret the parameter
estimates, you take the values for 1 and 2 as esti-
mates for the respective association constants, and 01 and 02 as the relative number of sites in the respective
categories. The total number of sites is proportional to 01 + 02, and has got nothing to do with =, which is the
number of distinct binding types that can be deduced from the binding data. Concentration at half saturation
is also estimated by hlfit, but cooperative binding should be fitted by program sffit.

6.7 Cooperative ligand binding

If the = zeros of the binding polynomial are U8 then the fractional saturation H can be expressed as

H =
(G
=

) =∑
8=1

1
G − U8

,

but further discussion depends on the nature of the zeros.

First observe that, for a set of < groups of receptors, each with =8 independent binding sites and binding
constant :8 , then the zeros are all real and

?(G) =
<∏
8=1

(1 + :8G)=8 ,

and H =
1∑<
8=1 =8

<∑
8=1

=8:8G

1 + :8G
,

so H is just the sum of simple binding curves, giving concave down double reciprocal plots, etc.

However, if the binding polynomial has complex conjugate zeros, the Hill slope may exceed unity and there
may be evidence of positive cooperativity. The way to quantify the sign of cooperativity is to fit the appropriate
order = saturation function 5 (G) to the binding data, i.e.,

5 (G) = /H + �,

where H =

(
1
=

)
3 log(?(G))
3 log(G)

to determine the binding constants,where / accounts for proportionality between site occupation and response,
and � is a background constant. Note that the Hill slope cannot exceed the Hill slope of any of the factors
of the binding polynomial, so further calculations are required to see if the binding data show evidence of
positive or negative cooperativity.

To use sffit you should really have some idea about the total number of binding sites on the macromolecule
or receptor, i.e., =, and suspect cooperative interaction between the sites, i.e., if hlfit cannot fit the data. The
appropriate model for cooperative ligand binding to macromolecules is

5 (G) = / (q1G + 2q2G
2 + · · · + =q=G=)

=(1 + q1G + q2G2 + · · · + q=G=)
+ �

where / is a scaling factor and � is a baseline correction. In this formulation, the q8 are overall binding
constants, but the alternative definitions for binding constants, and the convention for measuring deviations
from noncooperative binding in terms of the Hessian of the binding polynomial, are in the tutorial. Test files
for program sffit are sffit.tf1 and sffit.tf2 for 1 site and sffit.tf3 and sffit.tf4 for 2 sites, and
note that concentration at half saturation is also estimated. Always try to normalize your data so that / = 1 and
� = 0. Such normalizing is done by a combination of you finding the normalizing parameters independently,
and/or using a preliminary fit to estimate them, followed by scaling your data using editfl.

Nonlinear models: Simple fitting 67

6.8 Cooperativity analysis

After fitting a model, program sffit outputs the binding constant estimates in all the conventions and, when
= > 2 it also outputs the zeros of the best fit binding polynomial and those of the Hessian of the binding
polynomial ℎ(G), defined as

ℎ(G) = =?(G)?′′(G) − (= − 1)?′(G)2

since it is at positive zeros of the Hessian that cooperativity changes take place. This because the Hill slope
� is the derivative of the log odds with respect to chemical potential, i.e.,

� =
3 log[H/(1 − H)]

3 log(G)

= 1 + Gℎ(G)
?′(G) (=?(G) + G?′(G))

and positive zeros of ℎ(G) indicate points where the theoretical one-site binding curve coinciding with the
actual saturation curve at that G value has the same slope as the higher order saturation curve, which are
therefore points of cooperativity change. The SimFIT cooperativity procedure allows users to input binding
constant estimates retrospectively to calculate zeros of the binding polynomial and Hessian, and also to plot
species fractions.

6.9 Ligand binding species fractions

The species fractional populations B8 which are defined for 8 = 0, 1, . . . , = as

B8 =
 8G

8

 0 + 1G + 2G2 + · · · + =G=

with 0 = 1, are interpreted as the proportions of the receptor in the various states of ligation as a function
of ligand activity. The species fractions defined as H8 = 8B8/= for 8 = 1, 2, . . . , = are the contributions of the
species to the overall saturation. Note that

∑=
8=0 B8 = 1 while

∑=
8=1 H8 = (1/=)3 log ?/3 log G.

Such expressions are very useful when analyzing cooperative ligand binding data as in figure 6.4. They can
be generated from the best fit binding polynomial after fitting binding curves with program sffit, or by input of
binding constants into program simstat. At the same time other important analytical results like factors of the
Hessian and minimax indexHill slope Hill slope are also calculated. The species fractional populations can
be also used in a probability model to interpret ligand binding in several interesting ways. For this purpose,
consider a random variable* representing the probability of a receptor existing in a state with 8 ligands bound.
Then the the probability mass function, expected values and variance are

%(* = 8) = B8 (8 = 0, 1, 2, . . . , =),

� (*) =
=∑
8=0

8B8 ,

� (*2) =
=∑
8=0

82B8 ,

+ (*) = � (*2) − [� (*)]2

= G

(
?′(G) + G?′′(G)

?(G)

)
−

(
G?′(G)
?(G)

)2

= =
3H

3 log G
,

as fractional saturation H is � (*)/=. In other words, the slope of a semi-log plot of fractional saturation data
indicates the variance of the number of occupied sites, namely; all unoccupied when G = 0, distribution with

68 SimFIT reference manual

0.00

0.20

0.40

0.60

0.80

1.00

0.00 1.00 2.00

Using SIMSTAT to Plot Fractional Populations for

x

Fr
ac

tio
na

l S
at

ur
at

io
ns

Species 0
Species 1
Species 2
Species 3
Species 4

f(x) = 1 + x + 2x2 + 0.5x3 + 8x4

Figure 6.4: Ligand binding species fractional populations

variance increasing as a function of G up to the maximum semi-log plot slope, then finally approaching all
sites occupied as G tends to infinity. You can input binding constants into the statistical calculations procedure
to see how they are mapped into all spaces, cooperativity coefficients are calculated, zeros of the binding
polynomial and Hessian are estimated, Hill slope is reported, and species fractions and binding isotherms are
displayed, as is done automatically after every = > 1 fit by program sffit.

6.10 Michaelis-Menten kinetics

A mixture of independent isoenzymes, each separately obeying Michaelis-Menten kinetics is modeled by

E(() =
+<0G1

(

 <1
+ (+

+<0G2
(

 <2
+ (+ · · · +

+<0G=(

 <=
+ (

and again only the cases = = 1 and = = 2 need to be considered. The appropriate test files are mmfit.tf1

and mmfit.tf2 for one enzyme, but mmfit.tf3 and mmfit.tf4 for 2 isoenzymes. Read mmfit.tf4 into
mmfit and decide if 1 or 2 enzymes are needed to explain the data. There is a handy rule of thumb that can
be used to decide if any two parameters are really different (page 36). If the 95% confidence limits given by
SimFIT do not overlap at all, it is very likely that the two parameters are different. Unfortunately, this test is
very approximate and nothing can be said with any certainty if the confidence limits overlap. When you fit
mmfit.tf4 try to decide if +<0G1

and +<0G2
are different. What about <1

and <2
? Program mmfit also

estimates concentration at half maximum response, i.e., ��50 and ��50 (page 113), but rffit. should be used
if the data show substrate activation or substrate inhibition.

6.10.1 Extrapolating Michaelis-Menten kinetics

Best fit curves from qnfit can be extrapolated beyond data limits but more complicated extrapolation is
sometimes required. For instance, fitting the mixed, or noncompetitive inhibition model

E((, �) = +(

 (1 + �/ 8B) + (1 + �/ 88)(
as a function of two variables is straightforward but, before the computer age, people used to fit this sort of
model using linear regression to the double reciprocal form

1
E
=

1
+

(
1 + �

 88

)
+
+

(
1 + �

 8B

)

Nonlinear models: Simple fitting 69

which is still sometimes used to demonstrate the intersection point of the best-fit lines. Figure 6.5 was obtained
by fitting the mixed model to inhibit.tf1, plotting sections through the best-fit surface at fixed inhibitor

-5

15

25

35

45

-5 5 10 15 20

Double Reciprocal Plot For Inhibition Data

1/S

1/
v

I = 0

I = 1

I = 2

I = 3

I = 4

Figure 6.5: Extrapolation

concentration, and saving these as files. The files (referenced by the library file inhibit.tfl) were plotted in
double reciprocal space using simplot, and figure 6.5 was created by overlaying extra lines over each best-fit
line and extending these beyond the fixed point at

1
(
= − 1

(
 8B

 88

)
,
1
E
=

1
+

(
1 − 8B

 88

)
.

Original best-fit lines were then suppressed, and other cosmetic changes were implemented. For obvious
mathematical reasons, extrapolation for this model in transformed space cannot be generated by requesting an
extended range for a best-fit curves in the original space. To avoid extrapolated lines passing through plotting
symbols, the option to plot extra lines in the background, i.e., before the data, was selected.

6.11 Isotope displacement kinetics

The rational function models just discussed for binding and kinetics represent the saturation of binding sites,
or flux through active sites, and special circumstances apply when there is no appreciable kinetic isotope
effect. That is, the binding or kinetic transformation process is the same whether the substrate is labeled or
not. This allows experiments in which labeled ligand is displaced by unlabeled ligand, or where the flux of
labeled substrate is inhibited by unlabeled substrate. Since the ratios of labeled ligand to unlabeled ligand in
the bound state, free state, and in the total flux are equal, a modified form of the previous equations can be
used to model the binding or kinetic processes. For instance, suppose that total substrate, (say, consists of
labeled substrate, [�>C] say, and unlabeled substrate, [�>;3] say. Then the flux of labeled substrate will be
given by

−3 [�>C]
3C

=
+<0G1

[�>C]
 <1

+ [�>C] + [�>;3] +
+<0G2

[�>C]
 <2

+ [�>C] + [�>;3] + · · · +
+<0G= [�>C]

 <=
+ [�>C] + [�>;3]

70 SimFIT reference manual

So, if [�>C] is kept fixed and [�>;3] is regarded as the independent variable, then program mmfitcan be used to
fit the resulting data, as shown for the test file hotcold.tf1 in figure 6.6.

0

8

16

-2 -1 0 1 2 3 4 5

Isotope Displacement Kinetics

log10[Cold]

-d
[H

ot
]/

dt

Data
Best Fit
Component 1
Component 2

Figure 6.6: Isotope displacement kinetics

Actually this figure was ob-
tained by fitting the test file
using program qnfit, which al-
lows users to specify the con-
centration of fixed [�>C]. It
also allows users to appre-
ciate the contribution of the
individual component species
to the overall sum, by plot-
ting the deconvolution, as il-
lustrated. Graphical deconvo-
lution (page 38) should always
be done if it is necessary to
decide on the activities of ki-
netically distinct isoenzymes
or proportions of indepen-

dent High/Low affinity bind-
ing sites. Note that an im-
portant difference between us-
ing mmfit in this mode rather
than in straightforward kinetic
mode is that the kinetic con-
stants are modified in the fol-
lowing sense: the apparent+<0G values estimated are actually the true values multiplied by the concentration
of labeled substrate, while the apparent < values estimated are the true ones plus the concentration of labeled
substrate. A similar analysis is possible for program hlfit as well as for programs sffit and rffit, except that
here some further algebra is required, since the models are not linear summations of 1:1 rational functions.
Note that, in isotope displacement mode, concentration at half maximum response can be used as an estimate
for ��50, allowing for the ratio of labeled to unlabeled ligand, if required (page 113).

6.12 Positive rational functions

0.000

0.100

0.200

0 2 4 6 8 10

x

f(
x)

Figure 6.7: Fitting positive rational functions

Deviations from Michaelis-Menten kinetics can be
fitted by the = : = positive rational function

5 (G) = U0 + U1G + U2G
2 + · · · + U=G=

V0 + V1G + V2G2 + · · · + V=G=

where U8 ≥ 0, V0 = 1, and V8 ≥ 0. In enzyme ki-
netics a number of special cases arise in which some
of these coefficients should be set to zero. For in-
stance, with dead-end substrate inhibition we would
have U0 = 0 and U= = 0. The test files for rffit are
all exact data, and the idea is that you would add
random error to simulate experiments. For the time
being we will just fit one test file, rffit.tf2, with
substrate inhibition data. Input rffit.tf2 into
program rffit, then request lowest degree = = 2 and
highest degree = = 2 with U0 = 0 and U2 = 0. Note
that these are called A(0) and A(N) by the program.
You will get the fit shown in figure 6.7. Now you
could try what happens if you fit all the test files with

Nonlinear models: Simple fitting 71

unrestricted rational functions of orders 1:1, 2:2 and
3:3. Also, you could pick any of these and see what happens if random error is added. Observe that program
rffit does all manner of complicated operations to find starting estimates and scale your data, but be warned;
fitting positive rational functions is extremely difficult and demands specialized knowledge. Don’t be surprised
if program rffit finds a good fit with coefficients that bear no resemblance to the actual ones.

6.13 Plotting positive rational functions

In the days before computers were used for data analysis, deviations from Michaelis-Menten kinetics, such as
sigmoidicity, substrate inhibition, and substrate activation, were diagnosed by graphical techniques based upon
plotting and extrapolating in transformed space, so a few remarks about the limitations of such techniques are
appropriate. Of course such graphical techniques should only be used for illustration nowadays and decisions
about deviations from Michaelis-Menten kinetics should only be based on the sort of statistical procedures
provided by SimFIT.

6.13.1 Scatchard plots

Kinetic measurements have zero rate at zero substrate concentration (U0 = 0), but this is not always possible
with ligand binding experiments. Displacement assays, for instance, always require a baseline to be estimated
which can have serious consequences as figure 6.8 illustrates. If a baseline is substantial, then the correct

Original x,y Coordinates

x

y

-0.050

0.900

0.0 10.0

t = 0.05 t = 0.0 t = -0.05

y = (1 - t)x/(1 + x) + t

Scatchard Plot

y

y/
x

-0.05

2.00

-0.050 0.900

t = 0.05 t = 0.0 t = -0.05

y = (1 - t)x/(1 + x) + t

Figure 6.8: Original plot and Scatchard transform

procedure is to estimate it independently, and subtract it from all values, in order to fit using � = 0.
Alternatively, hlfit can be used to estimate � in order to normalize to zero baseline. Figure 6.8 is intended
to serve as a warning as to possible misunderstanding that can arise with a small baseline correction that is
overlooked or not corrected properly. It shows plots of

H =
(1 − C)G

1 + G + C

for the cases with C = 0.05 (positive baseline), C = 0 (no baseline) and C = −0.05 (negative baseline). The plots
cannot be distinguished in the original space, but the differences near the origin are exaggerated in Scatchard
space, giving the false impression that two binding sites are present. Decisions as to whether one or more
binding sites are present should be based on the statistics calculated by SimFIT programs, not on the plot
shapes in transformed axes.

6.13.2 Semi-log plots

Whereas the Scatchard, double-reciprocal, and related plots seriously distort and over-emphasize deviations
from Michaelis-Menten kinetics, the semi-logarithmic plot merely stretches the horizontal axis, making it
easier to appreciate the goodness of fit. It is especially useful as logarithmic spacing spacing of the independent

72 SimFIT reference manual

variable is often used to optimize tests for model discrimination. For instance, figure 6.9 illustrates a substrate
inhibition curve and the semilogarithmic transform, which is the best way to view such fits.

0.000

0.050

0.100

0.150

0.200

0.250

0.00 1.00 2.00 3.00

Data, Best-Fit Curve and Previous Fit

x

y

1:1 function

2:2 function

0.000

0.050

0.100

0.150

0.200

0.250

-2.00 -1.00 0.00 1.00

X-semilog Plot

log x

y

1:1 function

2:2 function

Figure 6.9: Substrate inhibition plot and semilog transform

6.13.3 Asymptotic forms

The 3:3 rational function with U0 = 0 has 27 possible double reciprocal plots, and it is seldom possible to
justify degrees for = > 3 anyway by statistical tests, although there may be compulsive chemical evidence,
e.g. hemoglobin with = = 4. Now the coefficients U8 and V 9 will be functions of rate or binding constants,
so limiting expressions are often sought to obtain information about kinetic mechanisms by fitting simpler
equations, e.g. a 1:1 function with U0 = 0 to the whole data set or just the extreme values. The interpretation
of the parameters of a best fit single Michaelis-Menten 1:1 hyperbola fitted in this way may be aided by
considering three special formulations.

)%� =
U1U=G

U=V0 + U1V=G
,

$� (0) =
U2

1
G

U1V0 + (U1V1 − U2V0)G
,

$� (∞) = U2
=G

(U=V=−1 − U=−1V=) + U=V=G
.

The theoretical parent hyperbola)%� is what would be required if the high degree model is almost indistin-
guishable from a 1:1 function because all the Sylvester dialytic eliminants are effectively zero, indicating a
reduction in degree by cancelation of common factors. To the extent that this procedure is justified, the two
parameters that can be estimated are the apparent kinetic constants

+<0G = U=/V=, and < = U=V0/(U1V1) .

The osculating hyperbola at zero $� (0) is the best 1:1 approximant to a rational function at the origin, as it
has second order contact and can model a sigmoid curve. Irrespective of which technique is used to fit the
data for low G the only parameters that can be estimated are the apparent kinetic constants

+<0G = U
2
1/(U1V1 − U2V0), and < = U1V0/(U1V1 − U2V0) .

The osculating hyperbola at infinity$� (∞) is the best 1:1 approximant to a rational function as the independent
variable increases without limit, as it has second order contact and can model substrate inhibition curves.
Irrespective of which technique is used to fit the data for high G the only parameters that can be estimated are
the apparent kinetic constants

+<0G = U=/V=, and < = (U=V=−1 − U=−1V=)/(U=V=) .

Nonlinear models: Simple fitting 73

6.13.4 Sigmoidicity

A positive rational function will be sigmoid if

U2V
2
0 − U1V0V1 − U0V0V2 + U0V

2
1 > 0,

but in the usual case U0 = 0 it is possible to define satisfactory measures of sigmoidicity, which can be
explained by reference to figure 6.10.

0

1

0 1 2 3

Sigmoidicity of Positive Rational Functions

x

y
=

 f(
x)

/g
(x

)

B

CA

x(
dy

/d
x)

 -
y

=
0

T

Figure 6.10: Definition of sigmoidicity

The point labeled � is the first positive root of

GH′ − H = 0

and the point labeled) = H(�) is the H coordinate where the tangent from the origin touches the curve.
Consider then the expressions

Δ1 =
)

max(H), for G ≥ 0

Δ2 =
�A40(���)∫ �

0
H(C)3C

where Δ1 and Δ2 both increase as sigmoidicity increases. It can be shown that, for fractional saturation
functions of order =, the following inequality applies

) ≤ = − 1
=

,

while, at least for the cases = = 2, 3, 4, the positive rational function curve of maximum sigmoidicity is the
normalized Hill equation

H =
G=

1 + G= .

74 SimFIT reference manual

Model 1: Unlimited Exponential Growth

t

f(
t)

0

1

2

0 1 2 3

Model 2: Limited Exponential Growth

t

f(
t)

0

1

0 1 2 3

Model 3: Sigmoidal Growth

t

f(
t)

0

1

0 2 4 6 8

Figure 6.11: Typical growth curve models

6.14 Nonlinear growth curves

Three typical growth curve shapes are shown in figure 6.11. Model 1 is exponential growth, which is only
encountered in the early phase of development, Model 2 is limited exponential growth, concave down to an
asymptote fitted by the monomolecular model (Type 3 of figure 6.1), and several models can fit sigmoidal
profiles as for Model 3 in figure 6.11, e.g., the logistic equation

5 (C) = �

1 + � exp(−:C) .

Fitting Alternative Growth Models

t

D
at

a
an

d
B

es
t F

it
C

ur
ve

s

0.00

0.25

0.50

0.75

1.00

1.25

0 2 4 6 8 10

Data Points
Model 1
Model 2
Model 3

Figure 6.12: Using gcfit to fit growth curves

Select [Fit] from the main menu then gcfit to fit
growth curves. Input gcfit.tf2 then fit models 1, 2
and 3 in sequence to obtain figure 6.12, i.e., the expo-
nential model gives a very poor fit, the monomolec-
ular model leads to an improved fit, but the logistic
is much better. This is the usual sequence of fitting
with gcfit but it does much more. It can fit up to ten
models sequentially and gives many statistics, such
as maximum growth rate, to assist advanced users.
The reason why there are alternative models, such
as those of Gompertz, Richards, Von Bertalanffy,
Preece and Baines, etc., is that the logistic model
is often too restrictive, being symmetrical about the
mid point, so generatingbiased fit. The table of com-
pared fits displayed by gcfit helps in model selection,
however, none of these models can accommodate
turning points, and all benefit from sufficient data to
define the position of the horizontal asymptote.

Most growth data are monotonically increasing observations of size ((C) as a function of time C, from a small
value of size (0 at time C = 0 to a final asymptote (∞ at large time. Decay data are fitted like growth models
but in reversed order (see page 77). The usual reason for fitting models is to compare growth rates between
different populations, or to estimate parameters, e.g., the maximum growth rate, maximum size, time to reach
half maximum size, etc. The models used are mostly variants of the Von Bertalanffy allometric differential
equation

3(/3C = �(U − �(V ,

which supposes that growth rate is the difference between anabolism and catabolism expressed as power
functions in size. This equation defines monotonically increasing ((C) profiles and can be fitted by deqsol

or qnfit, but a number of special cases leading to explicit integrals are frequently encountered. These have
the benefit that parameters estimated from the data have a physical meaning, unlike fitting polynomials where

Nonlinear models: Simple fitting 75

the parameters have no meaning and cannot be used to estimate final size, maximum growth rate and so on.
Clearly, the following models should only be fitted when data cover a sufficient time range to allow meaningful
estimates for (0 and (∞.

1. Exponential model 3(/3C = :(
((C) = � exp(:C), where � = (0

2. Monomolecular model 3(/3C = : (� − ()
((C) = �[1 − � exp(−:C)], where � = 1 − (0/�

3. Logistic model 3(/3C = :((� − ()/�
((C) = �/[1 + � exp(−:C)], where B = �/(0 − 1

4. Gompertz model 3(/3C = :([log(�) − log(()]
((C) = � exp[−� exp(−:C)], where � = ;>6(�/(0)

5. Von Bertalanffy 2/3 model 3(/3C = [(2/3 − ^(
((C) = [�1/3 − � exp(−:C)]3

where �1/3
= [/^, � = [/^ − (1/3

0
, : = ^/3

6. Model 3 with constant 5 (C) = ((C) − �
35 /3C = 3(/3C = : 5 (C) (� − 5 (C))/�
((C) = �/[1 + � exp(−:C)] + �

7. Model 4 with constant 5 (C) = ((C) − �
35 /3C = 3(/3C = : 5 (C) [log(�) − log(5 (C))]
((C) = � exp[−� exp(−:C)] + �

8. Model 5 with constant 5 (C) = ((C) − �
35 /3C = 3(/3C = [5 (C)2/3 − ^ 5 (C)
((C) = [�1/3 − � exp(−:C)]3 + �

9. Richards model 3(/3C = [(< − ^(
((C) = [�1−< − � exp(−:C)] [1/(1−<)]

where �1−<
= [/^, � = [/^ − (1−<

0 , : = ^(1 − <)
if < < 1 then [, ^, � and � are > 0

if < > 1 then � > 0 but [, ^ and � are < 0

10. Preece and Baines model 5 (C) = exp[:0 (C − \)] + exp[:1 (C − \)]
((C) = ℎ1 − 2(ℎ1 − ℎ\)/ 5 (C)

In mode 1, gcfit fits a selection of these classical growth models, estimates the maximum size, maximum
and minimum growth rates, and times to half maximum response, then compares the fits. As an example,
consider table 6.5, which is an abbreviated form of the results file from fitting gcfit.tf2, as described by
figure 6.12. This establishes the satisfactory fit with the logistic model when compared to the exponential
and monomolecular models.

Figure 6.13 shows typical derived plots as follows.

• Data with and best-fit curve (̂ and asymptote (̂∞;

• Derivative of best-fit curve 3(̂/3C; and

• Relative rate (1/(̂)3(̂/3C.

76 SimFIT reference manual

Results for model 1

Parameter Value Std.error Lower95%cl Upper95%cl p

A 0.196289 0.0274736 0.140256 0.252321 0.0000

k 0.184039 0.0184007 0.146511 0.221568 0.0000

Results for model 2

Parameter Value Std.error Lower95%cl Upper95%cl p

A 1.32842 0.115824 1.09188 1.56497 0.0000

B 0.94899 0.00951585 0.929557 0.968424 0.0000

k 0.170044 0.0289602 0.110899 0.229188 0.0000

thalf 3.76839 0.642108 2.45703 5.07975 0.0000

Results for model 3

Parameter Value Std.error Lower95%cl Upper95%cl p

A 0.998913 0.00785511 0.982871 1.01496 0.0000

B 9.89009 0.333001 9.21001 10.5702 0.0000

k 0.988137 0.0267846 0.933436 1.04284 0.0000

thalf 2.31904 0.0450705 2.227 2.41109 0.0000

Residuals and Goodness of Fit

Max. observed data value = 1.0856 Theoretical asymptote = 0.9989

Max. observed/Th.asymptote = 1.087

Max. observed growth rate = 0.24 Best fit curve maximum = 0.2468

Time max. rate observed = 2.0 Best fit curve time = 2.3189

Min. observed growth rate = 0.0005 Best fit curve minimum = 0.0005

Time min. rate observed = 10.0 Best fit curve time = 10.0

Summary

Model WSSQ DOF WSSQ/DOF P(C>=W) P(R=<r) NR>10% NR>40% Av.r% Verdict

1 4718.41 31 152.207 0.0000 0.0000 29 17 40.03 Very bad

2 541.932 30 18.0644 0.0000 0.0748 20 0 12.05 Very poor

3 39.5957 30 1.31986 0.1129 0.5000 0 0 3.83 Incredible

Table 6.5: Fitting nonlinear growth models

Data and best-fit curve

Time

S
iz

e

0.0 2.5 5.0 7.5 10.0

0.00

0.30

0.60

0.90

1.20

Max. at 2.353E+00, 2.467E-01

Time

G
ro

w
th

 R
at

e
(d

S
/d

t)

0.0 2.5 5.0 7.5 10.0

0.000

0.080

0.160

0.240

0.320

Max. at 0.000E+00, 8.974E-01

Time

R
el

. R
at

e
(1

/S
)d

S
/d

t

0.0 2.5 5.0 7.5 10.0

0.00

0.25

0.50

0.75

1.00

Figure 6.13: Estimating growth curve parameters

Nonlinear models: Simple fitting 77

6.15 Nonlinear survival curves

In mode 2, gcfit fits a sequence of survival curves, where it is assumed that the data are uncorrelated estimates
of fractions surviving 0 ≤ ((C) ≤ 1 as a function of time C ≥ 0, e.g. such as would result from using
independent samples for each time point. However, as normalizing data to ((0) = 1 can introduce bias, mode
2 allows an amplitude factor to be estimated (see page 77).

It is important to realize that, if any censoring has taken place, the estimated fraction should be corrected for
this. In other words, you start with a population of known size and, as time elapses, you estimate the fraction
surviving by any sampling technique that gives estimates corrected to the original population at time zero.

The test files weibull.tf1 and gompertz.tf1 contain some exact data, which you can fit to see how mode 2
works. Then you can add error to simulate reality using program adderr. Note that you prepare your own data
files for mode 2 using the same format as for program makfil, making sure that the fractions are between zero
and one, and that only nonnegative times are allowed. It is probably best to do unweighted regression with this
sort of data (i.e. all B = 1) unless the variance of the sampling technique has been investigated independently.

In survival mode the time to half maximum response is estimated with 95% confidence limits and this can used
to estimate !�50 (page 113). The survivor function is ((C) = 1 − � (C), the pdf is 5 (C), i.e. 5 (C) = −3(/3C,
the hazard function is ℎ(C) = 5 (C)/((C), and the cumulative hazard is � (C) = − log(((C)). Plots are provided
for ((C), 5 (C), ℎ(C), log[ℎ(C)] and, as in mode 1, a summary is given to help choose the best fit model from
the following list, all of which decrease monotonically from ((0) = 1 to ((∞) = 0 with increasing time.

1. Exponential model ((C) = exp(−�C)
5 (C) = �((C)
ℎ(C) = �

2. Weibull model ((C) = exp[−(�C)�]
5 (C) = ��[(�C)�−1]((C)
ℎ(C) = ��(�C)�−1

3. Gompertz model ((C) = exp[−(�/�){exp(�C) − 1}]
5 (C) = � exp(�C)((C)
ℎ(C) = � exp(�C)

4. Log-logistic model ((C) = 1/[1 + (�C)�]
5 (C) = ��(�C)�−1/[1 + (�C)�]2

ℎ(C) = ��(�C)�−1/[1 + (�C)�]

Note that, in modes 3 and 4, gcfit provides options for using such survival models to analyze survival times,
as described on page 253.

6.16 Nonlinear decay curves

It is often required to model data that are decaying monotonically from a positive starting size at zero time
to a final value of zero or a limiting background level. The most usual case is where it is intended to use a
simple growth or survival model in order to estimate parameters such as

• The starting size;

• The time to half decay;

• The maximum rate of decay; or sometimes

78 SimFIT reference manual

• The final asymptotic size.

Program gcfit can be used in modes 1 or 2 for this purpose with certain limitations.

When mode 1 is used and a data set is provided where U ≤ C ≤ V and ((U) > ((V) then gcfit reverses the
data to generate a new variable) from the original variable C using

) = U + V − C

then rearranging the data into increasing order of) . Program gcfit then fits the reversed data set using the
normal growth curve models and outputs best-fit parameters referring to the reversed data, except that outputs
involving time, such as the half time or plots, refer to the original time. Of course the estimated maximum
asymptotic size, that is �̂ or �̂ + �̂, will then refer to the starting size at time zero, and �̂ will be the estimated
final size.

When mode 2 is used there will be no such issues as the data will be in the correct order. Accordingly it will
usually be best to fit decay data using one of the survival models as long as it realized that it will be necessary
to allow gcfit to estimate the starting amplitude (̂(0) and also to note that these models are asymptotic to zero
size at infinite time.

6.17 Accuracy of growth/decay/survival parameter estimates

Program gcfit first normalizes data so that the parameters to be estimated are of order unity, then it calculates
starting estimates using the first few and last few points. After unconstrained regression using explicit formulas
for the models, derivatives, and Jacobians, the parameter estimates are re-scaled into units that refer to the
original data. If the model is a good approximation and the data are extensive and of high quality some of the
parameters, such as the maximum size, can be estimated with reasonable precision. However, the half-time
is often difficult to estimate accurately, and the minimax slopes can usually not be estimated very accurately.
This problem is seriously compounded by using a model with insufficient flexibility leading to a biased fit.
Each case must be decided upon after experimentation but, in general, the Gompertz model model would
usually be preferred in mode 1, and the Weibull or Gompertz model in mode 2.

Note that gcfit calculates the half-times by substituting the < parameter estimates \ (8), 8 = 1, 2, . . . , < into
the formula

C1/2 = 5 (Θ)

required for the model chosen, but then the confidence limits are calculated using the estimated covariance
matrix and the propagation of errors formula

+̂ (C1/2) =
<∑
8=1

(
m 5

m\8

)2

+̂ (\8) + 2
<∑
8=2

8−1∑
9=1

m 5

m\8

m 5

m\ 9
�̂+ (\8 , \ 9) .

As the estimated covariance matrix is already based upon a linearizing assumption and the above variance
expression only uses the early terms of a Taylor series expansion, these confidence limits should be interpreted
with restraint.

Part 7

Nonlinear models: Advanced fitting

Eventually there always comes a time when users want extra features, like the following.

a) Interactive choice of model, data sub-set or weighting scheme.
b) Choice of optimization technique.
c) Fixing some parameters while others vary in windows of restricted parameter space.
d) Supplying user-defined models with features such as special functions, functions of several variables,

root finding, numerical integration, Chebyshev expansions, etc.
e) Simultaneously fitting a set of equations, possibly linked by common parameters.
f) Fitting models defined parametrically, or as functions of functions.
g) Estimating the eigenvalues and condition number of the Hessian matrix at solution points.
h) Visualizing the weighted sum of squares and its contours at solution points.
i) Inverse prediction, i.e., nonlinear calibration.
j) Estimating first and second derivatives or areas under best fit curves.
k) Supplying starting estimates added to the end of data files.
l) Selecting sets of starting estimates from parameter limits files.

m) Performing random searches of parameter space before commencing fitting.
n) Estimating weights from the data and best fit model.
o) Saving parameters for excess variance � tests in model discrimination.

Program qnfit is provided for such advanced curve fitting. The basic version of program qnfit only supports
quasi-Newton optimization, but some versions allow the user to select modified Gauss-Newton or sequential
quadratic programming techniques. Users must be warned that this is a very advanced piece of software and
it demands a lot from users. In particular, it scales parameters but doesn’t scale data. To ensure optimum
operation, users should appreciate how to scale data correctly, especially with models where parameters occur
exponentially. They should also understand the mathematics of the model being fitted and have good starting
estimates. In expert mode, starting estimates and limits are appended to data files to facilitate exploring
parameter space. Test files qnfit.tf1 (1 variable), qnfit.tf2 (2 variables) and qnfit.tf3 (3 variables)
have such parameter windows. Alternatively, parameter limits files can be supplied, preferably as library files
like qnfit.tfl. Several cases will now be described as examples of advanced curve fitting .

7.1 Fitting a function of one variable using qnfit

If we read the test file gauss3.tf1 into qnfit and select to fit a sum of three Gaussian probability density
functions with variable amplitudes (page 467) then the initial fit to the data using the parameter limits appended
to the data file, i.e. the overlay before fitting, can be viewed as in the left hand sub-figure of figure 7.1. After
curve fitting has been completed the right hand sub-figure displays the final best-fit curve, and the details
from the fitting are in table 7.1. Note that the constant term was held fixed at zero, as was required by the
limits appended to the test file. After successful fitting, users may wish to report estimated parameters with
central confidence limits, which is easily done as the appropriate C values for the correct degrees of freedom

80 SimFIT reference manual

0.00

0.10

0.20

0.30

0.40

0.50

-5.0 0.0 5.0 10.0 15.0

Data and Starting Estimate Curve

x

y

0.00

0.10

0.20

0.30

0.40

0.50

-5.0 0.0 5.0 10.0 15.0

Data and Best Fit curve

x

y

Figure 7.1: Fitting a sum of three Gaussians

are always appended to the end of the qnfit best-fit parameters table.

After a fit has been completed there are numerous further options provided for studying the fit or plotting the
results in alternative ways. For instance, figure 7.2 shows in the left hand figure the way that models consisting

0.00

0.10

0.20

0.30

0.40

0.50

-5.0 0.0 5.0 10.0 15.0

Deconvolution

x

y

0.00

0.10

0.20

0.30

0.40

0.50

0.60

-5.0 0.0 5.0 10.0 15.0

Error Bars

x

y

Figure 7.2: Further plots after fitting a sum of three Gaussians

of sums of independent sub-models can be plotted along with then sub-models to indicate the contribution of
the separate components to the fit, a sort of graphical deconvolution, while the right hand sub-figure illustrates
how error bars can be calculated interactively.

Nonlinear models: Advanced fitting 81

Number LowLimit HighLimit Value Std.Error Lower95%cl Upper95%cl p

1 0.0 2.0 0.907544 0.0216242 0.864794 0.950293 0.0000

2 0.0 2.0 1.16432 0.042174 1.08095 1.2477 0.0000

3 0.0 2.0 0.925188 0.0301306 0.865622 0.984755 0.0000

4 2.0 2.0 0.0729757 0.0155719 0.10376 0.0421911 0.0000

5 2.0 6.0 3.7451 0.0508154 3.64464 3.84556 0.0000

6 8.0 12.0 10.2774 0.0964136 10.0868 10.468 0.0000

7 0.1 2.0 0.926406 0.0143311 0.898074 0.954738 0.0000

8 0.1 3.0 2.34329 0.0705682 2.20378 2.4828 0.0000

9 0.1 4.0 2.76907 0.0626377 2.64524 2.8929 0.0000

parameter(10) is the excluded constant term

For 50,90,95,99% con. lim. use [parameter value +/ t(alpha/2)*std.err.]

t(.25) = 0.676, t(.05) = 1.656, t(.025) = 1.977, t(.005) = 2.611

Goodness of fit

Analysis of residuals: WSSQ = 271.113

p = P(chisq. >= WSSQ) = 0.0000 Reject at 1% level

Rsquared [corr.coeff.(bestfit,observed)]^2 = 0.9773

Largest absolute relative residual = 32.21%

Smallest absolute relative residual = 0.13%

Average absolute relative residual = 6.32%

Absolute relative residuals in range 0.10.2 = 20.00%

Absolute relative residuals in range 0.20.4 = 2.67%

Absolute relative residuals in range 0.40.8 = 0.00%

Absolute relative residuals > 0.8 = 0.00%

Number of negative residuals (m) = 75

Number of positive residuals (n) = 75

Number of runs observed (r) = 69

p = P(runs =< r : given m and n) = 0.1434

5% lower tail point = 65

1% lower tail point = 61

p = P(runs =< r : given m plus n) = 0.1628

p = P(signs =< least number observed) = 1.0000

DurbinWatson test statistic = 1.6926

ShapiroWilks W statistic = 0.9897

p = Significance level of W = 0.3417

Akaike AIC (Schwarz SC) statistics = 106.785 (133.881)

Verdict on goodness of fit = excellent

Table 7.1: Parameters for best-fit Gaussians

82 SimFIT reference manual

7.2 Fitting a mixture of two normal distributions

Often samples consist of a mixture of distributions. For instance a sample of heights of subjects drawn from
a homogeneous population, i.e. of the same age and medical condition, could appear to be be approximately
normally distributed but would actually consist of two sub-populations, male and female. In reality, special
techniques exist for analyzing certain cases where populations cannot be physically separated into sub-groups
but can be resolved into supposed sub-populations using the method of maximum likelihood. However, the
curve fitting approach will be discussed in this tutorial because, in principle, it can be used for arbitrary
mixtures of any any distributions, not just normal distributions.

For instance, to explain how to use SimFIT program qnfit for this purpose, consider the simplest case of a
sample arising from a mixture of two normally distributed sub populations, so that a sample partitioned into
histogram bins could be approximately modeled by the expression

5 (G) = C

f1

√
2c

exp

(
−1

2

{
G − `1

f1

}2
)
+ 1 − C
f2

√
2c

exp

(
−1

2

{
G − `2

f2

}2
)

where 0 ≤ C ≤ 1 and the parameters C, `1, `2, f1, f2 must be estimated by fitting to the histogram bins. The
serious problem with this approach is that the shape of the histogram, and therefore the best-fit parameters,
will depend on the number of bins chosen. It should therefore be obvious that a very large sample will be
necessary, and meaningful parameter estimates can only be expected when `1 and `2 are widely separate, f1

and f2 are similar and less than the difference between `1 and `2, and the partitioning parameter C must obey
C ≈ 0.5. Of course the constraints f1 > 0, f2 > 0 also must be imposed.

7.2.1 Fitting histogram data

The data file qnfit_data.tf6 can be selected from qnfit by clicking on the [Demo] button, and it is listed
below after extracting as a table using the [Results] button on the main SimFIT menu.

Data file qnfit_data.tf4

10 3

-3.6 0.0375 1.0

-2.8 0.0625 1.0

-2.0 0.2000 1.0

-1.2 0.2000 1.0

-0.4 0.1000 1.0

0.4 0.1250 1.0

1.2 0.1250 1.0

2.0 0.2500 1.0

2.8 0.1250 1.0

3.6 0.0250 1.0

begin{limits}

-5.0 -1.0 0.0

0.1 0.8 5.0

0.1 0.4 0.9

0.0 1.0 5.0

0.1 1.2 5.0

end{limits}

This file was created by reading a mixed sample of 50 # (−1.5, 1) numbers and 50 # (1.5, 1) numbers from
program rannum into the exhaustive analysis of a vector routine available under [Data exploration] from the
[Statistics] option on the main SimFIT menu. This indicates that the mixed sample is not consistent with a
single normal distribution and this step should be taken before fitting any data set because, if the sample is
consistent with a single normal distribution, there is little point in trying to fit a sum of two non–identical
distributions. This procedure also gives the option of plotting a histogram and then, having chosen the number

Nonlinear models: Advanced fitting 83

of bins required, it can create a curve fitting file either unweighted or weighted by the square root of the bin
size. Unless a very large sample is under investigation and there are no empty bins an unweighted file should
be created. Note in particular that, as the best-fit curve integrates to unity over the data range (−∞,∞), the
option to normalize the histogram to area 1 must also be chosen.

After reading in the data file qnfit_data.tf6 the model file qnfit_model.tf6 should be selected, and this
contains the following definition for a sum of two normal distributions.

%

Sum of two normal pdfs

A = (1/2)[(x p(1))/p(2)]^2

B = (1/2)[(x p(4))/p(5)]^2

f(x) = {[1 p(3)]exp(A)/p(2) + p(3)exp(B)/p(5)}/sqrt{2*pi)

%

1 equation

1 variable

5 parameters

%

begin{expression}

A = 0.5*[(x p(1))/p(2)]^2

B = 0.5*[(x p(4))/p(5)]^2

C = [1.0 p(3)]*exp(a)/p(2) + p(3)*exp(b)/p(5)

f(1) = C/root2pi

end{expression}

%

The best fit results table follows.

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 -5.0 0.0 -1.44100 0.172367 -1.88408 -0.99792 0.0004

2 0.1 5.0 1.05066 0.181518 0.58405 1.51726 0.0022

3 0.1 0.9 0.45929 0.061382 0.30150 0.61707 0.0007

4 0.0 5.0 1.96743 0.133634 1.62392 2.31095 0.0000

5 0.1 5.0 0.78877 0.135524 0.44039 1.13714 0.0021

It might be required to plot the best-fit curve superimposed on the sample histogram and the following steps
are required to do this.

1. Request a plot in the usual way then choose [Advanced] and transfer to advanced editing.

2. The plot displayed will have symbols for the mid–points of the histogram which need to be changed.

3. From the [Data] options choose to plot bars instead of symbols.

4. The bar type, fill–style, color, and width can be altered if required.

A typical plot resulting from this editing is shown next and clearly shows that, with such dense and well–
separated accurate data, a reasonable fit has been achieved. The profile of the two contributing sub–groups
was obtained by using the SimFIT library built–in equation instead of the model file and finally requesting
graphical deconvolution

84 SimFIT reference manual

0.00

0.05

0.10

0.15

0.20

0.25

-4.0 -2.0 0.0 2.0 4.0

Fitting a Sum of Two Normal Distributions

Values

S
ca

le
d

F
re

qu
en

ci
es

7.2.2 Fitting a cumulative frequency

Often data are only available in partitioned form. For instance, counts from channels in flow cytometry are
effectively in the form of histogram bins, so the analysis by fitting pdfs is all that is possible despite the fact
that the results will depend on the number of bins. However, when a sample is available it is possible to fit a
sum of two normal cdfs as discussed next, and this does not depend on partitioning into bins.

Read test file normal.tf3 into the exhaustive analysis of a vector procedure exactly as with Example 6 but
this time choose to export a cdf type curve fitting file. This test file is called qnfit_data.tf7 and the model
file qnfit_model.tf7 created using SimFIT usermod is as below.

%

Sum of two normal distributions

p(3)Phi((x p(1))/p(2)) + (1 p(3))Phi((x p(4))/p(5))

%

1 equation

1 variable

5 parameters

%

begin{expression}

A = p(3)normalcdf((x p(1))/p(2))

B = (1.0 p(3))normalcdf((x p(4))/p(5))

f(1) = A + B

end{expression}

%

Nonlinear models: Advanced fitting 85

The table of parameter estimates is displayed next followed by a plot of the data with best–fit curve.

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 -5.0 0.0 -1.49012 0.034982 -1.55957 -1.42067 0.0000

2 0.1 5.0 1.08482 0.036551 1.01226 1.15738 0.0000

3 0.1 0.9 0.52956 0.010863 0.50799 0.55112 0.0000

4 0.0 5.0 1.85840 0.028793 1.80124 1.91556 0.0000

5 0.1 5.0 0.81238 0.030455 0.75192 0.87284 0.0000

0.0

0.2

0.4

0.6

0.8

1.0

-4.0 -2.0 0.0 2.0 4.0

Fitting a Sum of Two Normal Distributions

Values

C
um

ul
at

iv
e

F
re

qu
en

cy

To compare the results from fitting the pdfs and cdfs we can define the sums of squares ((& between the
parameter estimates ?̂8 and the population parameters ?8 as

((& =

5∑
8=1

(?̂8 − ?8)2

and note that

for the pdfs: ((& = 0.271, and
√
((& = 0.520, while

for the cdfs: ((& = 0.171, and
√
((& = 0.414

a slightly better result from fitting the cdfs.

In order to succeed in estimating convincing parameter estimates there must be a very large sample with
well–separated means, similar variances that do not cause too much overlap, and approximately equally sized
sub–groups. Then fitting a cdf will give a unique set of parameter estimates as opposed to the way that fitting
pdfs is dependent on the number of bins, but a visual display of the contribution by sub–groups is perhaps
easier judged by superimposing a best fit curve on a histogram.

86 SimFIT reference manual

7.3 Fitting a beta distribution to a sample of observations

A random variable - (0 ≤ G ≤ 1) with the following pdf 5- (G : U, V) and cdf �- (G : U, V)

5- (G : U, V) = Γ(U + V)
Γ(U)Γ(V)G

U−1(1 − G)V−1

�- (G : U, V) =
∫ G

0

5- (C : U, V) 3C

= �G (U, V)

with parameters U > 0 and V > 0, where �G (U, V) is the regularized incomplete beta distribution, is referred
to as a beta random variable. The widespread use of this distribution in data analysis arises not because
many experimental observations do actually arise from a beta distribution, but because it is often a convenient
unimodal distribution that serves well as an approximation in many situations, such as those involving the
estimation of proportions. Some idea of the variation in the profile of a beta distribution as a function of the
shape parameters U and V will be clear for the next figure.

0

1

2

3

0 1

The Beta Distribution

x

α = 2.0, β = 2.0
α = 2.0, β = 5.0
α = 1.0, β = 3.0
α = 5.0, β = 2.0
α = 3.0, β = 1.0
α = 0.5, β = 0.5

The wide variation in shape that is possible is what makes this a valuable empirical model for fitting arbitrary
data that can be projected into the interval (0,1) in order to estimate and visualize skew and kurtosis. In
addition the inversion of shape leading to poles at the extremes is often useful in some situations. This
document explains how to use SimFIT to simulate pseudo–random beta variables and fit a beta distribution to
observations using constrained weighted least squares in order to estimate goodness of fit.

7.3.1 Generating random samples

When fitting a specified probability distribution to a sample of observations it is valuable first to simulate
random samples for the distribution, then observe how the values for random observations change as the

Nonlinear models: Advanced fitting 87

parameters vary. Random samples can then be plotted as histograms or cumulative distributions to get a feel
as to how well your data can be modeled by the distribution and what are likely to be reasonable parameters.

From the main SimFIT menu choose [Simulate] then [Generate random numbers and walks] which opens up
program rannum, and then select to generate sequences of random numbers for the stated distribution and
parameters. As an example, consider the following six samples with 100 observations using a beta distribution
with U = 3 and V = 2 which demonstrates some rather surprising issues.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta distribution: A = 3.0, B = 2.0

x

cd
f(

x)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta distribution: A = 3.0, B = 2.0

x

cd
f(

x)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta distribution: A = 3.0, B = 2.0

x

cd
f(

x)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta distribution: A = 3.0, B = 2.0

x

cd
f(

x)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta distribution: A = 3.0, B = 2.0

x

cd
f(

x)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta distribution: A = 3.0, B = 2.0

x

cd
f(

x)

It will be seen that, even with a fairly large sample, it is possible to get seemingly large systematic deviations
(from a Kolomogorov–Smirnov perspective) between the sample cumulative distribution (solid step curve)
and the theoretical distribution (dotted curves) due to the unavoidable pseudo serial correlation in the sample
cumulative. This must be kept in mind when assessing the goodness of fit by subjective graphical inspection
of this type.

Of course things are no better with displaying the theoretical PDF overlayed on a histograms, as histogram
shape depends on the number of bins chosen. At this point it should be noted that the data exploration option

88 SimFIT reference manual

in program simstat allows users to examine such PDF and CDF overlays for chosen distributions using any
sample of observations.

7.3.2 Parameter estimation for statistical distributions

Before describing methods to estimate parameters for selected statistical distributions, such as the beta
distribution from samples of observations, three points should be considered.

1. Experimental observations do not often follow statistical distributions exactly, rather distributions are
assumed for convenience. For instance, the distribution of biological variables such as height, weight,
blood pressure, etc., in populations are often analyzed as if the data followed a Gaussian distribution,
which may appear reasonable in practise but is impossible mathematically, because the Gaussian
distribution assumes −∞ ≤ - ≤ ∞.

2. Mathematical statistics is based on such precisely defined variables but everything that is measured
experimentally has unavoidable observational error in addition to natural variation.

3. Many methods for parameter estimation depend on sample moments and it is well know that, apart
from perhaps the first moment in some situations, higher moments are themselves parameter estimates
with large variances, that is, are very innacurate.

For such reasons there is something to be said for estimating parameters by constrained nonlinear regression
which offers the possibility of calculating parameter confidence limits and assessing goodness of fit by
residuals analysis. That is, arranging a single sample of observations into a form suitable for fitting a
statistical distribution as if it were a model for constrained weighted least squares fitting. Usually this means
fitting a PDF to a histogram, or a CDF to a sample cumulative. If a very large sample is available, or
observations are only available as already partitioned into bins, then fitting a histogram could be considered,
as long as it is realized that the result will depend on the number of bins chosen.

7.3.3 Preparing samples of observations for curve fitting

Data must be available as vector, that is, a single column of values with no labels or missing values, and then
this is input into the SimFIT program for exhaustive analysis of a sample. This can be opened from the main
SimFIT menu by choosing [Data exploration]. There are then two options that will prove useful, and both are
available using program rannum.

1. Exhaustive analysis of an arbitrary vector

This allows you to create a PDF file for fitting by choosing the number of bins required then creating
a PDF curve fitting file where the histogram area is scaled to one. Alternatively you can create a CDF
curve fitting file. From this procedure you can also calculate the sample moments if these are needed
to estimate starting estimates.

2. Comparing data with a known distribution

A distribution is chosen then the parameters are varied until a reasonable fit is apparent when the data
are displayed as a PDF–histogram or CDF–cumulative plot. The values chosen can then be used as
starting estimates.

Another issue that is often considered is the minimum sample size that is required to begin to justify concluding
that a specified distribution with the estimate parameters does reasonably represent the data. Rules of thumb
such as . . . at least ten times the number of parameters . . . or similar are often suggested which would mean
20 for the beta distribution, but experience indicates a minimum sample size of about 100. So we now turn to
a worked example using a beta distribution with a sample size of 100 and U = 3 and V = 2, where the mode
is shifted slightly to the right.

Nonlinear models: Advanced fitting 89

7.3.4 Fitting a beta pdf

A randomsample contained in the file beta32_data.tf1 was generatedby program rannum then transformed
into a pdf–fitting histogram file with area one by the option to perform exhaustive analysis of a vector, leading
to the curve–fitting data file beta32_pdf.tf1 shown below.

beta pdf fitting file generated by RANNUM: A = 3, B = 2
10 3
0.18144613 0.60634121 1
0.26390795 0.84887769 1
0.34636977 0.72760945 1
0.42883159 1.8190236 1
0.51129342 1.8190236 1
0.59375524 1.2126824 1
0.67621706 1.3339507 1
0.75867888 1.3339507 1
0.84114070 1.6977554 1
0.92360252 0.72760945 1
begin{limits}
1 1 5
1 1 5
end{limits}

The first column contains the centers of the ten histogram bins, and the second column contains the scaled
frequencies, while the third column (with weights equal to one) indicates that unweighted fitting is to be used.

The section starting with the token begin{limits} and ending with the token end{limits} gives the lower
limits, the starting estimates, then the upper limits to be used by program qnfit for constrained nonlinear
regression in the EXPERT mode, i.e. where such estimates are appended to the data file.

The results from fitting by the SimFIT quasi–Newton constrained optimization technique are shown next.

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl p
1 1 5 2.26957 0.454304 1.22195 3.31720 0.0011
2 1 5 1.70249 0.301995 1.00609 2.39889 0.0005
3 1 1 1.00000 0.000000 1.00000 1.00000 fixed

For 50,90,95,99% con. lim. using [parameter value +/- t(alpha/2)*std.err.]
t(.25) = 0.706, t(.05) = 1.860, t(.025) = 2.306, t(.005) = 3.355

Note that the model used by SimFIT has the following parameter definitions.

?(1) = U
?(2) = V
?(3) = Δ

where Δ is a scaling factor than can be used if the area under the histogram is not one. For this fit ?(3) was
not varied but was fixed, i.e., Δ = 1.

After listing all the goodness of fit results program qnfit first shows a default graph where the tops of the
histogram bins are shown as dots and the best–fit curve is displayed as a smooth curve ranging between the
the centers of the first and last histogram bins.

90 SimFIT reference manual

This default graph from program qnfit is shown next.

Data and best-fit curve

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Here is the default graph after editing to replace the dots by outline type histogram bars width 1.47, and other
obvious changes, to give the next graph.

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

Data Histogram and Best-Fit Curve

x

S
ca

le
d

F
re

qu
en

ci
es

It is possible to create such graphs with many more possible options by saving the best–fit curve parameters,
then reading the data into the Data Exploration option of program simstat to create the histogram overlayed
by the pdf for a beta distribution with the best-fit parameters over the full range, etc.

Nonlinear models: Advanced fitting 91

7.3.5 Fitting a beta cdf

Proceeding as before then fitting a beta cdf to the data file beta32_cdf.tf1 using program qnfit yields these
parameter estimates.

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl p
1 1 5 2.52779 0.0557879 2.41708 2.63850 0.0000
2 1 5 1.88851 0.0403438 1.80845 1.96857 0.0000
3 1 1 1.0 0.0 1.0 1.0 fixed

For 50,90,95,99% con. lim. using [parameter value +/- t(alpha/2)*std.err.]
t(.25) = 0.677, t(.05) = 1.661, t(.025) = 1.984, t(.005) = 2.627

The following best-fit curve was edited by simply replacing the default plotting symbols (dots with no lines)
for the data by no symbols but a cdf-type step curve.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Data and Best-Fit Curve for a Beta Distribution

x

C
um

ul
at

iv
e

F
re

qu
en

ci
es

It is clear that fitting such simple models with just two varied parameters gives well–defined parameter
estimates (? = 0) but fitting the cdf using all 100 points gives better estimates than fitting to a histogram
which only fits ten points.

To quantify this observation, the procedure of data generation by program rannum followed by fitting using
program qnfit was repeated, and the Euclidean distance � between the estimates (Û, V̂) and the actual
parameter values (U, V) was calculated, where � is defined as follows,

� =

√
(U − Û)2 + (V − V̂)2.

92 SimFIT reference manual

Û V̂ � Type Best Fit
2.38518 1.84594 0.633828 pdf: U = 3, V = 2
2.52170 2.06080 0.482149 cdf: U = 3, V = 2 cdf
2.60811 1.65327 0.523259 pdf: U = 3, V = 2
2.63019 1.76255 0.439479 cdf: U = 3, V = 2 cdf
2.26957 1.70249 0.788695 pdf: U = 3, V = 2
2.52799 1.88851 0.484998 cdf: U = 3, V = 2 cdf
1.94617 3.97530 0.059226 pdf: U = 2, V = 4
1.85620 3.86457 0.197534 cdf: U = 2, V = 4 pdf
1.64910 3.79293 0.407442 pdf: U = 2, V = 4
1.67319 4.03689 0.328885 cdf: U = 2, V = 4 cdf
2.45517 4.91705 1.023797 pdf: U = 2, V = 4
2.37186 4.82599 0.905836 cdf: U = 2, V = 4 cdf
2.13494 7.54346 0.476065 pdf: U = 2, V = 8
2.12449 8.17192 0.212260 cdf: U = 2, V = 8 cdf

From this table, where both the pdf and cdf were fitted to the same data set as both histograms (observations
pooled into 10 bins) and cumulative frequencies (all 100 observations) for a total of seven separate simulations,
a number of tentative conclusions can be drawn.

• The parameters were estimated rather better using the data in cumulative distribution format.

• There is a tendency to underestimate the parameters.

Although not shown, there is an improvement in parameter estimates when the additional normalizing
parameter is allowed to vary, more so with histograms of course. However there are other ways to decide
which technique to use.

7.3.6 Plotting a combined graph

Often beta distributions are plotted simply to estimate the extent to which the mode is skewed away from the
central position, and this is most convincingly seen in histograms as long as the number of bins is not too
large.

So, as there are only two, or rarely three parameters to be fitted and the beta distribution is robust as an
empirical model and easy to fit to a sample of observations, there seems no reason why both should not be
fitted at the same time.

For a combined graph from such a fitting procedure there are two considerations.

1. Four files of coordinates are required, that is:

• File 1: coordinates for the histogram;

• File 2: coordinates for the best–fit pdf;

• File 3: coordinates for the sample cumulatives; and

• File 4: coordinates for the best-fit cdf.

2. Two scales are required for the vertical axes, such as:

• plotting the histogram and pdf using a left–hand scale; and

• plotting the sample cumulative and cdf using a right–hand scale.

There are several methods by which this process can be done. Perhaps the most obvious is to save the coordinate
files from the graphs of data and best fit graphs displayed by program qnfit, but this is not necessarily the best
way.

Nonlinear models: Advanced fitting 93

Probably the best and easiest SimFIT technique do this, for instance, for a beta distribution like the one from
the previous table with U = 2, V = 8, is as follows.

1. Open the option in the SimFIT program simstat to compare a sample with an assumed distribution.

2. Read in the data and construct a histogram plotted against a beta distribution with best–fit parameters
Û = 2.13494, V̂ = 7.54346.

3. From this save the coordinates to File 1 and File 2.

4. Now construct a cumulative distribution stair-step type plot with added cdf with best–fit parameters
Û = 2.12449, V̂ = 8.17192.

5. From this save the coordinates to File 3 and File 4.

6. Open program simplot then choose two create a double axis plot and read in File 1 and File 2 to plot
against the left–hand . -axis, then File 3 and File 4 for the right–hand axis.

All that remains is fine tuning to create the following plot.

0.0

1.0

2.0

3.0

4.0

0.00 0.20 0.40 0.60

0.0

0.2

0.4

0.6

0.8

1.0

Using QNFIT to fit a Beta Distribution

x

H
is

to
gr

am
 a

nd
 B

es
t-

F
it

pd
f

S
am

pl
e

C
um

ul
at

iv
e

an
d

cd
f

pdf

cdf

It should be noted that plotting symbols can be replaced by filled polygons, but if these are filled with color the
histogram bin outlines will be lost. This can be overcome by using the same file (File 1) added interactively
as an additional file (File 5) used to outline the resulting filled polygons. Alternatively, if this situation is
anticipated, an additional copy of File 1 containing the histogram outlines can be added right from the start.

94 SimFIT reference manual

7.3.7 Practical issues

As the shape of the data will be evident before any computation of best–fit parameters, then visual inspection
helps in the choice of starting estimates and limits.

Writing the beta probability density function, i.e. the PDF, in the following form

5G (G : U, V) = 1
�(U, V) G

U−1(1 − G)V−1

emphasizes that, as the complete beta function itself, i.e., �(U, V) is a constant and not dependent on G, the
graphical behaviour of this density function for 0 ≤ G ≤ 1 depends only on the expression

GU−1(1 − G)V−1

so there is a single turning point for non-degenerate cases at the mode " where

" =
U − 1

U + V − 2
.

As " = 0.5 when U = V, while " > 0.5 if U > V, and " < 0.5 if U < V, the displacement of the mode from
0.5 indicates the relative magnitude of U and V. Of course the degenerate case when U = V = 1 corresponding
to a uniform distribution, the complications due to vertical asymptotes when G = 0 for U < 1 and G = 1 for
V < 1, along with the general inversion of shape when U < 1 and V < 1 must be considered. As the general
shape would be indicated by the data then this means it is easy to decide on the lower limits of 1 when U > 1
and V > 1 and upper limits of 1 when U < 1 and V < 1.

There are two other practical issues to consider when fitting the beta distribution to observations.

1. The range of G values

In the cases where U > 1 and V > 1 then there is no restriction of range and observations can be
anywhere between G = 0 and G = 1. However, if vertical asymptotes are anticipated, then values must
be restricted near potential asymptotes so that computation does not lead to overflow.

2. The parameter limits

As computation of best–fit parameters proceeds then, at every fixed value of G, the values of the internal
estimates Û and V̂ are perturbed by factors of the order of machine precision. So the upper and lower
limits should normally be chosen such that singular cases are avoided.

Another issue concerns the evaluation of the complete beta function for non–integer arguments. As U
and V become larger then the time taken to evaluate the complete beta function increases very rapidly.
Of course the computer code doing this is is optimized, but is still faced with such limitations. So it is
recommended that the upper limits requested for parameter estimates should be selected conservatively
with this in mind to avoid lengthy computations.

Nonlinear models: Advanced fitting 95

7.4 Plotting the objective function using qnfit

SimFIT tries to minimize ,((&/#�$� which has expectation unity at solution points, and it is useful to
view this as a function of the parameters close to a minimum. Figure 7.3 shows the objective function from
fitting a single exponential model

5 (C) = � exp(−:C)
to the test file exfit.tf2.

WSSQ/NDOF = f(k,A)

kA

WSSQ/NDOF

1.200

9.000×10-1

1.200

9.000×10-1

1

44

Figure 7.3: Objective function from an exponential model

Figure 7.4 shows details from fitting a simple Michaelis-Menten steady state model

E(() = +<0G(

 < + (
with two parameters to data in the test file mmfit.tf2, and a double Michaelis-Menten model

E(() =
+<0G (1)(

 <(1) + (
+
+<0G (2)(

 <(2) + (
with four parameters, of which only two are varied for the plot, to data in test file mmfit.tf4.

Such plots are created by qnfit after fitting, by selecting any two parameters and the ranges of variation
required. Information about the eccentricity is also available from the parameter covariance matrix, and
the eigenvalues and condition number of the Hessian matrix in internal coordinates. Some contour diagrams
show long valleys at solution points, sometimes deformed considerably from ellipses, illustrating the increased
difficulty encountered with such ill-conditioned problems.

96 SimFIT reference manual

WSSQ/NDOF = f(Vmax,Km)

VmaxKm

WSSQ/NDOF

1.050

9.000×10-1

1.150

8.500×10-1

1

19

Contours for WSSQ/NDOF = f(Vmax(1),Km(1))

Vmax(1)

K
m

(1
)

9.800×10-1

1.080

1.0609.800×10-1

Key Contour
 1 1.336
 2 1.581
 3 1.827
 4 2.073
 5 2.318
 6 2.564
 7 2.810
 8 3.055
 9 3.301
 10 3.546
 11 3.792
 12 4.038
 13 4.283
 14 4.529
 15 4.775

1

2

2

3

3

4

4 5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

131415

Figure 7.4: Objective function from Michaelis-Menten models

7.5 Plotting best-fit surfaces using qnfit

When fitting functions of two variables it is often useful to plot best-fit models as a three dimensional surface,
or as a contour diagram with the two variables plotted over a range. For instance, figure 7.5 shows the best fit
surface after using qnfit to fit the two-variable inhibition kinetics model

E((, �) = +<0G [(]
 < + [(] (1 + [�]/ 8)

.

Note that such surfaces can also be created for functions of two variables using makdat.

It is also valuable to be able to plot sequential slices across best-fit surfaces to assess goodness of fit visually
when functions of two variables have been fitted. So, as in figure 7.6, qnfit allows slices to be cut through a
best fit surface for fixed values of either variable. Such composite plots show successive sections through a
best fit surface, and this is probably the best way to visualize goodness of fit of a surface to functions of two
variables.

Nonlinear models: Advanced fitting 97

Inhibition Kinetics: v = f([S],[I])

[S][I]

v = f([S],[I])

8.000×101

0.000

2.000

0.000

0

89

Figure 7.5: Best-fit two variable model surface

7.6 Fitting functions of several variables using qnfit

The only feature that differs from functions of one variable is that overlaying the current best-fit curve on the
data before fitting and several other graphical techniques are not possible. Table 7.2 illustrates the outcome

Number LowerLimit UpperLimit Value Std. Err. ..95% Conf. Lim.. p

1 0.0 5.0 0.082438 0.01237 0.05548 0.1094 0.0000

2 0.0 5.0 1.134 0.3082 0.4626 1.805 0.0031

3 0.0 5.0 2.3428 0.2965 1.697 2.989 0.0000

Parameter correlation matrix 0.753

0.725 0.997

Eigenvalues of Hessian 8.500E04, 3.364E01, 1.456E+00, Cond. no. = 1.713E+03

Table 7.2: Results from fitting a function of three variables

from fitting the NAG library E04FYF/E04YCF example

5 (G, H, I) = ?1 +
G

?2H + ?3I
.

98 SimFIT reference manual

Inhibition Kinetics: v = f([S],[I])

[S]/mM

v(
[S

],
[I

])
/

M
.m

in
-1

0

20

40

60

80

100

0 20 40 60 80

[I] = 0

[I] = 0.5mM

[I] = 1.0mM

[I] = 2.0mM

Figure 7.6: Sequential sections across a best-fit surface

7.7 Fitting multi-function models using qnfit

Often < distinct data sets are obtained from one experiment, or independently from several experiments,
so that several model equations must be fitted at the same time. In this case the objective function is the
normalized sum of the weighted sums of squares from each data set, i.e.

,((&

#�$�
=

<∑
9=1

= 9∑
8=1

(
H8 9 − 5 9 (G8 9 ,Θ)

B8 9

)2 /©
«
<∑
9=1

= 9 − :ª®¬
and there are = 9 observations in data set 9 for 9 = 1, 2, . . . , <, and : parameters have been estimated for the
< models 5 9 . Usually the models would not be disjoint but would have common parameters, otherwise the
data sets could be fitted independently.

This can be best illustrated using a very simple model, three distinct straight lines. Open program qnfit and
select to fit = functions of one variable. Specify that three equations are required, then read in the library file
line3.tfl containing three data sets and select the model file line3.mod (page 457) which defines three
independent straight lines. Choose expert mode and after fitting figure 7.7 will be obtained. Since, in this
case, the three component sub-models are uncoupled, the off-diagonal covariance matrix elements will be
seen to be zero. This is because the example has been selected to be the simplest conceivable example to
illustrate how to perform multi-function fitting.

The main points to note when fitting multiple functions are as follows.

Nonlinear models: Advanced fitting 99

0

10

20

30

40

0 2 4 6 8 10

Using Qnfit to Fit Three Equations

x

y 1
, y

2,
 y

3

Data Set 1
Best Fit 1
Data Set 2
Best Fit 2
Data Set 3
Best Fit 3

Figure 7.7: Fitting three equations simultaneously

• You must provide the data sets as a library file.

• Missing data sets in the library file can be denoted using a percentage sign %.

• Expert mode starting parameters, if required, must be added to the first non-missing data file specified
in the library file.

• You must provide the model as a user-defined model file.

A more instructive example is using data in test file consec3.tfl together with the model file consec3.mod
(page 460) to fit two irreversible consecutive chemical reactions involving three species � → � → � with
�(0) = �0 > 0, �(0) = � (0) = 0 when the equations are

�(G) = �0 exp(−:1G)

�(G) = :1

:2 − :1

�0 (exp(−:1G) − exp(−:2G)), when :1 ≠ :2

= �0G exp(−:G), when :1 = :2 = :

� (G) = �0 − �(G) − �(G) .

File consec3.mod can be browsed to see how use the SimFIT 8 5 . . . Cℎ4= . . . 4;B4 . . . technique (page 440) in
a user-defined model to evaluate the required expression for �(G), and the results are illustrated in figure 7.8.

7.8 Fitting a convolution integral using qnfit

Fitting convolution integrals (page 439) involves parameter estimation in 5 (C), 6(C), and (5 ∗ 6) (C), where

(5 ∗ 6) (C) =
∫ C

0

5 (D)6(C − D) 3D,

and such integrals occur as output functions from the response of a device to an input function. Sometimes
the input function can be controlled independently so that, from sampling the output function, parameters of

100 SimFIT reference manual

0.0

0.5

1.0

1.5

2.0

0.0 2.0 4.0 6.0 8.0 10.0

Data and Starting Estimate Curve

x

y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 2.0 4.0 6.0 8.0 10.0

Data and Best Fit Curve

x

y

Figure 7.8: Fitting consecutive chemical reactions

the response function can be estimated, and frequently the functions may be normalized, e.g. the response
function may be modeled as a function integrating to unity as a result of a unit impulse at zero time. However,
any one, two or even all three of the functions may have to be fitted. Figure 7.9 shows the graphical display
following the fitting of a convolution integral using qnfit where, to demonstrate the procedure to be followed
for maximum generality, replicates of the output function at unequally spaced time points have been assumed.
The model is convolv3.mod (page 462) and the data file is convolv3.tfl, which just specifies replicates for
the output function resulting from

5 (C) = exp(−UC)
6(C) = V2C exp(−VC) .

Note how missing data for 5 (C) and 6(C) are indicated by percentage symbols in the library file so, in this case,
the model convolve.mod could have been fitted as a single function. However, by fitting as three functions
of one variables but with data for only one function, a visual display of all components of the convolution
integral evaluated at the best-fit parameters can be achieved.

Nonlinear models: Advanced fitting 101

0.00

0.50

1.00

0 1 2 3 4 5

Fitting a Convolution Integral f*g

Time t

f(
t)

, g
(t

)
an

d
f*

g

f(t) = exp(-αt)

g(t) = β2 t exp(-βt)

f*g

Figure 7.9: Fitting a convolution integral

Part 8

Differential equations

8.1 Introduction

Program makdat can simulate single differential equations, program qnfit can fit single differential equations,
and program deqsol can simulate and fit systems of differential equations. To do this the equations must be
either used from the library or supplied as user-defined models. Systems of = equations must be formulated
as a set of = simple expressions and a Jacobian can be supplied or omitted. If a Jacobian is to be supplied the
solution must be compared using the BDF technique both with and without the supplied Jacobian to make
sure the supplied jacobian has been coded correctly.

8.2 Phase portraits of plane autonomous systems

When studying plane autonomous systems of differential equations it is useful to plot phase portraits. Consider,
for instance, a simplified version of the Lotka-Volterra predator-prey equations given by

3H(1)
3G

= H(1) (1 − H(2))

3H(2)
3G

= H(2) (H(1) − 1)

which has singular points at (0,0) and (1,1). Figure 8.1 was generated using deqsol, then requesting a phase
portrait. You can choose the range of independent variables, the number of grid points, and the precision
required to identify singularities. At each grid point the direction is defined by the right hand sides of the
defining equations and singular points are emphasized by automatic change of plotting symbol. Note that
arrows can have fixed length or have length proportional to magnitude.

8.3 Orbits of differential equations

To obtain orbits with H(8) parameterized by time as in figure 8.2, trajectories have to be integrated and collected
together. For instance the simple system

3H(1)
3G

= H(2)

3H(2)
3G

= −(H(1) + H(2))

which is equivalent to
H′′ + H′ + H = 0

Fitting differential equations 103

-1

0

1

2

-1 0 1 2

Phase Portrait for the Lotka-Volterra System

y(2)

y(
1)

Figure 8.1: Phase portraits of plane autonomous systems

was integrated by deqsol for the initial conditions illustrated, then the orbits were used to create the orbit
diagram. The way to create such diagrams is to integrate repeatedly for different initial conditions, then
store the required orbits, which is a facility available in deqsol. The twelve temporary stored orbits are
f$orbits.001 to f$orbits.012 and orbits generated in this way can also be plotted as an overlays on a
phase portrait in order to emphasize particular trajectories. Just create a library file with the portrait and orbits
together and choose the vector field option in program simplot. With this option, files with four columns are
interpreted as arrow diagrams while files with two columns are interpreted in the usual way as coordinates to
be joined up to form a continuous curve.

8.4 Fitting differential equations

SimFIT can simulate systems of differential equations and fit them to experimental data just like any other
model. If there are = differential equations with < parameters then there must be = additional parameters for
the initial conditions. That is, parameters ?<+8 = H8 (0) for 8 = 1, 2, . . . , =. When fitting differential equations
the data must be extensive with a high signal to noise ratio and, if possible, the initial conditions should be
treated as fixed parameters, or at least constrained between narrow limits. Although the main SimFIT program
for simulating and fitting differential equations is deqsol, it is probably more convenient to fit single equations
using qnfit, so such examples will be described next.

104 SimFIT reference manual

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

-1.25 0.00 1.25

Orbits for a System of Differential Equations

y(2)

y(
1)

Figure 8.2: Orbits of differential equations

8.4.1 Fitting a single differential equation using qnfit

To illustrate fitting a single differential equation we will consider three examples in increasing order of
difficulty for fitting.

1. Michaelis-Menten irreversible substrate depletion.

2. Von Bertalanffy allometric growth model.

3. Von Bertalanffy allometric growth/decay model.

8.4.1.1 Michaelis-Menten irreversible substrate depletion

The model equation is
3(

3C
=
−+<0G(
 < + (

which, in terms of parameters, is expressed as

3H

3G
=

−?2H

?1 + H
, with ?3 = H(0) .

Fitting differential equations 105

With only three parameters to be estimated this model is extremely easy to fit and, in this case, can be formally
integrated anyway (page 469). Note that, if the initial substrate concentration was known exactly, then H(0)
could have been fixed, but in this case replicates representing experimental error are included in test file
qnfit_ode.tf1, so H(0) was estimated as shown in table 8.1.

Number LowerLimit UpperLimit Value Std.Err. 95% Con.Lim. p

1 0.5 1.5 1.0965 0.07901 0.9371 1.256 0.0000

2 0.5 1.5 1.0927 0.07358 0.9442 1.241 0.0000

3 0.5 1.5 1.0466 0.2232 1.002 1.092 0.0000

Table 8.1: Parameters for Michaelis-Menten irreversible substrate depletion

8.4.1.2 Von Bertalanffy allometric growth model

The data in test file qnfit_ode.tf2 were read into qnfit and the Von Bertalanffy differential equation

3H

3G
= �H< − �H=

= ?1H
?2 − ?3H

?4 , with ?5 = H(0)

was fitted giving the results in figure 8.3.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 5.0 10.0 15.0

Data and Starting-Estimate-Curve

x

y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 5.0 10.0 15.0

Data and Best Fit Curve

x

y

Figure 8.3: Fitting the Von Bertalanffy growth differential equation

Note that this differential equation must have � > 0, � > 0, = > < > 0 and H(0) > 0 in order to model growth
curves, and it cannot model growth curves with turning points since it is autonomous.

It should also be emphasized that this model is over-parameterized so that the parameter estimates are highly
correlated. This means that widely varying sets of parameter estimates can give more or less equally good fit.
Neverthless, despite this limitation, the best-fit curve is still useful as an empirical data smoothing curve as
explained next.

Often, after fitting equations to data, users wish to estimate derivatives, or areas, or use the best-fit curve
as a standard curve in calibration. So, to illustrate another feature of qnfit the ability to inverse predict -
given . after fitting was exploited with results as in table 8.2. Another feature that is often required after
fitting is to estimate the minimum and maximum slope of the best-fit curve. This is particularly useful when
equations are used to model growth curves, and the results from such an analysis are shown in table 8.3. This
example illustrates that often, where parameters cannot be determined precisely, model fitting to data can

106 SimFIT reference manual

y input x predicted

0.2 1.859

0.4 3.323

0.6 5.011

0.8 7.445

Table 8.2: Inverse prediction with the Von Bertalanffy differential equation

Maximum dy/dx = 0.139 at x = 2.39

Initial dy/dx = 0.0 at x = 0.0

Final dy/dx = 0.009417 at x = 15.0

Minimum dy/dx = 0.0, at x = 0.0

Maximum dy/dx = 0.1385 at x = 2.395

Table 8.3: Estimating derivatives with the Von Bertalanffy equation

nevertheless be justified by demonstrating that a selected model can actually reproduce the features of a data
set and estimate derived results from the best-fit curve. Where, as in this example, data are asymptotic to a
constant value, such a deterministic model may predict with less bias than using a polynomial or spline curve.

Figure 8.4 is a graphical illustration of the results from table 8.2 and table 8.3. The left hand figure shows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 5.0 10.0 15.0

Predicting X Given Y

x

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.0 5.0 10.0 15.0

Max. dy/dx = 1.39E-01, at x = 2.39E+00

x

dy
/d

x

Figure 8.4: Inverse prediction with the Von Bertalanffy differential equation

what is involved in predicting - given. by solving the appropriate equation numerically, while the right hand
figure illustrates the derivative as a function of the independent variable. This can be done for all equations,
not just differential equations as, again, the calculation is done numerically.

8.4.1.3 Von Bertalanffy allometric growth and decay model

An advantage of the Von Bertalanffy growth model is that it is very flexible and can fit a wide variety of
typically sigmoid growth curves. However, as it is autonomous, extra parameters have to added to model
other growth curve features, such as growth followed by decay. A simple modification gives

3H

3G
= exp(−?5G)?1H

?2 − ?3H
?4 , with ?6 = H(0)

where the anabolic term decreases exponentially so that, eventually, the catabolic term dominates and H(G)
has a turning point. The results from fitting data in the test file qnfit_ode.tf3 are shown in figure 8.5.

Fitting differential equations 107

0

1000

2000

3000

4000

0 50 100 150 200

Data and Starting-Estimate-Curve

Time/Hours

P
op

ul
at

io
n/

10
00

00
0

0

1000

2000

3000

4000

5000

0 50 100 150 200

Data and best-fit curve

Time/Hours

P
op

ul
at

io
n/

10
00

00
0

Figure 8.5: Fitting the Von Bertalanffy growth and decay differential equation

Before leaving this example we must observe table 8.4. The data in this table were obtained experimentally

Number LowerLimit UpperLimit Value Std.Err. 95% Con.Lim. p

1 1.0 10.0 2.7143 0.08793 2.499 2.929 0.0000

2 0.6667 0.6667 0.6667 fixed

3 0.0001 2.0 0.1104 0.005081 0.09797 0.1228 0.0000

4 1.0 1.0 1.0 fixed

5 0.0001 0.1 0.0080919 0.001249 0.005036 0.01115 0.0006

6 1.0 50.0 3.9033 0.1058 3.644 4.162 0.0000

Table 8.4: Parameters for growth and decay

for a bacterial population with a finite food resource and, in order to obtain a good fit, it is necessary to reduce
the number of parameters to be fitted. In this case the usual allometric values for the anabolic exponent ?2 and
catabolic exponent ?4 were used, and these are indicated as being fixed in table 8.4. Further, the observations
were weighted by the square root of the counts, to avoid overflow and other numerical difficulties caused by
the large values used in this particular data set.

8.4.2 Fitting systems of differential equations using deqsol

Figure 8.6 illustrates how to use deqsol to fit systems of differential equations for the simple three component
epidemic model

3H(1)
3C

= −?1H(1)H(2)

3H(2)
3C

= ?1H(1)H(2) − ?2H(2)

3H(3)
3C

= ?2H(2)

where H(1) are susceptible individuals, H(2) are infected, and H(3) are resistant members of the population.
Fitting differential equations is a very specialized procedure and should only be undertaken by those who
understand the issues involved. For example, there is a very important point to remember when using deqsol:
if a system of = equations involves< parameters ?8 and = initial conditions H0(9) for purposes of simulation,
there will actually be < + = parameters as far as curve fitting is concerned, as the last = parameters ?8 for
8 = < +1, < +2, . . . , < +=, will be used for the initial conditions, which can be varied or (preferably) fixed. To

108 SimFIT reference manual

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Overlay of Starting Estimates

t

y(
1)

, y
(2

),
 y

(3
)

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Best Fit Epidemic Differential Equations

t

y(
1)

, y
(2

),
 y

(3
)

Susceptible
Infected
Resistant

Figure 8.6: Fitting the epidemic differential equations

show you how to practise simulating and fitting differential equations, the steps followed to create figure 8.6,
and also some hints, are now given.

❍ Program deqsol was opened, then the epidemic model was selected from the library of three component
models and simulated for the default parameters ?1, ?2 and initial conditions H0(1), H0(2), H0(3) (i.e.
parameters ?3, ?4, and ?5).

❍ The data referenced in the library file epidemic.tfl were generated using parameter values 0.004, 0.3,
980, 10 and 10, by first writing the simulated (i.e. exact) data to files y1.dat, y2.dat, and y3.dat,
then adding 10% relative error using adderr to save perturbed data as y1.err, y2.err, and y3.err.
Program maklib was then used to create the library file epidemic.tfl, which just has a title followed
by the three file names.

❍ Curve fitting was then selected in deqsol, the default equations were integrated, the library file was
input and the current default differential equations were overlayed on the data to create the left hand
plot. The first file referenced has a
begin{limits} ... end{limits}

section to initialize starting estimates and limits, and you should always overlay the starting solution
over the data before fitting to make sure that good starting estimates are being used.

❍ By choosing direct curve fitting, the best fit parameters and initial conditions were estimated. It is
also possible to request random starts, when random starting estimates are selected in sequence and
the results are logged for comparison, but this facility is only provided for expert users, or for systems
where small alterations in starting values can lead to large changes in the solutions.

❍ After curve fitting, the best fit curves shown in the right hand plot were obtained. In this extremely simple
example the initial conditions were also estimated along with the two kinetic parameters. However,
if at all possible, the initial conditions should be input as fixed parameters (by setting the lower limit,
starting value and upper limit to the same value) or as parameters constrained within a narrow range, as
solutions always advance from the starting estimates so generating a sort of autocorrelation error. Note
that, in this example, the differential equations add to zero, indicating the conservation equation

H(1) + H(2) + H(3) = :

for some constant :. This could have been used to eliminate one of the H(8), leading to a reduced set
of equations. However, the fact that the differentials add to zero, guarantees conservation when the full
set is used, so the system is properly specified and not overdetermined, and it is immaterial whether the
full set or reduced set is used.

Fitting differential equations 109

❍ Note that, when the default graphs are transferred to simplot for advanced editing, such as changing
line and symbol types, the data and best fit curves are transferred alternately as data/best-fit pairs, not
all data then all best-fit, or vice versa.

❍ For situations where there is no experimental data set for one or more of the components, a percentage
sign % can be used in the library file to indicate a missing component. The curve fitting procedure will
then just ignore this particular component when calculating the objective function.

❍ Where components measured experimentally are linear combinations of components of the system of
differential equations, a transformation matrix can be supplied as described in the readme files.

❍ As the covariance matrix has to be estimated iteratively, the default setting which is to calculate
parameter estimates with standard errors may prove inconvenient. The extra, time-consuming, step of
calculating the variance covariance matrix can be switched off where this is preferred.

❍ When requesting residuals and goodness of fit analysis for any given component H(8) you must provide
the number of parameters estimated for that particular component, to correct for reduced degrees of
freedom for an individual fit, as opposed to a total residuals analysis which requires the overall degrees
of freedom

Part 9

Calibration and Bioassay

9.1 Introduction

Multivariate calibration requires the PLS technique (page 117), but univariate calibration and bioassay using
SimFIT employs the following definitions.

• Calibration
This requires fitting a curve H = 5 (G) to a (G, H) training data set with G known exactly and H measured
with limited error, so that the best fit model 5̂ (G) can then be used to predict G8 given arbitrary H8 .
Usually the model is of no significance and steps are taken to use a data range over which the model is
approximately linear, or at worst a shallow smooth curve. It is assumed that experimental errors arising
when constructing the best fit curve are uncorrelated and normally distributed with zero mean, so that
the standard curve is a good approximation to the maximum likelihood estimate.

• Bioassay
This is a special type of calibration, where the data are obtained over as wide a range as possible,
nonlinearity is accepted (e.g. a sigmoid curve), and specific parameters of the underlying response,
such as the time to half-maximum response, final size, maximum rate, area �*�, ��50, !�50, or
��50 are to be estimated. With bioassay, a known deterministic model may be required, and assuming
normally distributed errors may sometimes be a reasonable assumption, but alternatively the data may
consist of proportions in one of two categories (e.g. alive or dead) as a function of some treatment, so
that binomial error is more appropriate and probit analysis, or similar, is called for.

9.2 Calibration curves

Creating and using a standard calibration curve involves:

1. Measuring responses H8 at fixed values of G8 , and using replicates to estimate B8 , the sample standard
deviation of H8 if possible.

2. Preparing a curve fitting type file with G, H, and B using program makfil, and using makmat to prepare
a vector type data file with G8 values to predict H8 .

3. Finding a best fit curve H = 5 (G) to minimize,((&, the sum of weighted squared residuals.

4. Supplying H8 values and predicting G8 together with 95% confidence limits, i.e. inverse-prediction of
G8 = 5̂ −1(H8). Sometimes you may also need to evaluate H8 = 5̂ (G8).

It may be that the B8 are known independently, but often they are supposed constant and unweighted regression,
i.e. all B8 = 1, is unjustifiably used. Any deterministic model can be used for 5 (G), e.g., a sum of logistics
or Michaelis-Menten functions using program qnfit, but this could be unwise. Calibration curves arise from
the operation of numerous effects and cannot usually be described by one simple equation. Use of such

Calibration and Bioassay 111

equations can lead to biased predictions and is not always recommended. Polynomials are useful for gentle
curves as long as the degree is reasonably low (≤ 3 ?) but, for many purposes, a weighted least squares data
smoothing cubic spline is the best choice. Unfortunately polynomials and splines are too flexible and follow
outliers, leading to oscillating curves, rather than the data smoothing that is really required. Also they cannot
fit horizontal asymptotes. You can help in several ways.

a) Get good data with more distinct G-values rather than extra replicates.
b) If the data approach horizontal asymptotes, either leave some data out as they are no use for prediction

anyway, or try using log(G) rather than G, which can be done automatically by program calcurve.
c) Experiment with the weighting schemes, polynomial degrees, spline knots or constraints to find the

optimum combinations for your problem.
d) Remember that predicted confidence limits also depend on the s values you supply, so either get the

weighting scheme right, or set all all B8 = 1.

9.2.1 Turning points in calibration curves

You will be warned if 5 (G) has a turning point, since this can make inverse prediction ambiguous. You can
then re-fit to get a new curve, eliminate bad data points, get new data, etc., or carry on if the feature seems
to be harmless. You will be given the option of searching upwards or downwards for prediction in such
ambiguous cases. It should be obvious from the graph, nature of the mathematical function fitted, or position
of the turning point in which direction the search should proceed.

9.2.2 Calibration using polnom

For linear or almost linear data you can use program linfit (page 40) which just fits straight lines of the form

5 (G) = ?0 + ?1G,

as shown in figure 9.1. However, for smooth gentle curves, program polnom (page 42) is preferred because

Best Fit Line and 95% Limits

x

y

0

5

10

15

0 2 4 6 8 10

Figure 9.1: A linear calibration curve

112 SimFIT reference manual

it can also fit a polynomial

5 (G) = ?0 + ?1G + ?2G
2 + · · · + ?=G=,

where the degree = is chosen according to statistical principles. What happens is that polnom fits all
polynomials from degree 0 up to degree 6 and gives statistics necessary to choose the statistically justified
best fit =. However, in the case of calibration curves, it is not advisable to use a value of = greater than 2 or at
most 3, and warnings are issued if the best fit standard curve has any turning points that could make inverse
prediction non-unique.

To practise, read test file line.tf1 for a line, or polnom.tf1 for a gentle curve, into polnom and create a
linear calibration curve with confidence envelope as shown in figure 9.1. Now predict G from H values, say
for instance using polnom.tf3, or the values 2,4,6,8,10.

9.2.3 Calibration using calcurve

Cubic Spline Calibration Curve

x

lo
g(

y)

-0.80

-0.40

0.00

0.40

0.80

1.20

0 2 4 6 8 10

Figure 9.2: A cubic spline calibration curve

If a polynomial of degree 2 or at most 3 is not adequate, a cubic spline calibration curve could be considered.
It does not matter how nonlinear your data are, calcurve can fit them with splines with user-defined fixed knots
as described on page 270. The program has such a vast number of options that a special mode of operation
is allowed, called the expert mode, where all decisions as to weighting, spline knots, transformations, etc.
are added to the data file. The advantage of this is that, once a standard curve has been created, it can be
reproduced exactly by reading in the standard curve data file.

To practise, read in calcurve.tf1 and use expert mode to get figure 9.2. Now do inverse prediction using
calcurve.tf3 and browse calcurve.tf1 to understand expert mode.

Calibration and Bioassay 113

9.2.4 Calibration using qnfit

Sometimes you would want to use a specific mathematical model for calibration. For instance, a mixture of
two High/Low affinity binding sites or a cooperative binding model might be required for a saturation curve, or
a mixture of two logistics might adequately fit growth data. If you know an appropriate model for the standard
curve, use qnfit for inverse prediction because, after fitting, the best-fit curve can be used for calibration, or
for estimating derivatives or areas under curves �*� if appropriate.

9.3 Dose response curves, EC50, IC50, ED50, and LD50

A special type of inverse prediction is required when equations are fitted to dose response data in order
to estimate some characteristic parameter, such as the half time C1/2, the area under the curve �*�, or
median effective dose in bioassay (e.g. ��50, ��50, ��50, !�50, etc.), along with standard errors and 95%
confidence limits. The model equations used in this sort of analysis are not supposed to be exact models
constructed according to scientific laws, rather they are empirical equations, selected to have a shape that is
close to the shape expected of such data sets. So, while it is is pedantic to insist on using a model based on
scientific model building, it is important to select a model that fits closely over a wide variety of conditions.

Older techniques, such as using data subjected to a logarithmic transform in order to fit a linear model, are no
longer called for as they are very unreliable, leading to biased parameter estimates. Hence, in what follows,
it is assumed that data are to be analyzed in standard, not logarithmically transformed coordinates, but there
is nothing to prevent data being plotted in transformed space after analysis, as is frequently done when the
independent variable is a concentration, i.e., it is desired to have an the independent variable proportional to
chemical potential. The type of analysis called for depends very much on the nature of the data, the error
distribution involved, and the goodness of fit of the assumed model. It is essential that data are obtained over a
wide range, and that the best fit curves are plotted and seen to be free from bias which could seriously degrade
routine estimates of percentiles, say. The only way to decide which of the following procedures should be
selected for your data, is to analyze the data using those candidate models that are possibilities, and then to
adopt the model that seems to perform best, i.e., gives the closest best fit curves and most sensible inverse
predictions.

❏ Exponential models

If the data are in the form of a simple or multiphasic exponential decline from a finite value at C = 0 to
zero as C → ∞, and half times C1/2, or areas �*� are required, use exfit (page 60) to fit one or a sum of
two exponentials with no constant term. Practise with exfit and test file exfit.tf4. With the simple
model

5 (C) = � exp(−:C)

of order 1, then the �*� = �/: and C1/2 = − log(2)/: are given explicitly but, if this model does not
fit and a higher model has to be used, then the corresponding parameters will be estimated numerically.

❏ Trapezoidal estimation

If no deterministic model can be used for the �*� it is usual to prefer the trapezoidal method with
no data smoothing, where replicates are simply replaced by means values that are then joined up
sequentially by sectional straight lines. The program average (page 269) is well suited to this sort of
analysis.

❏ The Hill equation

This empirical equation is

5 (G) = �G=

�= + G= ,

which can be fitted using program inrate (page 264), with either = estimated or = fixed, and it is often
used in sigmoidal form (i.e. = > 1) to estimate the maximum value � and half saturation point �, with
sigmoidal data (not data that are only sigmoidal when G-semilog transformed, as all binding isotherms
are sigmoidal in G-semilog space).

114 SimFIT reference manual

❏ Ligand binding and enzyme kinetic models.

There are three cases:
a) data are increasing as a function of an effector, i.e., ligand or substrate, and the median effective
ligand concentration ��50 or apparent < = ��50 = ��50 is required,
b) data are a decreasing function of an inhibitor [�] at fixed substrate concentration [(] and ��50, the
concentration of inhibitor giving half maximal inhibition, is required, or
c) the flux of labeled substrate [�>C], say, is measured as a decreasing function of unlabeled isotope
[�>;3], say, with [�>C] held fixed.
If the data are for an increasing saturation curve and ligand binding models are required, then hlfit

(page 65) or, if cooperative effects are present, sffit (page 66) can be used to fit one or two binding site
models. Practise with sffit and sffit.tf4.

More often, however, an enzyme kinetic model, such as the Michaelis-Menten equation will be used
as now described. To estimate the maximum rate and apparent <, i.e., ��50 the equation fitted by
mmfit in substrate mode would be

E([(]) = +<0G [(]
 < + [(]

while the interpretation of ��50 for a reversible inhibitor at concentration [8] with substrate fixed at
concentration (would depend on the model assumed as follows.

Competitive inhibition E([�]) = +<0G [(]
 < (1 + �/ 8) + [(]

��50 =
 8 (< + [(])

 <

Uncompetitive inhibition E([�]) = +<0G [(]
 < + [(] (1 + [�]/ 8]

��50 =
 8 (< + [(])

[(]

Noncompetitive inhibition E([�]) = +<0G [(]
(1 + [�]/ 8) (< + [(])

��50 = 8

Mixed inhibition E([�]) = +<0G [(]
 (1 + [�]/ 81) + [(] (1 + [�]/ 82)

��50 =
 81 82 (< + [(])
(< 82 + [(] 81)

Isotope displacement E([�>;3]) = +<0G [�>C]
 < + [�>C] + [�>;3]

��50 = < + [�>C]
Of course, only two independent parameters can be estimated with these models, and, if higher order
models are required and justified by statistics and graphical deconvolution, the apparent +<0G and
apparent < are then estimated numerically.

❏ Growth curves.

If the data are in the form of sigmoidal increase, and maximum size, maximum growth rate, minimum
growth rate, C1/2 time to half maximum size, etc. are required, then use gcfit in growth curve mode 1
(page 74). Practise with test file gcfit.tf2 to see how a best-fit model is selected. For instance, with
the logistic model

5 (C) = �

1 + � exp(−:C)

C1/2 =
log(�)
:

Calibration and Bioassay 115

the maximum size � and time to reach half maximal size C/2 are estimated.

❏ Survival curves.

If the data are independent estimates of fractions remaining as a function of time or some effector, i.e.
sigmoidally decreasing profiles fitted by gcfit in mode 2, and C1/2 is required, then normalize the data
to proportions of time zero values and use gcfit in survival curve mode 2 (page 77). Practise with
Weibull.tf1, which has the model equation

((C) = 1 − exp(−(�C)�)

C1/2 =
log(2)
��

.

❏ Survival time models.

If the data are in the form of times to failure, possibly censored, then gcfit should be used in survival
time mode 3 (page 253). Practise with test file survive.tf2. With the previous survival curve and
with survival time models the median survival time C1/2 is estimated, where

∫ C1/2

0

5) (C) 3C =
1
2
,

and 5) (C) is the survival probability density function.

❏ Models for proportions.

If the data are in the form of numbers of successes (or failures) in groups of known size as a function
of some control variable and you wish to estimate percentiles, e.g., ��50, ��50, or maybe !�50 (the
median dose for survival in toxicity tests), use gcfit in GLM dose response mode. This is because the
error distribution is binomial, so generalized linear models, as discussed on page 49, should be used.
You should practise fitting the test file ld50.tf1 with the logistic, probit and log-log models, observing
the goodness of fit options and the ability to change the percentile level interactively. An example of
how to use this technique follows.

0.00

0.50

1.00

0 2 4 6 8 10

Determination of LD50

Concentration

P
ro

po
rt

io
n

F
ai

lin
g

0.00

0.50

1.00

0 2 4 6 8 10

Determination of LD50

Concentration

P
ro

po
rt

io
n

S
ur

vi
vi

ng

Figure 9.3: Plotting LD50 data with error bars

Figure 9.3 illustrates the determination of !�50 using GLM. The left hand figure shows the results from
using the probit model to determine !�50 using test file ld50.tf2. The right hand figure shows exactly the
same analysis but carried out using the proportion surviving, i.e., the complement of the numbers in test file
ld50.tf2, replacing H, the number failing (dying) in a sample of size # , by # − H, the number succeeding
(surviving) in a sample of size # . Of course the value of the !�50 estimate and the associated standard error
are identical for both data sets. Note that, in GLM analysis, the percentile can be changed interactively, e.g.,
if you need to estimate !�25 or !�75, etc.

116 SimFIT reference manual

The point about about using the analysis of proportions routines in this way for the error bars in the right
hand figure is that exact, unsymmetrical 95% confidence limits can be generated from the sample sizes and
numbers of successes in this way.

9.4 95% confidence regions in inverse prediction

polnom estimates non-symmetrical confidence limits assuming that the # values of H for inverse prediction
and weights supplied for weighting are exact, and that the model fitted has = parameters that are justified
statistically. calcurve uses the weights supplied, or the estimated coefficient of variation, to fit confidence
envelope splines either side of the best fit spline, by employing an empirical technique developed by simulation
studies. Root finding is employed to locate the intersection of the H8 supplied with the envelopes. The AUC,
LD50, half-saturation, asymptote and other inverse predictions in SimFIT use a C distribution with # − =
degrees of freedom, and the variance-covariance matrix estimated from the regression. That is, assuming a
prediction parameter defined by ? = 5 (\1, \2, . . . , \=), a central 95% confidence region is constructed using
the prediction parameter variance estimated by the propagation of errors formula

+̂ (?) =
=∑
8=1

(
m 5

m\8

)2

+̂ (\8) + 2
=∑
8=2

8−1∑
9=1

m 5

m\8

m 5

m\ 9
�̂+ (\8 , \ 9) .

Note that this formula for the propagation of errors can be used to calculate parameter standard errors for
parameters that are calculated as functions of parameters that have been estimated by fitting, such as apparent
maximal velocity when fitting sums of Michaelis-Menten functions. However, such estimated standard errors
will only be very approximate.

Partial Least Squares (PLS) 117

9.5 Partial Least Squares (PLS)

This technique is also known as regression by projection to latent structures, and it is sometimes useful when
a = by A matrix of responses . , with A ≥ 1, is observed with a = by < matrix of predictor variables - , with
< > 1, and one or more of the following conditions may apply:

❍ There is no deterministic model to express the A columns of . as functions of the < columns of the
matrix - .

❍ The number of columns of - is too large for convenient analysis, or the number of observations = is not
significantly greater than the number of predictor variables <.

❍ The - variables may be correlated and/or the . variables may be correlated.

The idea behind PLS is to express the - and. matrices in terms of sets of : factors, with : ≤ <, derived from
the matrices by projection and regression techniques. The - scores would have maximum covariance with the
. scores, and the principal problem is to decide on a sufficiently small dimension ;, with ; ≤ :, that would be
needed to represent the relationship between . and - adequately. Having obtained satisfactory expressions
for approximating - and . using these factors, they can then be used to treat - as a training matrix, then
predict what new . would result from a new = by < matrix / that is expressed in the same variables as the
training matrix - . Hence the use of this technique in multivariate calibration, or quantitative structure activity
relationships (QSAR).

If -1 is the centered matrix obtained from - by subtracting the - column means, and .1 is obtained from
. by subtracting the . column means, then the first factor is obtained by regressing on a column vector of =
normalized scores C1, as in

-̂1 = C1?
)
1

.̂1 = C12
)
1

C)1 C1 = 1,

where the column vectors of < G-loadings ?1 and A H-loadings 21 are calculated by least squares, i.e.

?)1 = C)1 -1

2)1 = C)1 .1.

The G-score vector C1 = -1F1 is the linear combination of -1 that has maximum covariance with the H-scores
D1 = .121, where the G-weights vector F1 is the normalized first left singular vector of -)

1
.1. The further

: − 1 orthogonal factors are then calculated successively using

-8 = -8−1 − -̂8−1

.8 = .8−1 − .̂8−1, 8 = 2, 3, . . . , :

C)8 C 9 = 0, 9 = 1, 2, . . . , 8 − 1.

Once a set of : factors has been calculated, these can be used to generate the parameter estimates necessary
to predict a new . matrix from a / matrix, given the original training matrix - . Usually : would be an upper
limit on the number of factors to consider, and the < by A parameter estimates matrix � required for ; factors,
where ; ≤ :, would be given by

� = , (%),)−1�) .

Here, is the < by : matrix of G-weights, % is the < by : matrix of G-loadings, and � is the A by : matrix of
H-loadings. Note that � calculated in this way is for the centered matrices -1 and .1, but parameter estimates
appropriate for the original data are also calculated.

Before proceeding to discuss a worked example, it is important to emphasize a complication which can arise
when predicting a new. matrix using the parameter estimates. In most multivariate techniques it is immaterial

118 SimFIT reference manual

whether the data are scaled and centered before submitting a sample for analysis, or whether the data are
scaled and centered internally by the software. In the case of PLS, the . predicted will be incorrect if the data
are centered and scaled independently before analysis, but then the / matrix for prediction is centered and
scaled using its own column means and variances.

So there are just two ways to make sure PLS predicts correctly.

1. You can submit - and . matrices that are already centered and scaled, but then you must submit a /
matrix that has not been centered and scaled using its own column means and standard deviations, but
one that has been processed by subtracting the original - column means and scaled using the original
- column standard deviations.

2. Do not center or scale any data. Just submit the original data for analysis, request automatic centering
and scaling if necessary, but allow the software to then center and scale internally.

As the first method is error prone and will predict scaled and centered predictions, which could be confusing,
the advice to PLS users would be:

Do not center or scale any training sets, or Z-data for predicting new Y, before PLS analysis.

Always submit raw data and allow the software to perform centering and scaling.

That way predictions will be in coordinates corresponding to the original Y-coordinates.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12

X, and Y(i),i=1 (lhs=X,rhs=Y)

Number of factors

X
,Y

 c
um

ul
at

iv
e

va
ria

nc
e

Figure 9.4: PLS: selecting l factors from k=12 by using the variance explained in X and Y

Several techniques are available to decide how many factors ; out of the maximum calculated : should be
selected when using a training set for prediction. For instance, figure 9.4 was obtained by using test file
g02laf.tf1 with 15 rows and 15 columns as the source of - prediction data, and test file g02laf.tf2 with

Partial Least Squares (PLS) 119

15 rows and just 1 column as the source of. response data, then fitting a PLS model with up to a maximum of
: = 12 factors. It illustrates how the cumulative percentage of variance in - and a column of . is accounted
for the factor model as the number of factors is steadily increased. It is clear that two factors are sufficient
to account for the variance of the single column of . in this case but more, probably about 6, are required to
account for the variance in the - matrix, i.e. we should choose ; = 6.

y=A+Bx, x=C+Dy, r= 0.9468, p < .0001

t1

u 1

-0.800 -0.400 0.000 0.400 0.800

-10.0

-5.0

0.0

5.0

10.0

15.0

y=A+Bx, x=C+Dy, r= 0.8697, p < .0001

t2

u 2
-0.600 -0.300 0.000 0.300 0.600

-0.800

-0.400

0.000

0.400

0.800

y=A+Bx, x=C+Dy, r= 0.4286, p=0.1109

t3

u 3

-0.800 -0.400 0.000 0.400 0.800

-0.100

-0.050

0.000

0.050

0.100

y=A+Bx, x=C+Dy, r= 0.3474, p=0.2045

t4

u 4

-0.800 -0.400 0.000 0.400 0.800

-.0900

-.0600

-.0300

0.0000

0.0300

0.0600

y=A+Bx, x=C+Dy, r= 0.2872, p=0.2992

t5

u 5

-0.900 -0.600 -0.300 0.000 0.300 0.600

-.0750

-.0500

-.0250

0.0000

0.0250

0.0500

y=A+Bx, x=C+Dy, r= 0.3968, p=0.1431

t6

u 6

-0.600 -0.300 0.000 0.300 0.600 0.900

-.0900

-.0600

-.0300

0.0000

0.0300

0.0600

Figure 9.5: PLS correlation between scores

Alternatively, figure 9.5 plots the successive correlations between the - and . scores. Each plot shows the
best fit linear regression for the D8 i.e. . scores on the C8 i.e. - scores, and also the best fit linear regression of
the - scores on the . scores, as explained elsewhere (page 190), together with the correlation coefficients A
and and significance levels ?. Clearly the scores corresponding to the first two factors are highly correlated,

120 SimFIT reference manual

but thereafter the correlation is very weak.

Note that the PLS model can be summarized as follows

- = -̄ +)%) + �
. = .̄ +*�) + �
* =) + �

where � , �, and � are matrices of residuals. So the SimFIT PLS routines also allow users to study such
residuals, to see how closely the fitted model predicts the original . data for increasing numbers of factors
before the number of factors to be used routinely is decided. Various tests for goodness of fit can be derived
from these residuals and, in addition, variable influence on projection (VIP) statistics can also be calculated.

Table 9.1 gives the VIP values for fitting a PLS model to the - data in test file g02laf.tf1, which are
available after parameters have been calculated.

Variable VIP

1 0.611072

2 0.318216

3 0.751272

4 0.50482

5 0.271225

6 0.359276

7 1.57773 *
8 2.43477 *
9 1.1322 *

10 1.22255 *
11 1.17993 *
12 0.883977

13 0.212875

14 0.212875

15 0.212875

Table 9.1: PLS: variables influence on projection

Now the sum of squared VIP values equals the number of - variables, and a large VIP(8) value indicates that
- variable 8 has an important influence on projection. So, we see that only variables 7, 8, 9, 10, and 11 have
VIP values greater than 1, and these are therefore the more important predictor variables in the - predictor
matrix.

Part 10

Statistical analysis

10.1 Introduction

The main part of the SimFIT statistics functions are to be found in the program simstat, which is in many
ways like a small scale statistics package. This provides options for data exploration, statistical tests, analysis
of variance, multivariate analysis, regression, time series, power calculations, etc., as well as a number of
calculations, like finding zeros of polynomials, or values of determinants, inverses, eigenvalues or eigenvalues
of matrices. In addition to simstat there are also several specialized programs that can be used for more
detailed work and to obtain information about dedicated statistical distributions and related tests but, before
describing the simstat procedures with worked examples, a few comments about tests may be helpful.

10.1.1 Statistical tests

A test statistic is a function evaluated on a data set, and the significance level of a test is the probability of
obtaining a test statistic as extreme, or more extreme, from a random sample, given a null hypothesis �0,
which usually specifies a distribution for that test statistic. If the error rate, i.e. significance level ? is less than
some critical level, say U = 0.05 or U = 0.01, it is reasonable to consider whether the null hypothesis should
be rejected. The correct procedure is to choose a test, decide whether to use the upper, lower, or two-tail test
statistic as appropriate, select the critical significance level, do the test, then accept the outcome. What is not
valid is to try several tests until you find one that gives you the result you want. That is because the probability
of a Type 1 error increases monotonically as the number of tests increases, particularly if the tests are on the
same data set, or some subsets of a larger data set. This multiple testing should never be done, but everybody
seems to do it. Of course, all bets are off anyway if the sample does not conform to the assumptions implied
by �0, for instance, doing a C test with two samples that are known not to be normally distributed with the
same variance.

10.1.2 Multiple tests

Statistical packages are designed to be used in the rather pedantic but correct manner just described, which
makes them rather inconvenient for data exploration. SimFIT, on the other hand, is biased towards data
exploration, so that various types of multiple testing can be done. However, once the phase of data exploration
is completed, there is nothing to stop you making the necessary decisions and only using the subset of results
calculated by the SimFIT statistical programs, as in the classical (correct) manner. Take, for example, the C
test. SimFIT does a test for normality and variance equality on the two samples supplied, it reports lower,
upper and two tail test statistics and ? values simultaneously, it performs a corrected test for the case of
unequal variances at the same time, it allows you to follow the C test by a paired C test if the sample sizes are
equal and, after doing the C test, it saves the data for a Mann-Whitney U or Kolmogorov-Smirnov 2-sample
test on request. An even more extreme example is the all possible pairwise comparisons option, which does
all possible C, Mann-Whitney U and Kolmogorov-Smirnov2-sample tests on a library file of column vectors.

122 SimFIT reference manual

In fact there are two ways to view this type of multiple testing. If you are just doing data exploration to
identify possible differences between samples, you can just regard the ? values as a measure of the differences
between pairs of samples, in that small ? values indicate samples which seem to have different distributions.
In this case you would attach no importance as to whether the ? values are less than any supposed critical U
values. On the other hand, if you are trying to identify samples that differ significantly, then some technique
is required to structure the multiple testing procedure and/or alter the significance level, as in the Tukey Q test.
If the experimentwise error rate is U4 while the comparisonwise error rate is U2 and there are : comparisons

then, from equating the probability of : tests with no Type 1 errors it follows that

1 − U4 = (1 − U2): .

This is known as the Dunn-Sidak correction, but, alternatively, the Bonferroni correction is based on the
recommendation that, for : tests, the error rate should be decreased from U to U/:, which gives a similar
value to use for U2 in the multiple test, given U4.

10.2 Data exploration

SimFIT has a number of techniques that are appropriate for exploration of data and data mining. Such
techniques do not always lead to meaningful hypothesis tests, but are best used for preliminary investigation
of data sets prior to more specific model building.

10.2.1 Exhaustive analysis: arbitrary vector

This procedure is used when you have a single sample (column vector) and wish to explore the overall
statistical properties of the data. For example, read in the vector test file normal.tf1 and you will see that all
the usual summary statistics are calculated as in Table 10.1, including the range, hinges (i.e. quartiles), mean

Data: 50 numbers from a normal distribution mu = 0 and sigma = 1

Sample size 50

Minimum, Maximum values 2.208, 1.617

Lower and Upper Hinges 0.855, 0.786

Coefficient of skewness 001.669

Coefficient of kurtosis 0.70684

Median value 0.09736

Sample mean 0.02579

Sample standard deviation 1.006: CV% > 100%

Standard error of the mean 0.1422

Upper 2.5% tvalue 2.01

Lower 95% con lim for mean 0.3116

Upper 95% con lim for mean 0.26

Variance of the sample 1.011

Lower 95% con lim for var. 0.7055

Upper 95% con lim for var. 1.570

ShapiroWilks W statistic 0.9627

Significance level for W 0.1153 Tentatively accept normality

Table 10.1: Exhaustive analysis of an arbitrary vector

Ḡ, standard deviation B, and the normalized sample moments B3 (coefficient of skewness), and B4 (coefficient

Data exploration 123

of kurtosis), defined in a sample of size = by

Ḡ =
1
=

=∑
8=1

G8

B =

√√
1

= − 1

=∑
8=1

(G8 − Ḡ)2

B3 =
=

(= − 1) (= − 2)

∑=
8=1 (G8 − Ḡ)3

B3

B4 =
(= + 1)=

(= − 1) (= − 2) (= − 3)

∑=
8=1 (G8 − Ḡ)4

B4
− 3(= − 1)2

(= − 2) (= − 3) .

You can then do a Shapiro-Wilks test for normality (which will, of course, not always be appropriate) or create
a histogram, pie chart, cumulative distribution plot or appropriate curve-fitting files. This option is a very
valuable way to explore any single sample before considering other tests. If you created files vector.1st

and vector.2nd as recommended earlier you can now examine these. Note that once a sample has been
read into program simstat it is saved as the current sample for editing, transforming or re-testing. Since
vectors have only one coordinate, graphical display requires a further coordinate. In the case of histograms
the extra coordinate is provided by the choice of bins, which dictates the shape, but in the case of cumulative
distributions it is automatically created as steps and therefore of unique shape. Pie chart segments are
calculated in proportion to the sample values, which means that this is only appropriate for positive samples,
e.g., counts. The other techniques illustrated in figure 10.1 require further explanation. If the sample values

-3.00

-2.00

-1.00

0.00

1.00

2.00

0 10 20 30 40 50

Vector Plotted as a Time Series

Position

V
al

ue
s

-3.00

-2.00

-1.00

0.00

1.00

2.00

0 10 20 30 40 50

Vector Plotted as Zero Centred Rods

Position

V
al

ue
s

0.00

1.00

2.00

3.00

0.00 1.00 2.00 3.00

Vector Plotted in Half Normal Format

Expected Half-Normal Order Statistic

O
rd

er
ed

 A
bs

ol
ut

e
V

al
ue

s

-2.50

-1.25

0.00

1.25

2.50

-2.50 -1.25 0.00 1.25 2.50

Vector Plotted in Normal Format

Expected Normal Order Statistic

O
rd

er
ed

 V
al

ue
s

Figure 10.1: Plotting vectors

have been measured in some sequence of time or space, then the H values could be the sample values while

124 SimFIT reference manual

the G values would be successive integers, as in the time series plot. Sometimes it is useful to see the variation
in the sample with respect to some fixed reference value, as in the zero centered rods plot. The data can be
centered automatically about zero by subtracting the sample mean if this is required. The half normal and
normal plots are particularly useful when testing for a normal distribution with residuals, which should be
approximately normally distributed if the correct model is fitted. In the half normal plot, the absolute values
of a sample of size = are first ordered then plotted as H8 , 8 = 1, . . . , =, while the half normal order statistics are
approximated by

G8 = Φ
−1

(
= + 8 + 1

2

2= + 9
8

)
, 8 = 1, . . . , =

which is valuable for detecting outliers in regression. The normal scores plot simply uses the ordered sample
as H and the normal order statistics are approximated by

G8 = Φ
−1

(
8 − 3

8

= + 1
4

)
, 8 = 1, . . . , =

which makes it easy to visualize departures from normality. Best fit lines, correlation coefficients, and
significance values are also calculated for half normal and normal plots. Note that a more accurate calculation
for expected values of normal order statistics is employed when the Shapiro-Wilks test for normality (page 133)
is used and a normal scores plot is required.

10.2.2 Exhaustive analysis: arbitrary matrix

This procedure is provided for when you have recorded several variables (columns) with multiple cases (rows)
and therefore have data in the form of a rectangular matrix, as with Table 10.2 resulting from analyzing
matrix.tf2. The option is used when you want summary statistics for a numerical matrix with no missing

Data: Matrix of order 7 by 5

Row Mean Variance St.Dev. Coeff.Var.

1 3.680 8.197 2.863 77.80%

2 6.804 9.5905 3.0969 45.52%

3 6.246 3.5253 1.8776 30.06%

4 4.546 7.1105 2.6666 58.66%

5 5.784 5.7305 2.3939 41.39%

6 4.822 6.7613 2.6003 53.92%

7 5.940 1.7436 1.3205 22.23%

Table 10.2: Exhaustive analysis of an arbitrary matrix

values. It analyzes every row and column in the matrix then, on request, exhaustive analysis of any chosen
row or column can be performed, as in exhaustive analysis of a vector.

Often the rows or columns of a data matrix have pairwise meaning. For instance, two columns may be
measurements from two populations where it is of interest if the populations have the same means. If the
populations are normally distributed with the same variance, then an unpaired C test might be appropriate
(page 136), otherwise the corresponding nonparametric test (Mann-Whitney U, page 140), or possibly a
Kolmogorov-Smirnov 2-sample test (page 139) might be better. Again, two columns might be paired, as with
measurements before and after treatment on the same subjects. Here, if normality of differences is reasonable,
a paired C test (page 138) might be called for, otherwise the corresponding nonparametric procedure (Wilcoxon
signed rank test, page 142), or possibly a run test (page 153), or a sign test (page 152) might be useful for
testing for absence of treatment effect. Table 10.3 illustrates the option to do statistics on paired rows or
columns, in this case columns 1 and 2 of matrix.tf2. You identify two rows or columns from the matrix
then simple plots, linear regression, correlation, and chosen statistical tests can be done. Note that all the ?
values calculated for this procedure are for two-tail tests, while the run, Wilcoxon sign rank, and sign test

Data exploration 125

Unpaired t test:

t = 3.094

p = 0.0093 *p =< 0.01

Paired t test:

t = 3.978

p = 0.0073 *p =< 0.01

KolmogorovSmirnov 2sample test:

d = 0.7143

z = 0.3818

p = 0.0082 *p =< 0.01

MannWhitney U test:

u = 7.0

z = 2.172

p = 0.0262 *p =< 0.05

Wilcoxon signed rank test:

w = 1.0

z = 2.113

p = 0.0313 *p =< 0.05

Run test:

+ = 1 (number of x > y)

 = 6 (number of x < y)

p = 0.2857

Sign test:

N = 7 (nontied pairs)

 = 6 (number of x < y)

p = 0.1250

Table 10.3: Statistics on paired columns of a matrix

ignore values which are identical in the two columns. More detailed tests can be done on the selected column
vectors by the comprehensive statistical test options to be discussed subsequently (page 130).

The comprehensive analysis of a matrix procedure also allows for the data matrix to be plotted as a 2-
dimensional bar chart, assuming that the rows are cases and the columns are numbers in distinct categories,
or as a 3-dimensional bar chart assuming that all cell entries are as in a contingency table, or similar.
Alternatively, plots displaying the columns as scattergrams, box and whisker plots, or bar charts with error
bars can be constructed.

10.2.3 Exhaustive analysis: multivariate normal matrix

This provides options that are useful before proceeding to more specific techniques that depend on multivariate
normality (page 421), e.g., MANOVA and some types of ANOVA.

A graphical technique is provided for investigating if a data matrix with = rows and < columns, where
= >> < > 1, is consistent with a multivariate normal distribution. For example, figure 10.2 shows plots for
two random samples from a multivariate normal distribution. The plot uses the fact that, for a multivariate
normal distribution with sample mean Ḡ and sample covariance matrix (,

(G − Ḡ)) (−1(G − Ḡ) ∼ <(=2 − 1)
=(= − <) �<,=−<,

where G is a further independent observation from this population, so that the transforms plotted against
the quantiles of an � distribution with < and = − < degrees of freedom, i.e. according to the cumulative

126 SimFIT reference manual

0.00

0.20

0.40

0.60

0.80

1.00

0.00 2.00 4.00 6.00

Multivariate Plot: r = 0.754

F-quantiles

R
an

ke
d

T
ra

ns
fo

rm
s

n = 8, m = 4

0.00

1.00

2.00

3.00

0.00 1.00 2.00 3.00 4.00

Multivariate Plot: r = 0.980

F-quantiles

R
an

ke
d

T
ra

ns
fo

rm
s

n = 20, m = 4

Figure 10.2: Plot to diagnose multivariate normality

probabilities for (8 − 0.5)/= for 8 = 1, 2, . . . , = should be a straight line. It can be seen from figure 10.2 that
this plot is of little value for small values of =, say = ≈ 2< but becomes progressively more useful as the
sample size increases, say = > 5<.

Again, there are procedures to calculate the column means Ḡ 9 , and < by < sample covariance matrix (,
defined for a = by < data matrix G8 9 with = ≥ 2, < ≥ 2 as

Ḡ 9 =
1
=

=∑
8=1

G8 9

B 9 : =
1

= − 1

=∑
8=1

(G8 9 − Ḡ 9) (G8: − Ḡ:)

and then exploit several techniques which use these estimates for the population mean vector and covariance
matrix. The eigenvalues and determinants of the sample covariance matrix and its inverse are required for
several MANOVA techniques, so these can also be estimated. It is possible to perform two variants of the
Hotelling)2 test, namely

• testing for equality of the mean vector with a specified reference vector of means, or

• testing for equality of all means without specifying a reference mean.

Dealing first with testing that a vector of sample means is consistent with a reference vector, table 10.4 resulted

Hotelling one sample Tsquare test

H0: Delta = (Mean Expected) are all zero

Number of rows = 10, Number of columns = 4

Hotelling Tsquare = 7.439

F Statistic (FTS) = 1.240

Degrees of Freedom (d1,d2) = 4, 6

p = P(F(d1,d2) >= FTS) = 0.3869

Column Mean Std.Err. Expected Delta t p

1 0.53 0.463 0.0 0.53 1.15 0.2815

2 0.03 0.386 0.0 0.03 0.0778 0.9397

3 0.59 0.491 0.0 0.59 1.2 0.2601

4 3.1 1.95 0.0 3.1 1.59 0.1457

Table 10.4: Hotelling)2 test for �0: means = reference

Data exploration 127

when the test file hotel.tf1 was analyzed using the Hotelling one sample test procedure. This tests the
null hypothesis �0 : ` = `0 against the alternative �1 : ` ≠ `0, where `0 is a known mean vector and no
assumptions are made about the covariance matrix Σ. Hotelling’s)2 is

)2
= =(Ḡ − `0)) (−1(Ḡ − `0)

and, if �0 is true, then an � test can be used since (= − <))2/(<(= − 1)) is distributed asymptotically as
�<,=−<. Users can input any reference mean vector `0 to test for equality of means but, when the data columns
are all differences between two observations for the same subjects and the aim is to test for no significant
differences, so that `0 is the zero vector, as with hotel.tf1, the test is a sort of higher dimensional analogue
of the paired C test. Table 10.4 also shows the results when C tests are applied to the individual columns of
differences between the sample means Ḡ and the reference means `0, which is suspect because of multiple
testing but, in this case, the conclusion is the same as the Hotelling)2 test: none of the column means are
significantly different from zero.

Now, turning to a test that all means are equal, table 10.5 shows the results when the data in anova6.tf1 are

Hotelling one sample Tsquare test

H0: Column means are all equal

Number of rows = 5, Number of columns = 4

Hotelling Tsquare = 170.5

F Statistic (FTS) = 28.41

Deg. Free. (d1,d2) = 3, 2

P(F(d1,d2) >= FTS) = 0.0342 Reject H0 at 5% sig.level

Table 10.5: Hotelling)2 test for �0: means are equal

analyzed, and the theoretical background to this test will be presented subsequently (page 175).

Options are provided for investigating the structure of the covariance matrix. The sample covariance matrix
and its inverse can be displayed along with eigenvalues and determinants, and there are also options to check
if the covariance matrix has a special form, namely

• testing for compound symmetry,

• testing for spherical symmetry, and

• testing for spherical symmetry of the covariance matrix of orthonormal contrasts.

For instance, using the test file hotel.tf1 produces the results of table 10.6 showing an application of a test
for compound symmetry and a test for sphericity. Compound symmetry is when a covariance matrix Σ has a
special form with constant nonnegative diagonals and equal nonnegative off-diagonal elements as follows.

Σ = f2
©
«

1 d . . . d

d 1 . . . d

.

d d . . . 1

ª®®®¬
This can be tested using estimates for the diagonal and off-diagonal elements f2 and f2d as follows

B2 =
1
<

<∑
8=1

B88

B2A =
2

<(< − 1)

<∑
8=2

8−1∑
9=1

B8 9 .

128 SimFIT reference manual

VarianceCovariance matrix

2.1401 0.11878 0.89411 3.5922

0.11871 1.4868 0.79144 1.8811

0.89411 0.79144 2.4099 4.6011

3.5922 1.8811 4.6011 37.878

Pearson productmoment correlations

1.0000 0.0666 0.3937 0.3990

0.0666 1.0000 0.4181 0.2507

0.3937 0.4181 1.0000 0.4816

0.3990 0.2507 0.4816 1.0000

Compound symmetry test

H0: Covariance matrix has compound symmetry

Number of groups = 1

Number of variables (m) = 4

Sample size (n) = 10

Determinant of CV = 98.14

Determinant of S_0 = 1452.0

LRTS (2*log(lambda)) = 36.3

Degrees of Freedom = 8

p = P(chisq. >= LRTS) = 0.0000 Reject H0 at 1% sig.level

Likelihood ratio sphericity test

H0: Covariance matrix = k*Identity (for some k > 0)

Number of small eigenvalues = 0 (i.e. < 0.0000001)

Number of variables (m) = 4

Sample size (n) = 10

Determinant of CV = 98.14

Trace of CV = 43.91

Mauchly W statistic = 0.006756

LRTS (2*log(lambda)) = 49.97

Degrees of Freedom = 9

p = P(chisq. >= LRTS) = 0.0000 Reject H0 at 1% sig.level

Table 10.6: Covariance matrix symmetry and sphericity tests

The Wilks generalized likelihood-ratio statistic is

! =
|(|

(B2 − B2A)<−1[B2 + (< − 1)B2A] ,

where the numerator is the determinant of the covariance matrix estimated with a degrees of freedom, while
the denominator is the determinantof the matrix with average variance on the diagonals and average covariance
as off-diagonal elements, and this is used to construct the test statistic

j2
= −

[
a − <(< + 1)2(2< − 3)

6(< − 1) (<2 + < − 4)

]
log !

which, for large a, has an approximate chi-squared distribution with <(< + 1)/2 − 2 degrees of freedom.

Data exploration 129

The sphericity test, designed to test the null hypothesis �0 : Σ = :� against �1 : Σ ≠ :� . In other words,
the population covariance matrix Σ is a simple multiple of the identity matrix, which is a central requirement
for some analytical procedures. If the sample covariance matrix (has eigenvalues U8 for 8 = 1, 2, . . . , < then,
defining the arithmetic mean � and geometric mean � of these eigenvalues as

� = (1/<)
<∑
8=1

U8

� = (
<∏
8=1

U8)1/<,

the likelihood ratio test statistic
−2 log_ = =< log(�/�)

is distributed asymptotically as j2 with (< − 1) (< + 2)/2 degrees of freedom. Using the fact that the
determinant of a covariance matrix is the product of the eigenvalues while the trace is the sum, the Mauchly
test statistic, can also be calculated from � and � since

, =
|(|

{)A (()/<}<

=

∏<
8=1 U8

{(∑<
8=1 U8)/<}<

so that − 2 log_ = −= log,.

Clearly, the test rejects the assumption that the covariance matrix is a multiple of the identity matrix in this
case, a conclusion which is obvious from inspecting the sample covariance and correlation matrices. Since
the calculation of small eigenvalues is very inaccurate when the condition number of the covariance matrix is
appreciable, any eigenvalues less than the minimal threshold indicated are treated as equal to that threshold
when calculating the test statistic.

10.2.4 t tests on groups across rows of a matrix

Sometimes a matrix with = rows and < columns holds data where groups are defined across rows by
membership according to columns, and it is wished to do tests based on groups down through all rows. For
instance, test file ttest.tf6 has 5 rows, but in each row the first 6 columns constitute one group (say -),
while the next 7 columns constitute a second group (say.). At the end of the file there is an extra text section,
as follows

begin{limits}

1 1 1 1 1 1 1 1 1 1 1 1 1

end{limits}

where a 1 denotes membership of the - group, and -1 indicates membership of the . group. A 0 can also be
used to indicate groups other than - or . , i.e. to effectively suppress columns. Table 10.7 shows the results
from analyzing ttest.tf6. which calculates the sample means, and standard deviations required for a C test.

X_bar X_std Y_bar Y_std SE_diff t p

8.75 0.58224 9.7429 0.81824 0.400913 2.4765 0.0308

8.2167 1.042 9.1143 1.3006 0.662051 1.3558 0.2023

17.933 1.8886 9.4714 0.98778 0.816416 10.365 0.0000

1.0 1.0 1.0 1.0 1.0 1.0 1.0000

8.8333 0.82381 18.7 1.6258 0.736044 13.405 0.0000

Table 10.7: t tests on groups across rows of a matrix

130 SimFIT reference manual

The two-tail ? values are displayed, and a -1 is used to signify that a row contains groups with zero variance,
so that the test cannot be performed. The minimum sample size for each group is 2 although much larger
sample size should be used if possible.

10.2.5 Nonparametric tests across rows of a matrix

If the assumptions of normality and constant variance required by the previous C test are not justified, the same
technique can be applied using nonparametric tests. Table 10.8 shows the results from analyzing ttest.tf6

in this way using the Mann-Whitney * test. This requires larger samples than the previous C test and, if the

MW_U MW_Z MW_2tail_p

7.0 1.9339 0.9814

11.0 1.3609 0.9277

42.0 2.9286 0.0006

1.0 1.0 1.0000

0.0 2.9326 1.0000

Table 10.8: Nonparametric tests across rows

group size is fairly large, a Kolmogorov-Smirnov 2-sample test can also be done.

10.2.6 All possible pairwise tests (= vectors or a library file)

This option is used when you have several samples (column vectors) and wish to explore which samples
differ significantly. The procedure takes in a library file referencing sets of vector files and then performs any
combination of two-tailed C, Kolmogorov-Smirnov 2-sample, and/or Mann-Whitney U tests on all possible
pairs. It is usual to select either just C tests for data that you know to be normally distributed, or just Mann-
Whitney* tests otherwise. Because the number of tests is large, e.g., 3=(=− 1)/2 for all tests with = samples,
be careful not to use it with too many samples.

For example, try it by reading in the library files anova1.tfl (or the smaller data set npcorr.tfl with three
vectors of length 9 where the results are shown in table 10.9) and observing that significant differences are
highlighted. This technique can be very useful in preliminary data analysis, for instance to identify potentially
rogue columns in analysis of variance, i.e., pairs of columns associated with small ? values. However, it
is up to you to appreciate when the results are meaningful and to make the necessary adjustment to critical
significance levels where the Bonferroni principle is required (due to multiple tests on the same data).

10.3 Tests

10.3.1 1-sample C test

This procedure is used when you have a sample that is known to be normally distributed and wish to test �0:
the mean is `0, where `0 is a known quantity. Table 10.10 shows the results for such a 1-sample C test on
the data in test file normal.tf1. The procedure can first do a Shapiro-Wilks test for normality (page 133) if
requested and then, for = values of G8 , it calculates the sample mean Ḡ, sample variance B2, standard error of

Tests 131

MannWhitneyU/KolmogorovSmirnovD/unpairedt tests

No. tests = 9, p(1%) = 0.001111, p(5%) = 0.005556 [Bonferroni]

column2.tf1 (data set 1)

column2.tf2 (data set 2)

N1 = 9, N2 = 9, MWU = 8.0 p = 0.00226 *
KSD = 0.7778 p = 0.00109 **
T = 3.716 p = 0.00188 *

column2.tf1 (data set 1)

column2.tf3 (data set 3)

N1 = 9, N2 = 9, MWU = 21.0, p = 0.08889

KSD = 0.5556 p = 0.05545

T = 2.042 p = 0.05796

column2.tf2 (data set 2)

column2.tf3 (data set 3)

N1 = 9, N2 = 9, MWU = 55.5 p = 0.19589

KSD = 0.4444 p = 0.20511

T = 1.461 p = 0.16350

Table 10.9: All possible comparisons

Number of xvalues = 50

Number of degrees of freedom = 49

Theoretical mean (mu_0) = 0.0

Sample mean (x_bar) = 0.012579

Std. err. of mean (SE) = 0.1422

TS = (x_bar mu_0)/SE = 0.1814

p = P(t >= TS) (upper tail p) = 0.5716

p = P(t =< TS) (lower tail p) = 0.4284

p for two tailed t test = 0.8568

Difference D = x_bar x_mu = 0.02579

Lower 95% conf. limit for D = 0.3116

Upper 95% conf. limit for D = 0.26

Conclusion: Consider accepting equality of means

Table 10.10: One sample C test

the mean B Ḡ and test statistic)(according to

Ḡ =
1
=

=∑
8=1

G8

B2 =
1

= − 1

=∑
8=1

(G8 − Ḡ)2

B Ḡ =
√
B2/=

)(=
Ḡ − `0

B Ḡ

where `0 is the supposed theoretical, user-supplied population mean. The significance levels for upper, lower,
and two-tailed tests are calculated for a C distribution with = − 1 degrees of freedom. You can then change `0

or select a new data set.

132 SimFIT reference manual

10.3.2 1-sample Kolmogorov-Smirnov test

This nonparametric procedure is used when you have a single sample (column vector) of reasonable size (say
greater than 20) and wish to explore if it is consistent with some known distribution, e.g., normal, binomial,
Poisson, gamma, etc. The test only works optimally with large samples where the null distribution is a
continuous distribution that can be specified exactly and not defined using parameters estimated from the
sample. It calculates the maximum positive difference �+

=, negative difference �−
= , and overall difference

�= = maximum of �+
= and �−

= between the sample cumulative distribution function ((G8) and the theoretical
cdf � (G8) under �0, i.e., if frequencies 5 (G8) are observed for the variable G8 in a sample of size =, then

((G8) =
8∑
9=1

5 (G 9)/=

� (G8) = %(G ≤ G8)
�+
= = max(((G8) − � (G8), 0), 8 = 1, 2, . . . , =

�−
= = max(� (G8) − ((G8−1), 0), 8 = 2, 3, . . . , =

�= = max(�+
=, �

−
=) .

The standardized statistics / = �
√
= are calculated for the � values appropriate for upper-tail, lower-tail,

or two-tailed tests, then the exact significance levels are calculated by SimFIT for small samples by solving
%(�= ≤ 0/=) using the difference equation

[20]∑
9=0

(−1) 9 ((20 − 9) 9/ 9!)@A− 9 (0) = 0, A = 2[0] + 1, 2[0] + 2, . . .

with initial conditions

@A (0) = 1, A = 0

= AA/A!, A = 1, . . . , [0]

= AA/A! − 20
[A−0]∑
9=0

((0 + 9) 9−1/ 9!) (A − 0 − 9)A− 9/(A − 9)!, A = [0 + 1], . . . , 2[0],

where [0] is the largest integer ≤ 0 regardless of the sign of 0, while the series

lim
=→∞

%

(
�= ≤ I

√
=

)
= 1 − 2

∞∑
8=1

(−1)8−1 exp(−282I2)

is used for large samples. For example, input the file normal.tf1 and test to see if these numbers do come
from a normal distribution. See if your own files vector.1st and vector.2nd come from a uniform or a
beta distribution. Note that there are two ways to perform this test; you can state the parameters, or they can
be estimated by the program from the sample, using the method of moments, or else maximum likelihood.
However, calculating parameters from samples compromises this test leading to a significant reduction in

power. If you want to see if a sample comes from a binomial, Poisson, uniform, beta, gamma, lognormal
normal, or Weibull distribution, etc., the data supplied must be of a type that is consistent with the supposed
distribution, otherwise you will get error messages. Before you do any parametric test with a sample, you can
always use this option to see if the sample is in fact consistent with the supposed distribution. An extremely
valuable option provided is to view the best-fit cdf superimposed upon the sample cumulative distribution,
which is a very convincing way to assess goodness of fit. Superposition of the best fit pdf on the sample
histogram can also be requested, which is useful for discrete distributions but less useful for continuous
distributions, since it requires large samples (say greater than 50) and the histogram shape depends on the
number of bins selected. Table 10.11 illustrates the results when the test file normal.tf1 is analyzed to
see if the data are consistent with a normal distribution using the Kolmogorov-Smirnov test with parameters

Tests 133

Data: 50 numbers from a normal distribution mu = 0 and sigma = 1

Parameters estimated from sample are:

mu = 0.02579, se = 0.1422, 95%cl = (0.3116, 0.26)

sigma = 1.006, sigma^2 = 1.011, 95%cl = (0.7055, 1.57)

Sample size = 50, i.e. number of xvalues

H0: F(x) equals G(y) (x & theory are comparable) against

H1: F(x) not equal to G(y) (x & theory not comparable)

D = 0.09206

z = 0.651

p = 0.7559

H2: F(x) > G(y) (x tend to be smaller than theoretical)

D = 0.09206

z = 0.651

p = 0.3780

H3: F(x) < G(y) (x tend to be larger than theoretical)

D = 0.0622

z = 0.4398

p = 0.4919

ShapiroWilks normality test:

W statistic = 0.9627

Sign. level = 0.1153 Tentatively accept normality

Table 10.11: Kolomogorov-Smirnov 1-sample and Shapiro-Wilks tests

estimated from the sample, and the Shapiro-Wilks test to be described shortly (page 133). Note that typical
plots of the best fit normal distribution with the sample cumulative distribution, and best-fit density function
overlayed on the sample histogram obtained using this procedure can be seen on page 22, while normal
scores plots were discussed and illustrated on page 123. Note that significance levels are given in the table
for upper-tail, lower-tail, and two-tail tests. In general you should only use the two-tail probability levels,
reserving the one-tail tests for situations where the only possibility is either that the sample mean may be
shifted to the right of the null distribution requiring an upper-tail test, or to the left requiring a lower-tail test

10.3.3 1-sample Shapiro-Wilks test for normality

This procedure is used when you have data and wish to test �0: the sample is normally distributed. It is a
very useful general test which may perform better than the Kolmogorov-Smirnov1-sample test just described,
but the power is low, so reasonably large sample sizes (say > 20) are required. The test statistic , , where
0 ≤ , ≤ 1, is constructed by considering the regression of ordered sample values on the corresponding
expected normal order statistics, so a normal scores plot should always be examined when testing for a normal
distribution, and it should be approximately linear if a sample is from a normal distribution. For a sample of
size =, this plot and the theory for the Shapiro-Wilks test, require the normal scores, i.e., the expected values
of the Ath largest order statistics given by

� (A, =) = =!
(A − 1)!(= − A)!

∫ ∞

−∞
G [1 − Φ(G)]A−1[Φ(G)]=−Aq(G) 3G,

where q(G) = 1
√

2c
exp

(
−1

2
G2

)
,

and Φ(G) =
∫ G

−∞
q(D) 3D.

134 SimFIT reference manual

Then the test statistic, uses the vector of expected values of a standard normal sample G1, G2, . . . , G= and the
corresponding covariance matrix, that is

<8 = � (G8) (8 = 1, 2, . . . , =),
and E8 9 = cov(G8 , G 9) (8, 9 = 1, 2, . . . , =),

so that, for an ordered random sample H1, H2, . . . , H=,

, =

(
=∑
8=1

08H8

)2

=∑
8=1

(H8 − H̄)2

,

where 0) = <)+−1[(<)+−1) (+−1<)]− 1
2 .

Finally, the significance level for the statistic, calculated from a sample is obtained by transformation to an
approximately standard normal deviate using

I =
(1 −,)_ − `

f
,

where _ is estimated from the sample and `, and f are the sample mean and standard deviation. Values of,
close to 1 support normality, while values close to 0 suggest deviation from normality.

10.3.4 1-sample Dispersion and Fisher exact Poisson tests

This procedure is used when you have data in the form of non-negative integers (e.g. counts) and wish to
test �0: the sample is from a Poisson distribution. Given a sample of = observations G8 with sample mean
Ḡ =

∑=
8=1 G8/= from a Poisson distribution (page 419), the dispersion � given by

� =

=∑
8=1

(G8 − Ḡ)2/Ḡ

is approximately chi-square distributed with = − 1 degrees of freedom. A test for consistency with a Poisson
distribution can be based on this � statistic but, with small samples, the more accurate Fisher exact test can
be performed. This estimates the probability of the sample observed based on all partitions consistent with
the sample mean, size and total. After performing these tests on a sample of nonnegative integers, this option
then plots a histogram of the observed and expected frequencies (page 136). Table 10.12 shows the results
from analyzing data in the test file poisson.tf1 and also the results from using the previously discussed
Kolmogorov 1-sample test with the same data. Clearly the data are consistent with a Poisson distribution.
The mean and expectation of a Poisson distribution are identical and three cases can arise.

1. The sample variance exceeds the upper confidence limit for the sample mean indicating over-dispersion,
i.e. too much clustering/clumping.

2. The sample variance is within the confidence limits for the sample mean indicating consistency with a
Poisson distribution.

3. The sample variance is less than the lower confidence limit for the sample mean indicating under-
dispersion, i.e. too much uniformity.

Output from the Kolmogorov-Smirnov 1-sample test for a Poisson distribution indicates if the variance is
suspiciously small or large.

Tests 135

Dispersion and Fisherexact Poisson tests

Sample size = 40

Sample total = 44

Sample ssq = 80

Sample mean = 1.1

Lower 95% con.lim. = 0.7993

Upper 95% con.lim. = 1.477

Sample variance = 0.8103

Dispersion (D) = 28.73

p = P(Chisq >= D) = 0.88632

Number deg. freedom = 39

Fisher exact Prob. = 0.91999

KolmogorovSmirnov one sample test

H0: F(x) equals G(y) (x & theory are comparable) against

H1: F(x) not equal to G(y) (x & theory not comparable)

D = 0.1079

z = 0.6822

p = 0.7003

H2: F(x) > G(y) (x tend to be smaller than theoretical)

D = 0.07597

z = 0.4805

p = 0.4808

H3: F(x) < G(y) (x tend to be larger than theoretical)

D = 0.1079

z = 0.6822

p = 0.3501

Table 10.12: Poisson distribution tests

10.3.5 Goodness of fit to a Poisson distribution

After using a Kolmogorov-Smirnov 1-sample or Fisher exact test to estimate goodness of fit to a Poisson
distribution, the sample cdf can be compared with the theoretical cdf as in figure 10.3. The theoretical cdf

is shown as a filled polygon for clarity. Also, sample and theoretical frequencies can be compared, as shown
for a normal graph with bars as plotting symbols, and sample values displaced to avoid overlapping. Observe
that the labels at G = −1 and G = 8 were suppressed, and bars were added as graphical objects to identify the
bar types.

136 SimFIT reference manual

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7

Goodness Of Fit to a Poisson Distribution, = 3

Values

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
s

 Sample (n = 25)

Theoretical cdf

0

2

4

6

8

0 1 2 3 4 5 6 7

Goodness Of Fit to a Poisson Distribution, = 3

Values

F
re

q
u

en
ci

es

Theoretical

Sample (n = 25)

Figure 10.3: Goodness of fit to a Poisson distribution

10.3.6 2-sample unpaired C and variance ratio tests

This procedure is used when you have two samples G = (G1, G2, . . . , G<) and H = (H1, H2, . . . , H=) (i.e., two
column vectors of measurements, not counts) which are assumed to come from two normal distributions with
the same variance, and you wish to test �0: the means of the two samples are equal. It is equivalent to 1-way

Tests 137

analysis of variance (page 161) with just two columns. The test statistic * that is calculated is

* =
Ḡ − H̄√

B2?

(
1
<

+ 1
=

) ,

where Ḡ =
<∑
8=1

G8/<,

H̄ =

=∑
8=1

H8/=,

B2G =

<∑
8=1

(G8 − Ḡ)2/(< − 1),

B2H =

=∑
8=1

(H8 − H̄)2/(= − 1),

and B2? =
(< − 1)B2G + (= − 1)B2H

< + = − 2
.

Here B2? is the pooled variance estimate and * has a C distribution with < + = − 2 degrees of freedom under
�0: the means are identical. The sample means and variances are calculated, then the test statistic and
significance levels for lower, upper and two-tail tests. Note that before doing a C or paired C test, SimFIT
can do a Shapiro-Wilks test, which examines the correlation between the sample cumulative distribution and
the expected order statistics to test for normal distributions. It can also do a variance ratio test for common
variances, which calculates

q = max

(
B2G

B2H
,
B2H

B2G

)
.

A 2-tail probability for this � test with 0 and 1 degrees of freedom is twice the upper tail probability, as

%(�0,1 ≥ q) = %(�1,0 ≤ 1/q) .

However, both the Shapiro-Wilks test, and also the � test are very weak with small samples, say less than 25.
So, if you have large samples which do not pass these tests, ask yourself if doing a C test makes sense (since a
C test depends upon the assumption that both samples are normal and with the same variance).

Note that the Satterthwaite procedure, using a C2 statistic with a degrees of freedom calculated with the Welch
correction for unequal variances is performed at the same time, using

C2 =
Ḡ − H̄

B4(Ḡ − H̄)

B4(Ḡ − H̄) =

√
B2G

<
+
B2H

=

a =
B4(Ḡ − H̄)4

(B2G/<)2/(< − 1) + (B2H/=)2/(= − 1)

and the results are displayed within square brackets adjacent to the uncorrected results. However, this should
only be trusted if the data sets seem approximately normally distributed with fairly similar variances. Note
that, every time SimFIT estimates parameters by regression, it estimates the parameter standard error and
does a C test for parameter redundancy. However, at any time subsequently, you can choose the option to
compare two parameters and estimated standard errors from the curve fitting menus, which does the above
test corrected for unequal variances. Table 10.13 shows the results from analyzing data in ttest.tf4 and
ttest.tf5 which are not paired. Clearly the correction for unequal variance is unimportant in this case and
the unpaired C test supports equality of the means.

138 SimFIT reference manual

Normal distribution test 1, Data: Xdata for t test

ShapiroWilks statistic W = 0.9924

Significance level for W = 1.0000 Tentatively accept normality

Normal distribution test 2, Data: Ydata for t test

ShapiroWilks statistic W = 0.998

Significance level for W = 0.9999 Tentatively accept normality

F test for equality of variances

No. of xvalues = 12

Mean x = 120.0

Sample variance of x = 457.5

Sample std. dev. of x = 21.39

No. of yvalues = 7

Mean y = 101.0

Sample variance of y = 425.3

Sample std. dev. of y = 20.62

Variance ratio = 1.076

Deg. of freedom (num) = 11

Deg. of freedom (denom) = 6

P(F >= Variance ratio) = 0.4894

Two tail p value = 0.9788

Conclusion: Consider accepting equality of variances

Unpaired t test ([] = corrected for unequal variances)

Number of xvalues = 12

Number of yvalues = 7

Number of degrees of freedom = 17 [13]

Unpaired t test statistic U = 1.891 [1.911]

p = P(t >= U) (upper tail p) = 0.0379 [0.0391]

p = P(t =< U) (lower tail p) = 0.9621 [0.9609]

p for two tailed t test = 0.0757 [0.0782]

Difference between means DM = 19.0

Lower 95% con. limit for DM = 2.194 [1.98]

Upper 95% con. limit for DM = 40.19 [39.98]

Conclusion: Consider accepting equality of means

Table 10.13: Unpaired C test

10.3.7 2-sample paired C test

This procedure is used when you have paired measurements, e.g., two successive measurements on the
same subjects before and after treatments, and wish to test �0: the mean of the differences between paired
measurements is zero. Just as the unpaired C test is equivalent to analysis of variance with just two columns,
the paired C test is equivalent to repeated measurements analysis of variance. For convenience, data for all
paired tests also can be input as a = by 2 matrix rather than two vectors of length =. The paired C test is based
on the assumption that the differences between corresponding pairs G8 and H8 are normally distributed, not
necessarily the original data although this would normally have to be the case, and it requires the calculation

Tests 139

of 3̄, B2
3
, and C3 given by

38 = G8 − H8

3̄ =

=∑
8=1

38/=

B23 =

=∑
8=1

(38 − 3̄)2/(= − 1)

C3 =
3̄√
B2
3
/=
.

The test statistic C3 is again assumed to follow a C distribution with =− 1 degrees of freedom. For more details
of the C distribution see page 422.

Table 10.14 shows the results from a paired C test with paired data from test files ttest.tf2 and ttest.tf3,
where the the test supports equality of means.

Paired t test

Number of degrees of freedom = 9

Paired t test statistic S = 0.904

p = P(t >= S) = 0.8052

p = P(t =< S) = 0.1948

p for two tailed t test = 0.3895

Mean of differences MD = 1.3

Lower 95% con. limit for MD = 4.553

Upper 95% con. limit for MD = 1.953

Conclusion: Consider accepting equality of means

Table 10.14: Paired C test

10.3.8 2-sample Kolmogorov-Smirnov test

This nonparametric procedure is used when you have two samples (column vectors) - of length < and .
of length = and you wish to test �0: the samples are from the same, unspecified, distribution. It is a poor
test unless both samples are fairly large (say > 20) and both come from a continuous and not a discrete
distribution. The �<,=+, �<,=− and �<,= values are obtained from the differences between the two sample
cumulative distribution functions, then the test statistic

I =

√
<=

< + =�<,=

is calculated. For small samples SimFIT calculates significance levels using the formula

%(�<,= ≤ 3) = �(<, =)
/(
< + =
=

)

where �(<, =) is the number of paths joining integer nodes from (0, 0) to (<, =) which lie entirely within
the boundary lines defined by 3 in a plot with axes 0 ≤ - ≤ < and 0 ≤ . ≤ =, and where �(D, E) at any
intersection satisfies the recursion

�(D, E) = �(D − 1, E) + �(D, E − 1)

140 SimFIT reference manual

with boundary conditions �(0, E) = �(D, 0) = 1. However, for large samples, the asymptotic formula

lim
<,=→∞

%

(√
<=

< + =�<,= ≤ I

)
= 1 − 2

∞∑
8=1

(−1)8−1 exp(−282I2)

is employed. For example, use the test files ttest.tf4 and ttest.tf5 to obtain the results shown in
table 10.15. The test again supports equality of means. You could also try your own files vector.1st and

Size of Xdata = 12

Size of Ydata = 7

H0: F(x) is equal to G(y) (x and y are comparable) against

H1: F(x) not equal to G(y) (x and y not comparable)

D = 0.4405

z = 0.2095

p = 0.2653

H2: F(x) > G(y) (x tend to be smaller than y)

D = 0.0

z = 0.0

p = 0.5

H3: F(x) < G(y) (x tend to be larger than y)

D = 0.4405

z = 0.2095

p = 0.1327

Table 10.15: Kolmogorov-Smirnov 2-sample test

vector.2nd (prepared previously) to illustrate a very important set of principles. For instance, it is obvious
to you what the values in the two samples suggest about the possibility of a common distribution. What do
the upper, lower and two tail tests indicate ? Do you agree ? What happens if you put your vector files in the
other way round ? Once you have understood what happens to these data sets you will be a long way towards
being able to analyze your own pairs of data sets. Note that, if data have been input from files, simstat saves
the last set of files for re-analysis, for instance to do the next test.

10.3.9 2-sample Wilcoxon-Mann-Whitney U test

The Mann-Whitney * nonparametric procedure (which is equivalent to the Wilcoxon rank-sum test) is used
when you have two samples (column vectors) and wish to test �0: the samples have the same medians, against
��: the distributions are not equivalent, e.g., one sample dominates the other in distribution. Although the
test only works optimally for continuous data, it can be useful for scored data, where the order is meaningful
but not the numerical magnitude of differences. The two samples, G of size < and H of size =, are combined,
then the sums of the ranks of the two samples in the combined sample are used to calculate exact significance
levels for small samples, or asymptotic values for large samples. The test statistic * is calculated from the
ranks AG8 in the pooled sample, using average ranks for ties, as follows

'G =

<∑
8=1

AG8

* = 'G −
<(< + 1)

2
.

The statistic * is also the number of times a score in sample H precedes a score in sample G, counting a half
for tied scores, so large values suggest that G values tend to be larger than H values.

For example, do exactly as for the C test using ttest.tf4 and ttest.tf5 and compare the the results as
displayed in table 10.16 with table 10.15 and table 10.13. The null hypothesis �0 : � (G) = � (H) is that two

Tests 141

Size of Xdata = 12

Size of Ydata = 7

U = 62.5

z = 1.691

H0: F(x) is equal to G(y) (x and y are comparable)

as null hypothesis against the alternatives:

H1: F(x) not equal to G(y) (x and y not comparable)

p = 0.0873

H2: F(x) > G(y) (x tend to be smaller than y)

p = 0.9605

H3: F(x) < G(y) (x tend to be larger than y)

p = 0.0436 Reject H0 at 5% slevel

Table 10.16: Wilcoxon-Mann-Whitney U test

samples are identically distributed, and the appropriate rejection regions are

*G ≤ DU for �1 : � (G) ≥ � (H)
*H ≤ DU for �1 : � (G) ≤ � (H)
*G ≤ DU/2 or*H ≤ DU/2 for �1 : � (G) ≠ � (H)

where the critical points DU can be calculated from the distribution of *. Defining A<,= (D) as the number of
distinguishable arrangements of the < - and = . variables such that in each sequence . precedes - exactly
D times, the recursions

A<,= (D) = A<,=−1 (D) + A<−1,= (D − =)

%(* = D) = A<,=
/(
< + =
<

)
= ?<,= (D)

=

(=

< + =
)
?<,=−1 (D) +

(<

< + =
)
?<−1,= (D − =)

are used by SimFITto calculate exact tail probabilities for =, < ≤ 40 or < + = ≤ 50, but for larger samples a
normal approximation is used. The parameter I in table 10.16 is the approximate normal test statistic given
by

I =
* − <=/2 ± 0.5√

+ (*)

where + (*) = <=(< + = + 1)
12

− <=)

(< + =) (< + = − 1)

and) =

g∑
9=1

C 9 (C 9 − 1) (C 9 + 1)
12

with g groups of ties containing C 9 ties per group. The equivalence of this test using test statistic * = *G and
the Wilcoxon rank-sum test using test statistic ' = 'G will be clear from the identities

*G = 'G − <(< + 1)/2
*H = 'H − =(= + 1)/2

*G +*H = <=
'G + 'H = (< + =) (< + = + 1)/2.

Many people recommend the consistent use of this test instead of the C or Kolmogorov-Smirnov tests, so you
should try to find out why we need two nonparametric tests. For instance; do they both give the same results?;

142 SimFIT reference manual

should you always use both tests?; are there circumstances when the two tests would give different results?;
is rejection of �0 in the one-tail test of table 10.16 to be taken seriously with such small sample sizes, and so
on. Note that the Kruskal-Wallis test (page 165) is the extension of the Mann-Whitney U test to more than
two independent samples.

10.3.10 2-sample Wilcoxon signed-ranks test

This procedure is used when you have two paired samples, e.g., two successive observations on the same
subjects, and wish to test �0: the median of the differences is zero. Just as the Mann-Whitney U test is
the nonparametric equivalent of the unpaired C test, the Wilcoxon paired-sample signed-ranks test is the
nonparametric equivalent of the paired C test. If the data are counts, scores, proportions, percentages, or any
other type of non-normal data, then these tests should be used instead of the C tests. Table 10.17 shows the

Size of data = 10

Number of values suppressed = 0

W = 17.0

z = 1.027

H0: X median = Y median

as null hypothesis against the alternatives:

H1: Medians are not equal

p = 0.2480

H2: X median < Y median

p = 0.1240

H3: X median > Y median

p = 0.8047

Table 10.17: Wilcoxon signed-ranks test

results from analyzing the data in ttest.tf2 and ttest.tf3, which was previously done using the paired C
test (page139). The test examines the pairwise differences between two samples of size = to see if there is any
evidence to support a difference in location between the two populations, i.e. a nonzero median for the vector
of differences between the two samples. It is usual to first suppress any values with zero differences and to
use a zero test median value. The vector of differences is replaced by a vector of absolute differences which
is then ranked, followed by restoring the signs and calculating the sum of the positive ranks)+, and the sum
of negative ranks)−, where clearly

)+ +)−
= =(= + 1)/2.

The null hypothesis �0 : " = "0 is that the median difference " equals a chosen median "0, which is
usually input as zero, and the appropriate rejection regions are

)− ≤ CU for �1 : " > "0

)+ ≤ CU for �1 : " < "0

)+ ≤ CU/2 or)− ≤ CU/2 for �1 : " ≠ "0

where the critical points CU can be calculated from the distribution of) , which is either)+ or)− such that
%() ≤ CU) = U. If D=(:) is the number of ways to assign plus and minus signs to the first = integers, then

%()+
= = :) = D= (:)

2=

=
D=−1 (: − =) + D=−1(:)

2=

Tests 143

which is used by SimFITto calculate exact tail probabilities for = ≤ 80. The normal approximation I in
table 10.17 is defined as

I =
|�| − 0.5

√
+

where � = [) − [=(= + 1) − <(< + 1)]/4]
and + = [=(= + 1) (2= + 1) − <(< + 1) (2< + 1) − '/2]/24.

Here < is the number of zero differences included in the analysis, if any, and ' = ΣA2
8 (A8 + 1) is the sum of

tied ranks, excluding any due to zero differences and, for = > 80, tail areas are calculated using this normal
approximation.

10.3.11 Chi-square test on observed and expected frequencies

This test is used when you have a sample of = observed frequencies $8 and a corresponding set of expected
frequencies �8 and wish to test that the observed frequencies are consistent with the distribution generating
the expected values, by calculating the statistic � given by

� =

=∑
8=1

($8 − �8)2

�8
.

If the expected frequencies are exact and the observed values are representative of the supposed distribution,
then � is asymptotically distributed as chi-square with a degrees of freedom. In the usual case, the expected
frequencies are not exact but are calculated using< parameters estimated from the sample, so that the degrees
of freedom are given by

a = = − 1 − <.
Table 10.18 illustrates the results with test files chisqd.tf2 and chisqd.tf3 and one estimated parameter.

Number of partitions (bins) = 6

Number of deg. of freedom = 4

Chisquare test stat. C = 1.531

p = P(chisquare >= C) = 0.8212 Consider accepting H0

Upper tail 5% crit. point = 9.488

Upper tail 1% crit. point = 13.28

Table 10.18: Chi-square test on observed and expected frequencies

The test requires rather large samples, so that the expected values are all positive integers, if possible say ≥ 5,
and the number of observed values, i.e. bins =, is sufficient for a reasonable number of degrees of freedom in
the chi-square test. If the total number of observations is :, then the number of bins = used to partition the
data is often recommended to be of the order

= ≈ :0.4

but this, and the intervals used to partition the data, depend on the shape of the assumed distribution. Of
course, the significance level for the test will depend on the number of bins used, and the intervals selected to
partition the sample of observations into bins.

Figure 10.4 illustrates a bar chart for these data that can be inspected to compare the observed and expected
values visually.

10.3.12 Chi-square, Fisher-exact, and loglinear contingency table tests

A contingency table is an array of nonnegative frequencies with = rows and < columns, such as this table
contained in SimFIT test file chisqd.tf4, for 15 observations carried out on two populations to test for equal
probabilities of success.

144 SimFIT reference manual

0.0

10.0

20.0

30.0

40.0

1 2 3 4 5 6

Observed and Expected Frequencies

Bins

F
re

qu
en

ci
es

Figure 10.4: Observed and Expected frequencies

Success Failure

Sample 1 3 3 6

Sample 2 7 2 9

10 5 15

Here, the cell frequencies are (3, 3, 7, 2), the sum of row frequencies known as row marginals are (6, 9),
the sum of column frequencies known as column marginals are (10, 5), and obviously the row and column
marginals must separately both add up to the total number of frequencies (15).

To be precise, in the general case there will be frequencies 58 9 where 8 = 1, 2, . . . , =, and 9 = 1, 2, . . . , <, and
it is wished to test for homogeneity, i.e. independence, or no association between the variables, which can be
stated as the null hypothesis

�0 : `8 9 = `8.`. 9 , for 8 = 1, 2, . . . , =, and 9 = 1, 2, . . . , <

where each cell probability `8 9 is completely determined by the corresponding row marginal `8., and the
column marginal `. 9 . To examine a given data set SimFIT provides the following three alternatives,which are
based on the hypergeometric distribution (page 418) and the chi-square distribution (page 423).

1. The chi-square contingency table test.

This is the easiest to perform and and interpret, and is the test most generally used. However, it must be
emphasized that the test statistic is only asymptotically distributed as chi-square with (= − 1) (< − 1)

Tests 145

degrees of freedom in the limit for large samples. Where there are small frequencies the option to
combine cells should be considered, and note that the Yate’s continuity correction may be used where
appropriate.

2. The Fisher exact contingency table test.

This is very powerful and widely used, but sometimes suffers from being difficult to interpret with large
samples, which also may lead to computational problems.

3. The loglinear contingency table test.

This uses general linear modeling assuming a Poisson error distribution and log link, but it does require
some expertise on the part of users.

10.3.12.1 The chi-square contingency table test

For all tables, SimFIT calculates a chi-square test statistic � from the observed frequencies 58 9 , and expected
frequencies 48 9 , and also a likelihood ratio test statistic ! defined in terms of the expected values 48 9 and
marginals 58. and 5. 9 as follows

48 9 = 58. 5. 9/#

� =

=∑
8=1

<∑
9=1

(58 9 − 48 9)2

48 9

! = −2 log_

= 2
=∑
8=1

<∑
9=1

58 9 log(58 9/48 9)

It is often recommended to combine cells where the expected values are small, say 48 9 < 0.5, and this facility
is provided.

Select chi-square contingency table analysis, then analyze the above data which leads to table 10.19 showing

Number of rows = 2

Number of columns = 2

Chisq. test stat. C = 0.3125

Degrees of freedom = 1

p = P(chisq. >= C) = 0.5762

Upper tail 5% point = 3.841

Upper tail 1% point = 6.635

L = 2*log(lambda) = 1.243

p = P(chisq. >= L) = 0.2649

Yate’s correction used in chisquare

Table 10.19: Chi-square and likelihood ratio contingency table tests: 2 by 2

the results from calculation of the approximate chi-square test statistic with the Yate’s continuity correction

� =
(| 511 522 − 512 521 | − #/2)2

A1A22122

for this 2 by 2 contingency table, where # is the sum of frequencies 58 9 , A8 are the row marginals, and 2 9 are
the column marginals. Clearly, the results do not suggest rejecting �0.

146 SimFIT reference manual

Data: Test file chisqd.tf4: Fisher exact test

Observed Rearranged so R1 = smallest marginal, C2 >= C1

3 3 3 2

7 2 3 7

p(r) = p for f(1,1) = r after rearranging and adjusting

p(0) = 0.041958

p(1) = 0.251748

p(2) = 0.419580

p(3) = 0.239760 p(*), observed frequencies

p(4) = 0.044955

p(5) = 0.001998

P_Sums, for 1tail and 2tail test statistics

P_sum1 = 0.041958 sum of p(r) =< p(*) for r < 3

P_sum2 = 0.953047 sum of all p(r) for r =< 3

P_sum3 = 0.286713 sum of all p(r) for r >= 3

P_sum4 = 0.046953 sum of p(r) =< p(*) for r > 3

P_sum5 = 1.000000 P_sum2 + P_sum4

P_sum6 = 0.328671 P_sum1 + P_sum3

Table 10.20: Fisher exact contingency table test 1

10.3.12.2 The Fisher exact contingency table test

For 2 by 2 contingency tables, and # ≤ 100, results are displayed. as in table 10.20. For convenience, this
test starts by rearranging the data table until A1 is the smallest marginal and 22 ≥ 21. Then all hypothetical
tables that are possible with the same marginals are considered, but now for A = 511 for A = 0, 1, . . . , A1 as
follows, where the observed frequencies are indicated by stars (*).

0 5 1 4 2 3 *3 *2 4 1 5 0

6 4 5 5 4 6 *3 *7 2 8 1 9

Assuming the null hypothesis, the probabilities ?(A) for tables with 511 = A are then calculated for a
hypergeometric distribution using

?(A) = A1!A2!21!22!
511! 521! 512! 522!#!

=
A1!A2!21!22!

#!A!(A1 − A)!(21 − A)!(# − 21 − A1 + A)!
, A = 0, 1, . . . , A1.

With the tables under consideration it is clear that, had the outcome been as for the hypothetical tables
indicated by ?(0), ?(4), or ?(5) then the possibility of rejecting �0 would have to be considered. However,
the current data ?(3), indicated by ?(∗) would be accepted, as for the chi-square test on the same data. With
less obvious results, various one-tailed and two-tailed tests can be based on considering probabilities for more
extreme contingency tables, or sums of such probabilities. As an example consider the following data

Boys Girls

Left-handed 6 (18%) 12 (22%) 18

Right-handed 28 (82%) 24 (67%) 52

34 36 70

and possible hypotheses for this sample
�0: left-handedness is not less common in boys than girls
��: left-handedness is less common in boys than girls.
Table 10.21 presents the results. Here, adding up the probabilities for the observed table ?(6) = ?(∗) and

Tests 147

Observed Rearranged so R1 = smallest marginal, C2 >= C1

6 12 6 12

28 24 28 24

p(r) = p for f(1,1) = r after rearranging and adjusting

p(0) = 0.000000

p(1) = 0.000013

p(2) = 0.000177

p(3) = 0.001436

p(4) = 0.007590

p(5) = 0.027720

p(6) = 0.072572 p(*), observed frequencies

p(7) = 0.139338

p(8) = 0.198959

p(9) = 0.212877

p(10) = 0.171062

p(11) = 0.102959

p(12) = 0.046046

p(13) = 0.015082

p(14) = 0.003535

p(15) = 0.000571

p(16) = 0.000060

p(17) = 0.000004

p(18) = 0.000000

P_Sums, for 1tail and 2tail test statistics

P_sum1 = 0.036936 sum of p(r) =< p(*) for r < 6

P_sum2 = 0.109508 sum of all p(r) for r =< 6

P_sum3 = 0.963064 sum of all p(r) for r >= 6

P_sum4 = 0.065297 sum of p(r) =< p(*) for r > 6

P_sum5 = 0.174805 P_sum2 + P_sum4

P_sum6 = 1.000000 P_sum1 + P_sum3

Table 10.21: Fisher exact contingency table test 2

all the possible tables more extreme than this that would favor �� against �0 we see that the appropriate
one-tailed ? value is

?(0) + ?(1) + ?(2) + ?(3) + ?(4) + ?(5) + ?(6) = 0.109508

and so, for this sample with U = 0.05 we would not consider rejecting �0.

10.3.12.3 The loglinear contingency table test

Analysis of the data in chisqd.tf5 shown in table 10.22 and table 10.23 illustrates another feature of
contingency table analysis. For 2 by 2 tables the Fisher exact, chi-square, and likelihood ratio tests are usually
adequate but, for larger contingency tables with no very small cell frequencies it may be useful to fit a
log-linear model. To do this, SimFIT defines dummy indicator variables for the rows and columns (page 55),
then fits a generalized linear model (page 49) assuming a Poisson error distribution and log link, but imposing
the constraints that the sum of row coefficients is zero and the sum of column coefficients is zero, to avoid
fitting an overdetermined model (page 52). The advantage of this approach is that the deviance, predicted
frequencies, deviance residuals, and leverages can be calculated for the model

log(`8 9) = \ + U8 + V 9 ,

148 SimFIT reference manual

Observed chisquare frequencies

6 15 10 38 62 26

16 12 9 22 36 5

Number of rows = 2

Number of columns = 6

Chisq. test stat. C = 18.59

No. deg. of freedom = 5

p = P(chisq. >= C) = 0.0023 Reject H0 at 1% sig.level

Upper tail 5% point = 11.07

Upper tail 1% point = 15.09

L = 2*log(lambda) = 19.24

P(chisq. >= L) = 0.0017 Reject H0 at 1% sig.level

Table 10.22: Chi-square and likelihood ratio contingency table tests: 2 by 6

Deviance (D) = 1.924E+01, deg.free. = 5

P(chisq>=D) = 0.0017 Reject H0 at 1% sig.level

Parameter Estimate Std.Err. ..95% con. lim.... p

Constant 2.856 0.0748 2.66 3.05 0.0000

Row 1 0.2255 0.064 0.0611 0.39 0.0168 *
Row 2 0.2255 0.064 0.39 0.0611 0.0168 *
Col 1 0.4831 0.189 0.969 0.00257 0.0508 **
Col 2 0.2783 0.173 0.724 0.168 0.1696 ***
Col 3 0.6297 0.201 1.15 0.112 0.0260 *
Col 4 0.5202 0.128 0.19 0.851 0.0098

Col 5 1.011 0.11 0.727 1.29 0.0003

Col 6 0.1401 0.164 0.562 0.281 0.4320 ***
Data Model Delta Residual Leverage

6 13.44 7.44 2.2808 0.6442

15 16.49 1.49 0.3737 0.6518

10 11.61 1.61 0.4833 0.6397

38 36.65 1.35 0.2210 0.7017

62 59.87 2.13 0.2740 0.7593

26 18.94 7.06 1.5350 0.6578

16 8.56 7.44 2.2661 0.4414

12 10.51 1.49 0.4507 0.4533

9 7.39 1.61 0.5713 0.4343

22 23.35 1.35 0.2814 0.5317

36 38.13 2.13 0.3486 0.6220

5 12.06 7.06 2.3061 0.4628

Table 10.23: Loglinear contingency table analysis

where `8 9 are the expected cell frequencies expressed as functions of an overall mean \, row coefficients
U8 , and column coefficients V 9 . The row and column coefficients reflect the main effects of the categories,
according to the above model, where

=∑
8=1

U8 =

<∑
9=1

V 9 = 0

and the deviance, which is a likelihood ratio test statistic, can be used to test the justification for a mixed term
W8 9 in the saturated model

log(`8 9) = \ + U8 + V 9 + W8 9 ,

Tests 149

which fits exactly, i.e., with zero deviance. SimFIT performs a chi-square test on the deviance to test the null
hypotheses of homogeneity, which is the same as testing that all W8 9 are zero, the effect of individual cells can
be assessed from the leverages, and various deviance residuals plots can be done to estimate goodness of fit
of the assumed log-linear model.

10.3.13 McNemar test

The McNemar test is used to analyze paired observations of a dichotomous variable, i.e. where there can
only be one of two possible values such as: success/failure, +/-, 0/1, etc. and it is of interest to examine if the
paired values are associated or are independent.

To be precise, consider the possible outcome from testing fifty specimens of sputum cultured on two different
culture media, A and B, with the intention of detecting a particular bacterium. The four possible outcomes
were as follows.

Type Medium A Medium B Number

Both + + 20

A only + - 12

B only - + 2

Neither - - 16

These data can be arranged as a 2 by 2 contingency table, such as this table contained in SimFIT test file
mcnemar.tf1.

B + B - Total

A + 20 12 32

A - 2 16 18

Total 22 28 50

Here, the cell frequencies are (511 = 20, 512 = 12, 521 = 2, 522 = 16), the sum of row frequencies known
as row marginals are (32, 18), the sum of column frequencies known as column marginals are (22, 28), and
obviously the row and column marginals must separately both add up to the total number of frequencies
(= = 50).

Analysis of these data produces table 10.24 where frequencies 58 9 are analyzed by calculating the j2 test

McNemar test

H0: Expected value of [(f(1,2) (f(2,1))/n] = 0

Data for 2 by 2 McNemar test

Number of rows/columns = 2

Chisq. test stat. C = 5.786

Number deg. of freedom = 1

p = P(chisq. >= C) = 0.0162 Reject H0 at 5% level

Upper tail 5% point = 3.841

Upper tail 1% point = 6.635

Continuity correction used in chisquare

Table 10.24: McNemar 2 by 2 test

statistic given by

j2
=

(| 512 − 521 | − 1)2

512 + 521
.

150 SimFIT reference manual

which has an approximate chi-square distribution with 1 degree of freedom. The outcome emphasizes the
obvious fact that culture medium A is more effective than culture medium B.

Note that this test does not perform so well with small frequencies and, in particular, if A = 2 and

512 + 521 ≤ 20

a warning will be displayed. In such cases it may be preferable to do a binomial test using # = 512 + 521

then - = 512 or - = 521 to check if ?̂ = -/# is consistent with a binomial distribution with parameters #
and ? = 0.5. Since in the 2 by 2 case the McNemar test is equivalent to testing if two sample estimates for
a binomial probability parameter differ significantly, we can use SimFIT to calculate exact 95% confidence
limits as follows

For 2/14 : 0.0178 ≤ ?̂ = 0.1429 ≤ 0.4281

For 12/14 : 0.5719 ≤ ?̂ = 0.8571 ≤ 0.9822

which convincingly demonstrates the superiority of culture medium A over culture medium B.

To explain the logic behind this analysis, note that the overall proportion of successes with medium A is
(511 + 512)/=, while the overall proportion of successes with medium B is (511 + 521)/=, so that the difference
between these estimates for the probability of success depends only on 512 − 521, and the null hypothesis for
such a 2 by 2 table can be expressed as expectations in several equivalent ways without using the diagonal
frequencies 588 except in the sample size =, such as

�0 : �

(
512 − 521

=

)
= 0, or

�0 : �

(
512

521

)
= 1.

Note that it is important that tables for the McNemar test are set up correctly to reflect the pairwise nature of
the data, so an additional example is given using data in test file mcnemar.tf2 for the case where medication
A was applied to one arm and medication B to the other arm with subjects suffering from a rash on both arms.

Chisq. test stat. C = 0.5625

Number of degrees of freedom = 1

p = P(chisq. >= C) = 0.4533 Consider accepting H0

Upper tail 5% point = 3.841

Upper tail 1% point = 6.635

The outcome is that there is no evidence to support a significant difference between medications A and B in
this experiment.

More generally, for larger A by A tables with identical paired row and column categorical variables, the
continuity correction is not used, and the appropriate test statistic is

j2
=

A∑
8=1

∑
9>8

(58 9 − 5 98)2

58 9 + 5 98

with A (A−1)/2 degrees of freedom. Unlike the normal contingency table analysis where the null hypothesis is
independence of rows and columns, with this test there is intentional association between rows and columns.
The test statistic does not use the diagonal frequencies 588 and is testing whether the upper right corner of the
table is symmetrical with the lower left corner. The SimFIT test file mcnemar.tf3 contains data for a such a
3 by 3 McNemar table, as follows.

Table 10.25 illustrates this test by showing that the analysis of data in mcnemar.tf1 is consistent with
association between the variables.

Tests 151

Data for McNemar test

173 20 7

15 51 2

5 3 24

H0: intentional association between row and column data.

Data: Data for McNemar test (details at end of file)

Number of rows/columns = 3

Chisq. test stat. C = 1.248

Number degrees of freedom = 3

p = P(chisq. >= C) = 0.7416 Consider accepting H0

Upper tail 5% point = 7.815

Upper tail 1% point = 11.34

Table 10.25: McNemar 3 by 3 test

10.3.14 Cochran Q repeated measures test on a matrix of 0,1 values

This procedure is used for a randomized block or repeated-measures design with a dichotomous variable. The
blocks (e.g., subjects) are in rows from 1 to = of a matrix while the attributes, which can be either 0 or 1, are
in groups, that is, columns 1 to <. So, with = blocks, < groups, �8 as the number of attributes equal to 1 in
group 8, and � 9 as the number of attributes equal to 1 in block 9 , then the statistic & is calculated, where

& =

(< − 1)

<∑
8=1

�2
8 −

1
<

(
<∑
8=1

�8

)2
=∑
9=1

� 9 −
1
<

=∑
9=1

�2
9

and & is distributed as approximately chi-square with < − 1 degrees of freedom. It is recommended that <
should be at least 4 and <= should be at least 24 for the approximation to be satisfactory.

For example, try the test file cochranq.tf1 to obtain the results shown in table 10.26, noting that rows with

Data for Cochran Q test

A B C D E

subject1 0 0 0 1 0

subject2 1 1 1 1 1

subject3 0 0 0 1 1

subject4 1 1 0 1 0

subject5 0 1 1 1 1

subject6 0 1 0 0 1

subject7 0 0 1 1 1

subject8 0 0 1 1 0

Number of blocks (rows) = 7

Number of groups (cols) = 5

Cochran Q value = 6.947

p = P(chisqd. >= Q) = 0.1387

95% chisq. point = 9.488

99% chisq. point = 13.28

Table 10.26: Cochran Q repeated measures test

152 SimFIT reference manual

all 0 or all 1 are not counted, while you can, optionally have an extra column of successive integers in order
from 1 to = in the first column to help you identify the subjects in the results file. Clearly, the test provides no
reason to reject the null hypothesis that the binary response of the subjects is the same for the variables called
�, �, �, �, � in table 10.26.

10.3.15 The binomial test

This procedure, which is based on the binomial distribution (page 417), is used with dichotomous data, i.e.,
where an experiment has only two possible outcomes and it is wished to test �0: binomial ? = ?0 for some
0 ≤ ?0 ≤ 1. For instance, to test if success and failure are subject to pre-determined probabilities, e.g.,
equally likely. You input the number of successes, :, the number of Bernoulli trials, # , and the supposed
probability of success, ?, then the program calculates the probabilities associated with :, #, ?, and ; = # − :
including the estimated probability parameter ?̂ with 95% confidence limits, and the two-tail binomial test
statistic. The probabilities, which can be used for upper-tail, lower-tail, or two-tail testing are

?̂ = :/#

%(- = :) =
(
#

:

)
?: (1 − ?)#−:

%(- > :) =
#∑

8=:+1

(
#

8

)
?8 (1 − ?)#−8

%(- < :) =
:−1∑
8=0

(
#

8

)
?8 (1 − ?)#−8

%(- = ;) =
(
#

;

)
?; (1 − ?)#−;

%(- > ;) =
#∑

8=;+1

(
#

8

)
?8 (1 − ?)#−8

%(- < ;) =
;−1∑
8=0

(
#

8

)
?8 (1 − ?)#−8

%(two tail) = min(%(- ≥ :), %(- ≤ :)) + min(%(- ≥ ;), %(- ≤ ;)) .

Table 10.27 shows, for example, that the probability of obtaining five successes (or alternatively five failures)
in an experiment with equiprobable outcome would not lead to rejection of�0 : ? = 0.5 in a two tail test. Note,
for instance, that the exact confidence limit for the estimated probability includes 0.5. Many life scientists
when asked what is the minimal sample size to be used in an experiment, e.g. the number of experimental
animals in a trial, would use a minimum of six, since the null hypothesis of no effect would never be rejected
with a sample size of five.

10.3.16 The sign test

This procedure, which is also based on the binomial distribution (page 417) but assuming the special case
? = 0.5, is used with dichotomous data, i.e., where an experiment has only two possible outcomes and it
is wished to test if success and failure are equally likely. The test is rather weak and large samples, say
greater than 20, are usually recommended. For example, just enter the number of positives and negatives and
observe the probabilities calculated. Table 10.28 could be used, for instance, to find out how many consecutive
successes you would have to observe before the likelihood of an equiprobable outcome would be questioned.
Obviously five successes and five failures is perfectly consistent with the null hypothesis �0 : ? = 0.5, but
see next what happens when the pattern of successes and failures is considered. Note that the Friedman test
(page 169) is the extension of the sign test to more than two matched samples.

Tests 153

Successes K = 5

Trials N = 5

L = (N K) = 0

ptheory = 0.50000

pestimate = 1.00000 (95% c.l. = 0.47818,1.00000)

P(X > K) = 0.00000

P(X < K) = 0.96875

P(X = K) = 0.03125

P(X >= K) = 0.03125

P(X =< K) = 1.00000

P(X > L) = 0.96875

P(X < L) = 0.00000

P(X = L) = 0.03125

P(X >= L) = 1.00000

P(X =< L) = 0.03125

Two tail binomial test statistic = 0.06250

Table 10.27: Binomial test

Sign test analysis with m + n = 10

P(+ve = m) = 0.24609, m = 5

P(+ve > m) = 0.37695

P(+ve < m) = 0.37695

P(+ve >= m) = 0.62305

P(+ve =< m) = 0.62305

P(ve = n) = 0.24609, n = 5

P(ve < n) = 0.37695

P(ve > n) = 0.37695

P(ve =< n) = 0.62305

P(ve >= n) = 0.62305

Two tail sign test statistic = 1.00000

Table 10.28: Sign test

10.3.17 The run test

This is also based on an application of the binomial distribution (page 417) and is used when the sequence of
successes and failures (presumed in the null hypothesis to be equally likely) is of interest, not just the overall
proportions. For instance, the sequence

+ + + − − + + − − − +−

or alternatively
111001100010

has twelve items with six runs, as will be clear by adding brackets like this

(000) (11) (00) (111) (0) (1).

You can perform this test by providing the number of items, signs, then runs, and you will be warned if the
number of runs is inconsistent with the number of positive and negative signs, otherwise the probability of the
number of runs given the number of positives and negatives will be calculated. Again, rather large samples
are recommended. For instance, what is the probability of a sample of ten new born babies consisting of five
boys and five girls? What if all the boys were born first, then all the girls, that is, two runs? We have seen

154 SimFIT reference manual

Number of ve numbers = 5

Number of +ve numbers = 5

Number of runs = 2

Probability(runs =< observed;

given no. of +ve, ve numbers) = 0.00794 Reject H0 at 1% slevel

Critical number. for 1% sig. level = 2

Critical number for 5% sig. level = 3

Probability(runs =< observed;

given number of non zero numbers) = 0.01953 Reject H0 at 5% slevel

Probability(signs =< observed)

(Two tail sign test statistic) = 1.00000

Table 10.29: Run test

in table 10.28 that the sign test alone does not help, but table 10.29 would confirm what most would believe
intuitively: the event may not represent random sampling but could suggest the operation of other factors.
In this way the run test, particularly when conditional upon the number of successes and failures, is using
information from the sequence of outcomes and is therefore more powerful than the sign test alone.

The run test can be valuable in the analysis of residuals if there is a natural ordering, for instance, when the
residuals are arranged to correspond to the order of a single independent variable. This is not possible if there
are replicates, or several independent variables so, to use the run test in such circumstances, the residuals
must be arranged in some meaningful sequence, such as the order in time of the observation, otherwise
arbitrary results can be obtained by rearranging the order of residuals. Given the numbers of positive and
negative residuals, the probability of any possible number of runs can be calculated by enumerating all
possible arrangements. For instance, the random number of runs ' given < positive and = negative residuals
(redefining if necessary so that < ≤ =) depends on whether the number of runs is even or odd as follows

%(' = 2:) =
2

(
< − 1
: − 1

) (
= − 1
: − 1

)
(
< + =
<

) ,

or %(' = 2: + 1) =

(
< − 1
: − 1

) (
= − 1
:

)
+

(
< − 1
:

) (
= − 1
: − 1

)
(
< + =
<

) .

Here the maximum number of runs is 2< + 1 if < < =, or 2< if < = =, and : = 1, 2, . . . , < ≤ =. However,
in the special case that < > 20 and = > 20, the probabilities of A runs can be estimated by using a normal
distribution with

` =
2<=
< + = + 1,

f2
=

2<=(2<= − < − =)
(< + =)2(< + = − 1)

,

and I =
A − ` + 0.5

f
,

where the usual continuity correction is employed.

The previous conditional probabilities depend on the values of < and =, but it is sometimes useful to know the
absolute probability of ' runs given # = = + < nonzero residuals. There will always be at least one run, so

Tests 155

the probability of A runs occurring depends on the number of ways of choosing break points where a sequence
of residuals changes sign. This will be the same as the number of ways of choosing A − 1 items from # − 1
without respect to order, divided by the total number of possible configurations, i.e. the probability of A − 1
successes in # − 1 independent Bernoulli trials given by

%(' = A) =
(
− 1
A − 1

) (
1
2

)#−1

.

This is the value referred to as the probability of runs given the number of nonzero residuals in table 10.29.

10.3.18 The � test for excess variance

This procedure, which is based on the � distribution (page 423), is used when you have fitted two nested
models, e.g., polynomials of different degrees, to the same data and wish to use parsimony to see if the extra
parameters are justified. You input the weighted sums of squares,((&1 for model 1 with <1 parameters and
,((&2 for model 2 with <2 parameters, and the sample size =, when the following test statistic is calculated

� (<2 − <1, = − <2) =
(,((&1 −,((&2)/(<2 − <1)

,((&2/(= − <2)
.

Table 10.30 illustrates how the test is performed. This test for parameter redundancy is also widely used

Q1 ((W)SSQ for model 1) = 12.0

Q2 ((W)SSQ for model 2) = 10.0

M1 (no. params. model 1) = 2

M2 (no. params. model 2) = 3

NPTS (no. exper. points) = 12

Numerator deg. freedom = 1

Denominator deg. freedom = 9

F test statistic TS = 1.8

P(F >= TS) = 0.2126

P(F =< TS) = 0.7874

5% upper tail crit. pnt. = 5.117

1% upper tail crit. pnt. = 1.056

Conclusion:

Model 2 is not justified ... Tentatively accept model 1

Table 10.30: � test for exess variance

with models that are not linear or nested and, in such circumstances, it must be interpreted with caution as
no more than a useful guide. However, as the use of this test is so common, SimFIT provides a way to store
the necessary parameters in an archive file w_ftests.cfg after any fitting, so that the results can be recalled
retrospectively to assess model validity. Note that, when you select to recover stored values for this test you
must ensure that the data are retrieved in the correct order. The best way to ensure this is by using a systematic
technique for assigning meaningful titles as the data are stored.

The justification for the � test can be illustrated by successive fitting of polynomials

�0 : 5 (G) = U0

�1 : 5 (G) = U0 + U1G

�2 : 5 (G) = U0 + U1G + U2G
2

. . .

�: : 5 (G) = U0 + U1G + U2G
2 + · · · + U:G:

156 SimFIT reference manual

in a situation where experimental error is normal with zero mean and constant variance, and the true model
is a polynomial, a situation that will never be encountered in real life. The important distributional results,
illustrated for the case of two models 8 and 9 , with 9 > 8 ≥ 0, so that the number of points and parameters
satisfy = > < 9 > <8 while the sums of squares are &8 > & 9 , then

1. (&8 −& 9)/f2 is j2(< 9 − <8) under model i

2. & 9/f2 is j2(= − < 9) under model j

3. & 9 and &8 −& 9 are independent under model j.

So the likelihood ratio test statistic

� =
(&8 −& 9)/(< 9 − <8)

& 9/(= − < 9)
is distributed as � (< 9 − <8, = − < 9) if the true model is model 8, which is a special case of model 9 in the
nested hierarchy of the polynomial class of linear models.

10.3.19 Nonparametric tests using rstest

When it is not certain that your data are consistent with a known distribution for which special tests have been
devised, it is advisable to use nonparametric tests. Many of these are available at appropriate points from
simstat as follows. Kolmogorov-Smirnov 1-sample (page 132) and 2-sample (page 139), Mann-Whitney U
(page 140), Wilcoxon signed ranks (page 142), chi-square (page 143), Cochran Q (page 151), sign (page 152),
run (page 153), Kruskall-Wallis (page 165), Friedman (page 169), and nonparametric correlation (page 199)
procedures. However, for convenience, program rstest should be used, and this also provides further tests as
now described.

10.3.20 Runs up or down test for randomness

The runs up test can be conducted on a vector of observations G1, G2, . . . , G= provided = is fairly large (at
least 1000) and there are no ties in the data. The runs down test is done by multiplying the sample by −1
then repeating the runs up test. Table 10.31 illustrates the results from analyzing g08eaf.tf1, showing no

Title of data

Data for G08EAF: 1000 U(0,1) pseudorandom numbers

Size of sample = 1000

CU (chisq.stat. for runs up) = 7.747

Degrees of freedom = 4

P(chisq. >= CU) (upper tail p) = 0.1013

CD (chisq.stat. for runs down) = 4.640

Degrees of freedom = 4

P(chisq. >= CD) (upper tail p) = 0.3263

Table 10.31: Runs up or down test for randomness

evidence against randomness. The number of runs up 28 of length 8 are calculated for increasing values of 8
up to a limit A − 1, all runs of length greater than A − 1 being counted as runs of length A. Then the chi-square
statistic

j2
= (2 − `2))Σ−1

2 (2 − `2)
with A degrees of freedom is calculated, where

2 = 21, 22, . . . , 2A , vector of counts

`2 = 41, 42, . . . , 4A , vector of expected values

Σ2 = covariance matrix.

Tests 157

Note that the default maximum value for A is set by SimFIT at four, which should be sufficient for many
purposes. If the maximum number of runs requested is so large there are empty bins for large values of
A which would compromise the chi-squared test, then this maximum value is temporarily reduced to the A
level corresponding to the largest observed run, and the degrees of freedom in the chi-square test are reduced
accordingly.

Using ? = 8 − 1 Levene (Ann. Math. Stat. 23 (1952) 34-56) gives formulas for calculating the expected
values for runs 28 of length 8 < A as

=
?2 + 3? + 1
(? + 3)! − ?3 + 3?2 − ? − 4

(? + 3)!

and for runs 28 for 8 greater than or equal to A as

=
? + 1

(? + 2)! −
?2 + ? − 1
(? + 2)! .

Also formulas for the covariance matrix of 28 are given

10.3.21 Median test

The median test examines the difference between the medians of two samples to test the null hypothesis

�0: the medians are the same,

against the alternative hypothesis that they are different. Table 10.32 presents the results from analyzing

Current data sets X and Y are:

Data for G08ACF: the median test

Number of Xvalues = 16

Data for G08ACF: the median test

Number Yvalues = 23

Results for median test:

H0: medians are the same

Number of Xscores below pooled median = 13

Number of Yscores below pooled median = 6

Probability under H0 = 0.0009 Reject H0 at 1% sig.level

Table 10.32: Median test

g08acf.tf1 and g08acf.tf2. The test procedure is first to calculate the median for the pooled sample,
then form a two by two contingency table 10.3.12 for scores above and below this pooled median. For small
samples (=1 + =2 < 40) a Fisher exact test is used 10.3.12, otherwise a chi-squared test 10.3.11 is used.

For instance, with sample 1 of size =1 and sample 2 of size =2 the pooled median " is calculated for the
combined sample of size = = =1 + =2. Then 81, the number of values less than this pooled median in sample 1,
and 82, the number of values less than this pooled median are calculated. If the medians of these two samples
are identical then we could expect 81 to be about =1/2 and 82 to be about =2/2 which can be tested using the
following 2 by 2 frequency table.

Sample1 Sample2 Total
Scores < " 81 82 81 + 82
Scores ≥ " =1 − 81 =2 − 82 = − (81 + 82)
Total =1 =2 =

158 SimFIT reference manual

10.3.22 Mood’s test and David’s test for equal dispersion

These are used to test the null hypothesis of equal dispersions, i.e. equal variances. Table 10.33 presents

Current data sets X and Y are:

Data for G08BAF: MoodDavid tests for equal dispersions

Number of Xvalues = 6

Data for G08BAF: MoodDavid tests for equal dispersions

Number of Yvalues = 6

Results for the Mood test

H0: dispersions are equal

H1: Xdispersion > Ydispersion

H2: Xdispersion < Ydispersion

The Mood test statistic = 75.5

Probability under H0 = 0.8339

Probability under H1 = 0.4170

Probability under H2 = 0.5830

Results for the David test

H0: dispersions are equal

H1: Xdispersion > Ydispersion

H2: Xdispersion < Ydispersion

The David test statistic = 9.467

Probability under H0 = 0.3972

Probability under H1 = 0.8014

Probability under H2 = 0.1986

Table 10.33: Mood-David equal dispersion tests

the results from analyzing g08baf.tf1 and g08baf.tf2. If the two samples are of size =1 and =2, so that
= = =1 + =2, then the ranks A8 in the pooled sample are calculated. The two test statistics, and + are defined
as follows.

• Mood’s test assumes that the two samples have the same mean so that

, =

=1∑
8=1

(
A8 −

= + 1
2

)2

,

which is the sum of squares of deviations from the average rank in the pooled sample, is approximately
normally distributed for large =. The test statistic is

I =
, − =1(=2 − 1)/12√

=1=2(= + 1) (=2 − 4)/180
.

• David’s test uses the mean rank

Ā =

=1∑
8=1

A8/=1

to reduce the effect of the assumption of equal means in the calculation of

+ =
1

=1 − 1

=1∑
8=1

(A8 − Ā)2,

and + is also approximately normally distributed for large =. The test statistic is

I =
+ − =(= + 1)/12√

==2 (= + 1) (3(= + 1) (=1 + 1) − ==1)/360=1(=1 − 1)
.

Tests 159

10.3.23 Kendall coefficient of concordance

This test is used to measure the degree of agreement between : comparisons of = objects. Table 10.34 presents

H0: no agreement between comparisons

Data title: Data for G08DAF

Number of columns (objects) = 10

Number of rows (comparisons) = 3

Kendall coefficient W = 0.8277

P(chisq >= W) = 0.0078 Reject H0 at 1% sig.level

Table 10.34: Kendall coefficient of concordance: results

the results from analyzing g08daf.tf1, i.e. the data file shown in table 10.35, which illustrates the format

Data for G08DAF

3 10

1.0 4.5 2.0 4.5 3.0 7.5 6.0 9.0 7.5 10.0

2.5 1.0 2.5 4.5 4.5 8.0 9.0 6.5 10.0 6.5

2.0 1.0 4.5 4.5 4.5 4.5 8.0 8.0 8.0 10.0

8

Rows can be comparisons or variables (i = 1,2,...,k)

Columns can be objects or observations (j = 1,2,...,n)

If the A(i,j) are ranks of object j in comparison i, then

the A(i,j) must be > 0 and ties must be averages so that

sum of ranks A(i,j) for j = 1,2,...,n must be n(n + 1)/2.

However A can be input as original data, when the rows must

be variables, and the columns must be the observations to

be ranked automatically by the program.

Table 10.35: Kendall coefficient of concordance: data pre-ranked

for supplying data for analysis in pre-ranked form. Ranks A8 9 for the the rank of object 9 in comparison 8
(with tied values being given averages) are used to calculate the = column rank sums ' 9 , which would be
approximately equal to the average rank sum : (= + 1)/2 under

�0 : there is no agreement.

For total agreement the ' 9 would have values from some permutation of :, 2:, . . . , =:, and the total squared
deviation of these is :2=(=2 − 1)/12. Then the coefficient, is calculated according to

, =

=∑
9=1

(' 9 − : (= + 1)/2)2

:2=(=2 − 1)/12 − : ∑
)

which lies between 0 for complete disagreement and 1 for complete agreement. Here the denominator
correction for ties uses) defined as

) =

∑
C(C2 − 1)/12

where C is the number of occurrences of each tied rank within a comparison. For large samples (= > 7),
: (=− 1), is approximately j2

=−1
distributed, otherwise tables should be used for accurate significance levels.

Table 10.36 emphasizes that un-ranked data as in test file kendall.tf1 can be supplied for analysis, when
SimFIT will generate the ranks internally before calculating the test statistic which, in this case leads to
, = 0.9241, ? = 0.0013.

160 SimFIT reference manual

Data for Kendall coefficient of concordance

3 12

10.4 10.8 11.1 10.2 10.3 10.2 10.7 10.5 10.8 11.2 10.6 11.4

7.4 7.6 7.9 7.2 7.4 7.1 7.4 7.2 7.8 7.7 7.8 8.3

17.0 17.0 20.0 14.5 15.5 13.0 19.5 16.0 21.0 20.0 18.0 22.0

7

Columns 1 to 10 are bird species

Rows 1 to 3 are wing length, tail length, and bill length

From example 19.5 of Zar Biostatistical Analysis 3rd Edn. p437

The following ranks are calculated internally by Simfit

4.0 8.5 10.0 1.5 3.0 1.5 7.0 5.0 8.5 11.0 6.0 12.0

5.0 7.0 11.0 2.5 5.0 1.0 5.0 2.5 9.5 8.0 9.5 12.0

5.5 5.5 9.5 2.0 3.0 1.0 8.0 4.0 11.0 9.5 7.0 12.0

Table 10.36: Kendall coefficient of concordance: data un-ranked

Part 11

Analysis of variance

11.1 Introduction

In studying the distribution of the variance estimate from a sample of size = from a normal distribution with
mean ` and variance f2, you will have encountered the following decomposition of a sum of squares

=∑
8=1

(H8 − `
f

)2

=

=∑
8=1

(
H8 − H̄
f

)2

+
(
H̄ − `
f/√=

)2

into independent chi-square variables with = − 1 and 1 degree of freedom respectively. Analysis of variance
is an extension of this procedure based on linear models, assuming normality and constant variance, then
partitioning of chi-square variables (page 423) into two or more independent components, invoking Cochran’s
theorem (page 423) and comparing the ratios to � variables (page 423) with the appropriate degrees of
freedom for variance ratio tests. It can be used, for instance, when you have a set of samples (columns vectors)
that come from normal distributions with the same variance and wish to test if all the samples have the same
mean. Due to the widespread use of this technique, many people use it even though the original data are
not normally distributed with the same variance, by applying variance stabilizing transformations (page 163),
like the square root with counts, which can sometimes transform non-normal data into transformed data that
are approximately normally distributed. An outline of the theory necessary for several widely used designs
follows, but you should never make the common mistake of supposing that ANOVA is model free: ANOVA
is always based upon data collected as replicates and organized into cells, where it is assumed that all the data
are normally distributed with the same variance but with mean values that differ from cell to cell according to
an assumed general linear model.

11.2 Variance homogeneity tests (= samples or library file)

It is often stated that ANOVA procedures are relatively insensitive to small departures from normality, but
are much more affected by differences in variances between groups so, for that reason, variance-stabilizing
transformations are frequently resorted to. Variance homogeneity tests are best done interactively on the
data set, so that the effect of transformations on variance stabilizations can be judged before proceeding to
ANOVA.

Table 11.1 illustrates analysis of data in the test file anova1.tf1 for homogeneity of variance, using the
Bartlett test, and also the Levene test.
With two normal samples the � test is recommended, and this can be performed routinely in SimFIT as part
of the C test procedure (page 136), which is actually equivalent to 1-way ANOVA when there are only two
samples. Where there are = normal samples the Bartlett test is recommended, and this is just the same as the
� test when there are two samples of the same size. If there are : groups, with sample size =8 , a8 = =8 − 1,
and sample variances B28 , then the pooled variance estimate B2? , and parameters � and � can be calculated as

162 SimFIT reference manual

Homogeneity of variance test 1: Bartlett

Transformation = x (untransformed data)

B = 0.69

C = 1.08

B/C = 0.6.3895

NDOF = 4

P(chisquare >= B/C) = 0.9586

Upper tail 1% point = 13.277

Upper tail 5% point = 9.4877

Homogeneity of variance test 2: Levene (median)

Transformation = x (untransformed data)

W = 0.18458

DOF1 = 4

DOF2 = 25

P(F >= W) = 0.9442

Upper tail 1% point = 4.1774

Upper tail 5% point = 2.7587

Table 11.1: Bartlett and Levene tests for homogeneity of variance

follows,

B2? =

:∑
8=1

a8B
2
8

:∑
8=1

a8

� = log(B2?)
:∑
8=1

a8 −
:∑
8=1

a8 log(B28)

� = 1 + 1
3(: − 1)

©«

:∑
8=1

1
a8

− 1
:∑
8=1

a8

ª®®®®®®
¬
.

To test homogeneity of variance, the Bartlett test statistic �/� is approximately chi-square distributed with
: − 1 degrees of freedom.

When normality cannot be assumed, the Levene test can be performed. If the total number of observations is
=

∑:
8=1 =8 , then the test statistic, is defined as

, =

(# − :)
:∑
8=1

=8 (/8. − /..)2

(: − 1)
:∑
8=1

=8∑
9=1

(/8 9 − /8.)2

,

where /.. is the mean of all /8 9 , and /8. is the group mean of the /8 9 . If .8 9 is observation 9 in group 8 the

Analysis of variance 163

definitions are

/8 9 = |.8 9 − .8. |

/.. =
1
#

:∑
8=1

=8∑
9=1

/8 9

/8. =
1
=8

=8∑
9=1

/8 9 ,

but note that there are several ways to define .8.. Usually this is taken to be the median of group 8, but if
there are long tails in the distribution as with the Cauchy distribution (page 422), the the trimmed mean can
be used (page 288). The group mean can also be used if the data are similar to a normal distribution. To test
variance homogeneity, the Levene test statistic, is approximately � distributed with : −1 and # − : degrees
of freedom.

Table 11.1 illustrates that the null hypothesis

�0 : f2
1 = f2

2 = · · · = f2
:

cannot be rejected for the data in test file anova1.tf1.

11.3 Variance stabilizing transformations

A number of transformations are in use that attempt to create new data that is more approximately normally
distributed than the original data, or at least has more constant variance, as the two aims can not usually
both be achieved. If the distribution of - is known, then the variance of any function of - can of course be
calculated. However, to a very crude first approximation, if a random variable - is transformed by. = 5 (-),
then the variances are related by the differential equation

+ (.) ≈
(
3.

3-

)2

+ (-)

which yields 5 (.) on integration, e.g., if + (.) = constant is required, given + (-).

Note that SimFIT provides the ability to test the commonly used transformations, to be discussed next,
whenever the previous test is used, to make sure that variances are equal before proceeding to the analysis of
variance.

11.3.1 Angular transformation

This arcsine transformation is sometimes used for binomial data with parameters # and ?, e.g., for - successes
in # trials, when

- ∼ 1(#, ?)
. = arcsin(

√
-/#)

� (.) ≃ arcsin(√?)
+ (.) ≃ 1/(4#) (using radial measure).

However, note that the variance of the transformed data is only constant in situations where there are constant
binomial denominators.

164 SimFIT reference manual

11.3.2 Square root transformation

This is often used for counts, e.g., for Poisson variables with mean `, when

- ∼ Poisson(`)
. =

√
G

� (.) ≃ √
`

+ (.) ≃ 1/4.

11.3.3 Log transformation

When the variance of - is proportional to a known power U of � (-), then the power transformation. = -V

will stabilize variance for V = 1−U/2. The angular and square root transformations are, of course, just special
cases of this, but a singular case of interest is the constant coefficient of variation situation + (-) ∝ � (-)2

which justifies the log transform, as follows

� (-) = `
+ (-) ∝ `2

. = log -

+ (.) = :, a constant.

11.4 1-way and Kruskal-Wallis (= samples or library file)

This procedure is used when you have columns (i.e. samples) of normally distributed measurements with the
same variance and wish to test if all the means are equal. With two columns it is equivalent to the two-sample
unpaired C test (page 136), so it can be regarded as an extension of this test to cases with more than two
columns. Suppose a random variable . is measured for groups 8 = 1, 2, . . . , : and subjects 9 = 1, 2, . . . =8 ,
and it is assumed that the appropriate general linear model for the = =

∑:
8=1 =8 observations is

H8 9 = ` + U8 + 48 9
:∑
8=1

U8 = 0

where the errors 48 9 are independently normally distributed with zero mean and common variance f2.

Then the 1-way ANOVA null hypothesis is

�0 : U8 = 0, for 8 = 1, 2, . . . , :,

Analysis of variance 165

that is, the means for all : groups are equal, and the basic equations are as follows.

H̄8 =

=8∑
9=1

H8 9/=8

H̄ =

:∑
8=1

=8∑
9=1

H8 9/=

:∑
8=1

=8∑
9=1

(H8 9 − H̄)2
=

:∑
8=1

=8∑
9=1

(H8 9 − H̄8)2 +
:∑
8=1

=8 (H̄8 − H̄)2

Total ((& =

:∑
8=1

=8∑
9=1

(H8 9 − H̄)2, with �� = = − 1

Residual ((& =

:∑
8=1

=8∑
9=1

(H8 9 − H̄8)2, with �� = = − :

Group ((& =

:∑
8=1

=8 (H̄8 − H̄)2, with �� = : − 1.

Here Total ((& is the overall sum of squares, Group ((& is the between groups (i.e. among groups) sum of
squares, and Residual ((& is the residual (i.e. within groups, or error) sum of squares. The mean sums of
squares and � value can be calculated from these using

Total ((& = Residual ((& + Group ((&

Total �� = Residual �� + Group ��

Group "(=
Group ((&
Group ��

Residual MS =
Residual ((&
Residual ��

� =
Group "(

Residual "(
,

so that the degrees of freedom for the � variance ratio to test if the between groups "(is significantly larger
than the residual "(are : − 1 and = − :. The SimFIT 1-way ANOVA procedure allows you to include or
exclude selected groups, i.e., data columns, and to employ variance stabilizing transformations if required, but
it also provides a nonparametric test, and it allows you to explore which column or columns differ significantly
in the event of the � value leading to a rejection of �0.

As the assumptions of the linear model will not often be justified, the nonparametric Kruskal-Wallis test can
be done at the same time, or as an alternative to the parametric 1-way ANOVA just described. This is in
reality an extension of the Mann-Whitney U test (page 140) to : independent samples, which is designed to
test �0: the medians are all equal. The test statistic � is calculated as

� =
12

=(= + 1)

:∑
8=1

'2
8

=8
− 3(= + 1)

where '8 is the sum of the ranks of the =8 observations in group 8, and = =
∑:
8=1 =8 . This test is actually a

1-way ANOVA carried out on the ranks of the data. The ? value are calculated exactly for small samples, but
the fact that � approximately follows a j2

:−1
distribution is used for large samples. If there are ties, then � is

corrected by dividing by _ where

_ = 1 −

<∑
8=1

(C38 − C8)

=3 − =

166 SimFIT reference manual

where C8 is the number of tied scores in the 8th group of ties, and < is the number of groups of tied ranks. The
test is 3/c times as powerful as the 1-way ANOVA test when the parametric test is justified, but it is more
powerful, and should always be used, if the assumptions of the linear normal model are not appropriate. As
it is unusual for the sample sizes to be large enough to verify that all the samples are normally distributed
and with the same variance, rejection of �0 in the Kruskal-Wallis test (which is the higher order analogue of
the Mann-Whitney U test, just as 1-way ANOVA is the higher analogue of the C test) should always be taken
seriously.

To see how these tests work in practise, read in the matrix test file tukey.tf1 which refers to a data set where
the column vectors are the groups, and you will get the results shown in Table 11.2. The null hypothesis,

One Way Analysis of Variance: (Grand Mean 4.316E+01)

Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p

Between Groups 2193.0 4 548.4 56.15 0.0000

Residual 244.1 25 9.765

Total 2438.0 29

KruskalWallis Nonparametric One Way Analysis of Variance

Test statistic NDOF p

23.3 4 0.0001

Table 11.2: ANOVA example 1(a): 1-way and the Kruskal-Wallis test

that all the columns are normally distributed with the same mean and variance, would be rejected at the 5%
significance level if ? < 0.05, or at the 1% significance level if ? < 0.01, which suggests, in this case, that
at least one pair of columns differ significantly. Note that each time you do an analysis, the Kruskal-Wallis
nonparametric test based on ranks can be done at the same time, or instead of ANOVA. In this case the same
conclusion is reached but, of course, it is up to you which result to rely on. Also, you can interactively
suppress or restore columns in the data set and you can select variance stabilizing transformations if necessary
(page 163). These can automatically divide sample values by 100 if your data are as percentages rather than
proportions and a square root, arc sine, logit or similar transformation is called for.

11.5 Tukey Q test (= samples or library file)

This post-ANOVA procedure is used when you have : normal samples with the same variance and 1-
way ANOVA suggests that at least one pair of columns differ significantly. For example, after analyzing
tukeyq.tf1 as just described, then selecting the Tukey Q test, Table 11.3 will be displayed. Note that the
means are ranked and columns with means between those of extreme columns that differ significantly are
not tested, according to the protocol that is recommended for this test. This involves a systematic procedure
where the largest mean is compared to the smallest, then the largest mean is compared with the second largest,
and so on. If no difference is found between two means then it is concluded that no difference exists between
any means enclosed by these two, and so no testing is done. Evidently, for these data, column 5 differs
significantly from columns 1, 2, 3, and 4, and column 3 differs significantly from column 1. The test statistic

Analysis of variance 167

Tukey Qtest with 5 means and 10 comparisons

5% point = 4.189, 1% point = 5.125

Columns Q p 5% 1% NB NA

5 1 20.55 0.0001 * * 6 6

5 2 14.16 0.0001 * * 6 6

5 4 13.48 0.0001 * * 6 6

5 3 11.14 0.0001 * * 6 6

3 1 9.406 0.0001 * * 6 6

3 2 3.018 0.2377 NS NS 6 6

3 4 [[2.338 0.4792]] NoTest NoTest 6 6

4 1 7.068 0.0005 * * 6 6

4 2 [[0.6793 0.9885]] NoTest NoTest 6 6

2 1 6.388 0.0013 * * 6 6

[5%] and/or [[1%]] NoTest results given for reference only

Table 11.3: ANOVA example 1(b): 1-way and the Tukey Q test

& for comparing columns � and � with sample sizes =� and =� is

& =
H̄� − H̄�
(�

where (� =

√
B2

=
, if =� = =�

(� =

√
B2

2

(
1
=�

+ 1
=�

)
, if =� ≠ =�

B2 = error "(

and the significance level for & is calculated as a studentized range.

11.6 Plotting 1-way data

After analyzing a selected subset of data, possibly transformed, it is useful to be able to inspect the columns of
data so as to identify obvious differences. This can be done by plotting the selected columns as a scattergram,
or by displaying the selected columns as a box and whisker plot, with medians, quartiles and ranges, or as a
range and percentiles plot.

Figure 11.1 illustrates a box and whisker plot for the data in anova1.tfl where the samples have different
sample sizes, so this is best done using such a library file. Clearly, a matrix file cannot be used where the
samples have different sample sizes. In this plot the lower limit shows the lowest value, the bottom of the box
shows the lower quartile, the mid-bar shows the median, the upper part of the box shows the upper quartile,
while the upper limit shows the largest value. Another useful way to display these positions is the range and
percentiles plot, as in figure 11.2, where a set of symbols joined by lines indicates the positions of the same
percentile points as the box and whisker plot. With numerous samples this plot is easier to interpret than a
crowded box and whisker plot.

Alternatively, a bar chart or line and symbol plot can be constructed with the means of selected columns, and
with error bars calculated for 95% confidence limits, or as selected multiples of the sample standard errors or
sample standard deviations. This option is also provided after doing 1-way ANOVA.

168 SimFIT reference manual

15

20

25

30

35

40

1 2 3 4 5

Box and Whisker Plot

Samples

R
an

ge
s,

 Q
ua

rt
ile

s,
 a

nd
 M

ed
ia

ns
.

Figure 11.1: Box and whisker plot

15

20

25

30

35

40

1 2 3 4 5

Range and Percentiles

Samples

P
er

ce
nt

ile
s

0%

25%

50%

75% 100%

Figure 11.2: Range and percentiles plot

Analysis of variance 169

11.7 2-way and the Friedman test (one matrix)

This procedure is used when you want to include row and column effects in a completely randomized design,
i.e., assuming no interaction and one replicate per cell so that the appropriate linear model is

H8 9 = ` + U8 + V 9 + 48 9
A∑
8=1

U8 = 0

2∑
9=1

V 9 = 0

for a data matrix with A rows and 2 columns, i.e. = = A2. The mean sums of squares and degrees of freedom
for row and column effects are worked out, then the appropriate � and ? values are calculated. Using '8 for
the row sums, � 9 for the column sums, and) =

∑A
8=1 '8 =

∑2
9=1 � 9 for the sum of observations, these are

Row ((& =

A∑
8=1

'2
8 /2 −)2/=, with �� = A − 1

Column ((& =

2∑
9=1

�2
9/A −)2/=, with �� = 2 − 1

Total ((& =

A∑
8=1

2∑
9=1

H2
8 9 −)2/=, with �� = = − 1

Residual ((& = Total ((& − Row ((& − Column ((&, with �� = (A − 1) (2 − 1)

where Row ((& is the between rows sums of squares, Column ((& is the between columns sum of squares,
Total ((& is the total sum of squares and Residual ((& is the residual, or error sum of squares. Now two �
statistics can be calculated from the mean sums of squares as

�' =
Rows "(

Residual "(

�� =
Column "(
Residual "(

.

The statistic �' is compared with � (A − 1, (A − 1) (2 − 1)) to test

�' : U8 = 0, 8 = 1, 2, . . . , A

i.e., absence of row effects, while �� is compared with � (2 − 1, (A − 1) (2 − 1)) to test

�� : V 9 = 0, 9 = 1, 2, . . . , 2

i.e., absence of column effects.

If the data matrix represents scores etc., rather than normally distributed variables with identical variances,
then the matrix can be analyzed as a two way table with : rows and = columns using the nonparametric
Friedman 2-way ANOVA procedure, which is an analogue of the sign test (page 152) for multiple matched
samples designed to test �0 : all medians are equal, against the alternative, �1 : they come from different
populations. The procedure ranks column scores as A8 9 for row 8 and column 9 , assigning average ranks for
ties, works out rank sums as C8 =

∑;
9=1 A8 9 , then calculates �' given by

�' =
12

=: (: + 1)

:∑
8=1

(C8 − =(: + 1)/2)2 .

170 SimFIT reference manual

where : is the number of groups and = the number of cases. Note however that SimFIT test files have the more
usual transposed format with : columns of groups and = rows of observations as in anova2.tf1. For small
samples, exact significance levels are calculated, while for large samples it is assumed that �' follows a j2

:−1

distribution. For practise you should try the test file anova2.tf1 which is analyzed as shown in Table 11.4.
Note that there are now two ? values for the two independent significance tests, and observe that, as in the

2Way Analysis of Variance: (Grand mean 2.000E+00)

Source SSQ NDOF MSSQ F p

Between rows 0.0 17 0.0 0.0 1.0000

Between columns 8.583 2 4.292 5.421 0.0090

Residual 26.92 34 0.7917

Total 35.50 53

Friedman Nonparametric TwoWay Analysis of Variance

Test Statistic = 8.583

Degees of Freedom = 2

Significance = 0.0137

Table 11.4: ANOVA example 2: 2-way and the Friedman test

previous 1-way ANOVA test, the corresponding nonparametric (Friedman) test can be done at the same time,
or instead of the parametric test if required.

11.8 3-way and Latin Square design (one matrix)

The linear model for a < by < Latin Square ANOVA is

H8 9: = ` + U8 + V 9 + W: + 48 9:
<∑
8=1

U8 = 0

<∑
9=1

V 9 = 0

<∑
:=1

W: = 0

where U8 , V 9 and W: represent the row, column and treatment effect, and 48 9: is assumed to be normally
distributed with zero mean and variance f2. The sum of squares partition is now

Total ((& = Row ((& + Column ((& + Treatment ((& + Residual ((&

where the <2 observations are arranged in the form of a < by < matrix so that every treatment occurs once
in each row and column. This design, which is used for economical reasons to account for row, column, and

Analysis of variance 171

treatment effects, leads to the three variance ratios

�' =
Row "(

Residual "(

�� =
Column "(
Residual "(

�) =
Treatment "(
Residual "(

to use in � tests with < − 1, and (< − 1) (< − 2) degrees of freedom. Note that SimFIT data files for Latin
square designs with < treatment levels have 2< rows and < columns, where the first < by < block identifies
the treatments, and the next< by< block of data are the observations. When designing such experiments, the
particular Latin square used should be chosen randomly if possible as described on page 291. For instance,
try the test file anova3.tf1, which should be consulted for details, noting that integers (1, 2, 3, 4, 5) are used
instead of the usual letters (A, B, C, D, E) in the data file header to indicate the position of the treatments.
Note that, in Table 11.5, there are now three ? values for significance testing between rows, columns, and

Three Way Analysis of Variance: (Grand mean 7.186E+00)

Source NDOF SSQ MSQ F p

Rows 4 29.42 7.356 9.027 0.0013

Columns 4 22.99 5.749 7.055 0.0037

Treatments 4 0.5423 0.1356 0.1664 0.9514

Error 12 9.779 0.8149

Total 24 62.74 2.614

Row means:

8.136 6.008 8.804 6.428 6.552

Column means:

5.838 6.322 7.462 7.942 8.364

Treatment means:

7.318 7.244 7.206 6.9 7.26

Table 11.5: ANOVA example 3: 3-way and Latin square design

treatments.

11.9 Groups and subgroups (one matrix)

The linear models for ANOVA are easy to manipulate mathematically and trivial to implement in computer
programs, and this has lead to a vast number of possible designs for ANOVA procedures. This situation is
likely to bewilder users, and may easily mislead the unwary, as it stretches credulity to the limit to believe
that experiments, which almost invariably reflect nonlinear non-normal phenomena, can be analyzed in a
meaningful way by such elementary models. Nevertheless, ANOVA remains valuable for preliminary data
exploration, or in situations like clinical or agricultural trials, where only gross effects are of interest and
precise modelling is out of the question, so a further versatile and flexible ANOVA technique is provided
by SimFIT for two-way hierarchical classification with subgroups of possibly unequal size, assuming a fixed
effects model. Suppose, for instance, that there are : ≥ 2 treatment groups, with group 8 subdivided into ;8
treatment subgroups, where subgroup 9 contains =8 9 observations. That is, observation H<8 9 is observation<
in subgroup 9 of group 8 where

1 ≤ 8 ≤ :, 1 ≤ 9 ≤ ;8 , 1 ≤ < ≤ =8 9 .

172 SimFIT reference manual

The between groups, between subgroups within groups, and residual sums of squares are

Group ((& =

:∑
8=1

=8. (H̄.8. − H̄...)2

Subgroup ((& =

:∑
8=1

;8∑
9=1

=8 9 (H̄.8 9 − H̄.8.)2

Residual ((& =

8∑
8=1

;8∑
9=1

=8 9∑
<=1

(H<8 9 − H̄.8 9)2

which, using ; =
∑:
8=1 ;8 and = =

∑:
8=1 =8. , and normalizing give the variance ratios

�� =
Group ((&/(: − 1)

Residual ((&/(= − ;)

�(=
Subgroup ((&/(; − :)
Residual ((&/(= − ;)

to test for between groups and between subgroups effects. To practise, an appropriate test file is anova4.tf1,
which should be consulted for details, and the results are shown in table 11.6. Of course, there are now

Groups/Subgroups 2Way ANOVA

Transformation = x (untransformed data)

Source SSQ NDOF F p

Between Groups 0.4748 1 16.15 0.0007

Subgroups 0.8162 6 4.626 0.0047

Residual 0.5587 19

Total 1.85 26

Group Subgroup Mean

1 1 2.1

1 2 2.233

1 3 2.4

1 4 2.433

1 5 1.8

2 1 1.867

2 2 1.86

2 3 2.133

Group 1 mean = 2.206 (16 Observations)

Group 2 mean = 1.936 (11 Observations)

Grand mean = 2.096 (27 Observations)

Table 11.6: ANOVA example 4: arbitrary groups and subgroups

two ? values for significance testing and, also note that, because this technique allows for many designs that
cannot be represented by rectangular matrices, the data files must have three columns and = rows: column
one contains the group numbers, column two contains the subgroup numbers, and column three contains
the observations as a vector in the order of groups and subgroups within groups. By defining groups and
subgroups correctly a large number of ANOVA techniques can be done using this procedure.

Analysis of variance 173

11.10 Factorial design (one matrix)

Factorial ANOVA is employed when two or more factors are used together at more than one level, possibly
with blocking, and the technique is best illustrated by a simple example. For instance, table 11.7 shows the
results from analyzing data in the test file anova5.tf1. which has two factors, � and � say, but no blocking.

Factorial ANOVA

Transformation = x (untransformed data)

Source SSQ NDOF MS F p

Blocks 0.0 0 0.0 0.0 0.0000

Effect 1 (A) 1386.0 1 1386.0 60.53 0.0000

Effect 2 (B) 70.31 1 70.31 3.071 0.0989

Effect 3 (A*B) 4.9 1 4.9 0.2140 0.6499

Residual 366.4 16 22.9

Total 1828.0 19

Overall mean

21.82

Treatment means

Effect 1

13.5 30.15

Std.Err. of difference in means = 2.14

Effect 2

23.7 19.95

Std.Err. of difference in means = 2.14

Effect 3

14.88 12.12 32.52 27.78

Std.Err. of difference in means = 3.026

Table 11.7: ANOVA example 5: factorial design

The appropriate linear model is

H8 9: = ` + U8 + V 9 + (UV)8 9 + 48 9:

where there are 0 levels of factor �, 1 levels of factor � and = replicates per cell, that is, n observations at
each fixed pair of 8 and 9 values. As usual, ` is the mean, U8 is the effect of � at level 8, V 9 is the effect of
� at level 9 , (UV)8 9 is the effect of the interaction between � and � at levels 8 and 9 , and 48 9: is the random
error component at replicate :. Also there are the necessary constraints that

∑0
8=1 U8 = 0,

∑1
9=1 V 9 = 0,∑0

8=1 (UV)8 9 = 0, and
∑1
9=1(UV)8 9 = 0. The null hypotheses would be

�0 : U8 = 0, for 8 = 1, 2, . . . , 0

to test for the effects of factor �,

�0 : V 9 = 0, for 9 = 1, 2, . . . , 1

to test for the effects of factor �, and

�0 : (UV)8 9 = 0, for all 8, 9

174 SimFIT reference manual

to test for possible �� interactions. The analysis of variance table is based upon calculating � statistics as
ratios of sums of squares that arise from the partitioning of the total corrected sum of squares as follows

0∑
8=1

1∑
9=1

=∑
:=1

(H8 9: − H̄...)2
=

0∑
8=1

1∑
9=1

=∑
:=1

[(H̄8.. − H̄...) + (H̄. 9 . − H̄...)

+ (H̄8 9. − H̄8.. − H̄. 9 . + H̄...) + (H8 9: − H̄8 9.)]2

= 1=

0∑
8=1

(H̄8.. − H̄...)2 + 0=
1∑
9=1

(H̄. 9 . − H̄...)2

+ =
0∑
8=1

1∑
9=1

(H̄8 9. − H̄8.. − H̄. 9 . + H̄...)2 +
0∑
8=1

1∑
9=1

=∑
:=1

(H̄8 9: − H̄8 9.)2

It is clear from the � statistics and significance levels ? in table 11.7 that, with these data, � has a large
effect, � has a small effect, and there is no significant interaction. Figure 11.3 illustrates a graphical

5

15

25

35

1 2

Means for Two-Factor ANOVA

Levels of Factor A

M
ea

n
V

al
ue

s

Effect
of B

Effect
of A

A2B1

A2B2

A1B2

A1B1

Figure 11.3: Plotting interactions in Factorial ANOVA

technique for studying interactions in factorial ANOVA that can be very useful with limited data sets, say
with only two factors. First of all, note that the factorial ANOVA table outputs results in standard order,
e.g. �1�1, �1�2, �2�1, �2�2 and so on, while the actual coefficients U8 , V 9 , (UV)8 9 in the model can be
estimated by subtracting the grand mean from the corresponding treatment means. In the marginals plot, the
line connecting the circles is for observations with � at level 1 and the line connecting the triangles is for
observations with � at level 2. The squares are the overall means of observations with factor � at level 1 (13.5)
and level 2 (30.15), while the diamonds are the overall means of observations with factor � (i.e. 23.7 and
19.95) from table 11.7. Parallel lines indicate the lack of interaction between factors � and � while the larger
shift for variation in � as opposed to the much smaller effect of changes in levels of � merely reinforces the
conclusions reached previously from the ? values in table 11.7. If the data set contains blocking, as with test
files anova5.tf2 and anova5.tf4, then there will be extra information in the ANOVA table corresponding
to the blocks, e.g., to replace the values shown as zero in table 11.7 as there is no blocking with the data in
anova5.tf1.

Analysis of variance 175

11.11 Repeated measures (one matrix)

This procedure is used when you have paired measurements, and wish to test for absence of treatment effects.
With two samples it is equivalent to the two-sample paired C test (page 138), so it can be regarded as an
extension of this test to cases with more than two columns. If the rows of a data matrix represent the effects
of different column-wise treatments on the same subjects, so that the values are serially correlated, and it
is wished to test for significant treatment effects irrespective of differences between subjects, then repeated-
measurements design is appropriate. The simplest, model-free, approach is to treat this as a special case
of 2-way ANOVA where only between-column effects are considered and between-row effects, i.e., between
subject variances, are expected to be appreciable, but are not considered. Many further specialized techniques
are also possible, when it is reasonable to attempt to model the treatment effects, e.g., when the columns
represent observations in sequence of, say, time or drug concentration, but often such effects are best fitted
by nonlinear rather than linear models. A useful way to visualize repeated-measurements ANOVA data with
small samples (≤ 12 subjects) is to input the matrix into the exhaustive analysis of a matrix procedure and
plot the matrix with rows identified by different symbols. Table 11.8 shows the results from analyzing data in
the test file anova6.tf1 which consists of three sections, a Mauchly sphericity test, the ANOVA table, and a
Hotelling)2 test, all of which will now be discussed.

In order for the normal two-way univariate ANOVA to be appropriate, sphericity of the covariance matrix of
orthonormal contrasts is required. The test is based on a orthonormal contrast matrix, for example a Helmert
matrix of the form

� =

©«

1/
√

2 −1/
√

2 0 0 0 . . .

1/
√

6 1/
√

6 −2/
√

6 0 0 . . .

1/
√

12 1/
√

12 1/
√

12 −3/
√

12 0 . . .

.

ª®®®
¬

which, for < columns, has dimensions < − 1 by <, and where every row sum is zero, every row has length
unity, and all the rows are orthogonal. Such Helmert conrasts compare each successive column mean with
the average of the preceding (or following) column means but, in the subsequent discussion, any orthonormal
contrast matrix leads to the same end result, namely, when the covariance matrix of orthonormal contrasts
satisfies the sphericity condition, then the sums of squares used to construct the � test statistics will be
independent chi-square variables and the two-way univariate ANOVA technique will be the most powerful
technique to test for equality of column means. The sphericity test uses the sample covariance matrix (to
construct the Mauchly, statistic given by

, =
|�(�) |

[)A (�(�))/(< − 1)]<−1
.

If (is estimated with a degrees of freedom then

j2
= −

[
a − 2<2 − 3< + 3

6(< − 1)

]
log,

is approximately distributed as chi-square with <(< − 1)/2 − 1 degrees of freedom. Clearly, the results in
table 11.8 show that the hypothesis of sphericity cannot be rejected, and the results from two-way ANOVA
can be tentatively accepted. However, in some instances, it may be necessary to alter the degrees of freedom
for the � statistics as discussed next.

The model for univariate repeated measures with < treatments used once on each of = subjects is a mixed
model of the form

H8 9 = ` + g8 + V 9 + 48 9 ,
where g8 is the fixed effect of treatment 8 so that

∑<
8=1 g8 = 0, and V 9 is the random effect of subject 9 with

mean zero, and
∑=
9=1 V 9 = 0. Hence the decomposition of the sum of squares is

<∑
8=1

=∑
9=1

(H8 9 − H̄. 9)2
= =

<∑
8=1

(H̄8. − H̄..)2 +
<∑
8=1

=∑
9=1

(H8 9 − H̄8. − H̄. 9 + H̄..)2,

176 SimFIT reference manual

Sphericity test on CV of Helmert orthonormal contrasts

H0: Covariance matrix = k*Identity (for some k > 0)

Number of small eigenvalues = 0 (i.e. < 0.0000001)

Number of variables (m) = 4

Sample size (n) = 5

Determinant of CV = 154.9

Trace of CV = 28.2

Mauchly W statistic = 0.1865

LRTS (2*log(lambda)) = 4.572

Degrees of Freedom = 5

p = P(chisquare >= LRTS) = 0.4704

e (GeisserGreenhouse) = 0.6049

e (HuynhFeldt) = 1.0

e (lower bound) = 0.3333

Repeatmeasures ANOVA: (Grand mean 2.490E+01)

Source SSQ NDOF MSSQ F p

Subjects 680.8 4

Treatments 698.2 3 232.7 24.76 0.0000

0.0006 (GreenhouseGeisser)

0.0000 (HuyhnFeldt)

0.0076 (Lowerbound)

Remainder 112.8 12 9.4

Total 1492.0 19

Friedman Nonparametric TwoWay Analysis of Variance

Test Statistic = 13.56

Degees of Freedom = 3

Significance = 0.0036

Hotelling one sample Tsquare test

H0: Column means are all equal

Number of rows = 5, Number of columns = 4

Hotelling Tsquare = 170.5

F Statistic (FTS) = 28.41

Degrees of Freedom (d1,d2) = 3, 2

p = P(F(d1,d2) >= FTS) = 0.0342 Reject H0 at 5% sig.level

Table 11.8: ANOVA example 6: repeated measures

that is

((Within subjects = ((treatments + ((Error

with degrees of freedom

=(< − 1) = (< − 1) + (< − 1) (= − 1) .

Analysis of variance 177

To test the hypothesis of no treatment effect, that is

�0 : g8 = 0 for 8 = 1, 2, . . . , <,

the appropriate test statistic would be

� =
((treatment/(< − 1)

((Error/[(< − 1) (= − 1)]

but, to make this test more robust, it may be necessary to adjust the degrees of freedom when calculating
critical levels. In fact the degrees of freedom should be taken as

Numerator degrees of freedom = n (< − 1)
Denominator degrees of freedom = n (< − 1) (= − 1)

where there are four possibilities for the correction factor n , all with 0 ≤ n ≤ 1.

1. The default epsilon.
This is n = 1, which is the correct choice if the sphericity criterion is met.

2. The Greenhouse-Geisser epsilon.
This is

n =
(∑<−1

8=1 _8)2

(< − 1)∑<−1
8=1 _2

8

where _8 are the eigenvalues of the covariance matrix of orthonormal contrasts, and it could be used if
the sphericity criterion is not met, although some argue that it is an ultraconservative estimate.

3. The Huyhn-Feldt epsilon.
This is can also be used when the sphericity criterion is not met, and it is constructed from the

Greenhouse-Geisser estimate n̂ as follows

0 = =(< − 1) n̂ − 2

1 = (< − 1) (= − � − (< − 1) n̂)
n = min(1, 0/1),

where � is the number of groups. It is generally recommended to use this estimate if the ANOVA
probabilities given by the various adjustments differ appreciably.

4. The lower bound epsilon.
This is defined as

n = 1/(< − 1)
which is the smallest value and results in using the � statistic with 1 and = − 1 degrees of freedom.

If the sphericity criterion is not met, then it is possible to use multivariate techniques such as MANOVA as long
as = > <, as these do not require sphericity, but these will always be less powerful than the univariate ANOVA
just discussed. One possibility is to use the Hotelling)2 test to see if the column means differ significantly,
and the results displayed in table 11.8 were obtained in this way. Again a matrix � of orthonormal contrasts
is used together with the vector of column means

H̄ = (H̄1, H̄2, . . . , H̄<))

to construct the statistic
)2

= =(�H̄)) (�(�))−1(�H̄)
since

(= − < + 1))2

(= − 1) (< − 1) ∼ � (< − 1, = − < + 1)

if all column means are equal.

Part 12

Analysis of proportions

12.1 Introduction

Suppose that a total of # observations can be classified into : categories with frequencies consisting of H8
observations in category 8, so that 0 ≤ H8 ≤ # and

∑:
8=1 H8 = # , then there are : proportions defined as

?8 = H8/#,

of which only : − 1 are independent due to the fact that

:∑
8=1

?8 = 1.

If these proportions are then interpreted as estimates of the multinomial probabilities (page 418) and it is
wished to make inferences about these probabilities, then we are in a situation that loosely can be described
as analysis of proportions, or analysis of categorical data. Since the observations are integer counts and
not measurements, they are not normally distributed, so techniques like ANOVA should not be used and
specialized methods to analyze frequencies must be employed.

12.1.1 Dichotomous data

If there only two categories, such as success or failure, male or female, dead or alive, etc., the data are referred
to as dichotomous, and there is only one parameter to consider. So the analysis of two-category data is based
on the binomial distribution (page 417) which is required when H successes have been recorded in # trials
and it is wished to explore possible variations in the binomial parameter estimate

?̂ = H/#,

and its unsymmetrical confidence limits (see page 285), possibly as ordered by an indexing parameter G. The
SimFIT analysis of proportions procedure accepts a matrix of such H, # data then calculates the binomial
parameters and derived parameters such as the Odds

Odds = ?̂/(1 − ?̂), where 0 < ?̂ < 1,

and log(Odds), along with standard errors and confidence limits. It also does a chi-square contingency table test
and a likelihood ratio test for common binomial parameters. Sometimes the proportions of successes in sample
groups are in arbitrary order, but sometimes an actual indexing parameter is required, as when proportions in
the same groups are evolving in time. As an example, read in binomial.tf3, which has (H, #, G) data, to see
how a parameter G is added equal to the order in the data file. It will be seen from the results in table 12.1
that confidence limits are calculated for the parameter estimates and for the differences between parameter
estimates, giving some idea which parameters differ significantly when compared independently. Logs of

Analysis of proportions 179

To test H0: equal binomial pvalues

Samplesize = 5

Overall sum of Y = 202

Overall sum of N = 458

Overall estimate of binomial p = 0.4410

Lower 95% con. limit = 0.3950

Upper 95% con. limit = 0.4879

2 log lambda (2LL) = 118.3, NDOF = 4

p = P(chisq. >= 2LL) = 0.0000 Reject H0 at 1% slevel

Chisq. test stat (C) = 112.9, NDOF = 4

p = P(chisq. >= C) = 0.0000 Reject H0 at 1% slevel

y N lower95% phat upper95%

23 84 0.18214 0.27381 0.38201

12 78 0.08210 0.15385 0.25332

31 111 0.19829 0.27928 0.37241

65 92 0.60242 0.70652 0.79688

71 93 0.66404 0.76344 0.84542

d(i,j) = p_hat(i) p_hat(j), NNT = 1/|d(i,j)|

i,j lower95% d(i,j) upper95% Result p_sig. Var(d(i,j)) NNT (95%cl)

1,2 0.00455 0.11996 0.24448 Not sig 0.0590 0.00404 8 (*.*) NS

1,3 0.13219 0.00547 0.12125 Not sig 0.9326 0.00418 183 (*.*) NS

1,4 0.56595 0.43271 0.29948 (1)<(4) 0.0000 0.00462 2 (1,3) NNH

1,5 0.61829 0.48963 0.36097 (1)<(5) 0.0000 0.00431 2 (1,3) NNH

2,3 0.24109 0.12543 0.00977 (2)<(3) 0.0335 0.00348 8 (4,102) NNH

2,4 0.67543 0.55268 0.42992 (2)<(4) 0.0000 0.00392 2 (1,3) NNH

2,5 0.72737 0.60959 0.49182 (2)<(5) 0.0000 0.00361 2 (1,3) NNH

3,4 0.55224 0.42724 0.30225 (3)<(4) 0.0000 0.00407 2 (1,3) NNH

3,5 0.60427 0.48416 0.36405 (3)<(5) 0.0000 0.00376 2 (1,3) NNH

4,5 0.18387 0.05692 0.07004 Not sig 0.3795 0.00420 18 (*.*) NS

p_sig. = significance level

NNH = Number needed to harm (i)<(j), NS = Not sig, NC = Not calculated

Table 12.1: Analysis of proportions: dichotomous data

differences and odds with confidence limits can also be tabulated. You could then read in binomial.tf2

as an example of (H, #) data, to see what to do if a parameter has to be set. Note that tests are done on the
data without referencing the indexing parameter G, but plotting the estimates of proportions with confidence
limits depends upon the parameter G, if only for spacing out. Experiment with the various ways of plotting
the proportions to detect significant differences visually, as when confidence limits do not overlap, indicating
statistically significant differences. Figure 12.1 shows the data from binomial.tf2 plotted as binomial
parameter estimates with the overall 95% confidence limits, along with the same data in Log-Odds format,
obtained by transferring the data as . = ?/(1 − ?) and - = G directly from the Log-Odds plot into the
advanced graphics option then choosing the reverse semi-log transformation, i.e., where G is mapped to H
and log H is mapped to G. Note that the error bars are exact in all plots and are therefore unsymmetrical.
Observe that, in figure 12.1, estimates are both above and below the overall mean (solid circle) and overall
95% confidence limits (dotted lines), indicating a significant partitioning into two groups, while the same
conclusion can be reached by observing the error bar overlaps in the Log-Odds plot. If it is suspected that
the parameter estimate is varying as a function of G or several independent variables, then logistic regression
using the GLM option can be used. For further details of the error bars and more advanced plotting see

180 SimFIT reference manual

0.00

0.50

1.00

0 1 2 3 4 5

p-estimated as a function of x

x (control variable)

p(
x)

 w
ith

 c
on

.li
m

s.

0

1

2

3

4

5

-2 -1 0 1

Log Odds Plot

log10[p̂/(1 - p̂)]

C
on

tr
ol

 P
ar

am
et

er
 x

Figure 12.1: Plotting analysis of proportions data

page 188

12.1.2 Binomial parameter confidence limits

It is obvious that a binomial parameter estimate ?̂ = H/# for the true population parameter ? must satisfy

0 ≤ ?̂ ≤ 1

and so the confidence limits should also be constrained to this range. Hence any accurate confidence limits
cannot be symmetrical but must be skewed and so, when a binomial parameter is estimated, it is not possible

Analysis of proportions 181

to report the result in the usual way as ?̂ ± B̂, or as ?̂(?̂ − B̂, ?̂ + B̂), where B̂ is estimated from the sample
and percentiles of a standard normal distribution. Nevertheless, many users of computer packages do not
understand this and prefer an approximate expression using the normal distribution because, as long as the
sample is large and ? ≈ 0.5, a binomial distribution can be approximated by a normal distribution. For that
reason a large sample 95% approximate central confidence range for the true population parameter ? is often
constructed using

?̃ − B̃ ≤ ? ≤ ?̃ + B̃, where B̃ = /U/2

√
?̃(1 − ?̃)/#̃

with #̃ = # + 4, and ?̃ = (H + 2)/#̃.

It is clear that for large samples with H ≈ #/2 the normal approximation will be adequate but, in order to
check the closeness of the approximate limits to the exact ones in any given case, SimFIT provides tables to
check the values. For instance, analysis of the test file binomial.tf4 yields the following comparison.

?̂ = (H/#) with exact unsymmetrical small sample limits

y N Lower-95% ?̂ Upper-95%

23 84 0.182144 0.273810 0.382008

12 78 0.082102 0.153846 0.253321

31 111 0.198289 0.279279 0.372414

91 92 0.940922 0.989130 0.999725

1 93 0.000272 0.010753 0.058458

?̃ = (H + 2)/(# + 4) with approximate central limits [?̃ ± B̃]
y N Lower-95% ?̃ Upper-95% B̃

23 84 0.189866 0.284091 0.378316 0.094225

12 78 0.089290 0.170732 0.252173 0.081442

31 111 0.204283 0.286957 0.369630 0.082673

91 92 0.933945 0.968750 1.003555 0.034805 ***

1 93 -0.003524 0.030928 0.065380 0.034452 ***

*** Indicates parameter limits outside range (0,1)

The column B̂ indicates the amount B̂ added to and subtracted from ?̂ to derive the limits so that the results
can be reported as ?̂ ± B̂. It will be seen that modifying the data in test file binomial.tf3 to make test
file binomial.tf4 by editing in a couple of extreme values causes the approximate method to overflow or
underflow as indicated by ***. Actually the numerical calculation to estimate the exact confidence takes
much longer than estimation of the normal approximation, so SimFIT allows users to choose the method to
use when analyzing large samples.

12.1.3 Differences between binomial parameter estimates

For cases where the number of samples is relatively small, it is also sometimes helpful to examine tables that
highlight significant differences between estimates as follows, using the test file binomial.tf4.

182 SimFIT reference manual

3 (8, 9) = ?̂8 − ?̂ 9 , ##) = 1/|3 (8, 9) |
8 9 Lower-95% 3 (8, 9) Upper-95% Result p_sig. +0A (3 (8, 9)) ##) (95%cl)

1 2 -0.00455 0.11996 0.24448 Not significant 0.0590 0.00404 8 (*.*) NS

1 3 -0.13219 -0.00547 0.12125 Not significant 0.9326 0.00418 183 (*.*) NS

1 4 -0.81300 -0.71532 -0.61764 (1) < (4) 0.0000 0.00248 1 (*.*) NC

1 5 0.16542 0.26306 0.36069 (1) > (5) 0.0000 0.00248 4 (3,6)

2 3 -0.24109 -0.12543 -0.00977 (2) < (3) 0.0355 0.00348 8 (4,102) NNH

2 4 -0.91811 -0.83528 -0.75246 (2) < (4) 0.0000 0.00179 1 (*.*) NC

2 5 0.06033 0.14309 0.22586 (2) > (5) 0.0007 0.00178 7 (4,17) NC

3 4 -0.79596 -0.70985 -0.62374 (3) < (4) 0.0000 0.00193 1 (*.*) NC

3 5 0.18247 0.26853 0.35458 (3) > (5) 0.0000 0.00193 4 (3,5)

4 5 0.94857 0.97838 1.00818 (4) > (5) 0.0000 0.00023 1 (*.*) NC

p_sig. = significance, NNH = Number needed to harm, NS = Not significant, NC = Not calculated

Note that when the lower limit is negative and the upper limit is positive the confidence range includes zero so
that the difference between estimates is not significantly different from zero. When the parameters are listed
as different, the result can be interpreted as stricter (since U/2 is used) than a one–sided lower tail or upper
tail test (where U would normally be used). A purist would argue that, as three tests are being done on the
same data, the Bonferroni principle would require that significance levels should be divided by three anyway.

It should be noted that the number needed to treat ##) is simply the reciprocal of the absolute difference
3 (8, 9) = ?8 − ? 9 , except that, to avoid overflow, this is constrained to the range 1 ≤ ##) ≤ 106. Where
confidence limits for ##) cannot be estimated, this is indicated by #�, and when the probability difference
is negative the number needed to harm is indicated by ##� instead of the confidence range, as will be seen
in the above table.

Often it is required to calculate pairwise differences between adjacent lines of the data file, this will happen
automatically if the sample size exceeds a certain limiting size. For instance a sample size of size # requires(#

2

)
lines of table to output the results from all pairwise comparisons whereas restricting analysis to adjacent

pairs only requires #/2. Here, for instance, is the result from analyzing the test file binomial.tf5 where
there are twenty lines of data requiring a table with only ten rows.

3 (8, 9) = ?̂8 − ?̂ 9 , ##) = 1/|3 (8, 9) |
8 9 Lower-95% 3 (8, 9) Upper-95% Result p_sig. +0A (3 (8, 9)) ##) (95%cl)

1 2 0.06707 0.20000 0.33293 (1) > (2) 0.0032 0.00460 5 (3,15)

3 4 0.01315 0.15000 0.28685 (3) > (4) 0.0317 0.00488 7 (3,76)

5 6 0.06707 0.20000 0.33293 (5) > (6) 0.0032 0.00460 5 (3,15)

7 8 0.07604 0.20000 0.32396 (7) > (8) 0.0016 0.00400 5 (3,13)

9 10 0.08322 0.20000 0.31678 (9) > (10) 0.0008 0.00355 5 (3,12)

11 12 0.11684 0.21000 0.30316 (11) > (12) 0.0000 0.00226 5 (3,9)

13 14 -0.23118 -0.14000 -0.04882 (13) < (14) 0.0026 0.00216 7 (4,20) NNH

15 16 -0.46386 -0.35000 -0.23614 (15) < (16) 0.0000 0.00338 3 (2,4) NNH

17 18 -0.15509 -0.05000 0.05509 Not sig. 0.3511 0.00288 20 (*.*) NS

19 20 -0.12002 0.00000 0.12002 Not sig. 1.0000 0.00375 >999999 (*.*) NS

p_sig. = significance, NNH = Number needed to harm, NS = Not significant, NC = Not calculated

12.1.4 Confidence limits for analysis of two proportions

Given two proportions ?8 and ? 9 estimated as

?̂8 = H8/#8
?̂ 9 = H 9/# 9

Analysis of proportions 183

it is often wished to estimate confidence limits for the relative risk ''8 9 , the difference between proportions
�%8 9 , and the odds ratio $'8 9 , defined as

''8 9 = ?̂8/?̂ 9
�%8 9 = ?̂8 − ?̂ 9
$'8 9 = ?̂8 (1 − ?̂ 9)/[?̂ 9 (1 − ?̂8)] .

First of all note that, for small proportions, the odds ratios and relative risks are similar in magnitude. Then
it should be recognized that, unlike the case of single proportions, exact confidence limits can not easily be
estimated. However, approximate central 100(1 − U)% confidence limits can be calculated using

log(''8 9) ± /U/2

√
1 − ?̂8
#8 ?̂8

+
1 − ?̂ 9
9 ?̂ 9

�%8 9 ± /U/2

√
?̂8 (1 − ?̂8)

#8
+
?̂ 9 (1 − ?̂ 9)

9

log($'8 9) ± /U/2

√
1
H8

+ 1
#8 − H8

+ 1
H 9

+ 1
9 − H 9

provided ?̂8 and ?̂ 9 are not too close to 0 or 1. Here /U/2 is the upper 100(1 − U/2) percentage point for the
standard normal distribution, and confidence limits for ''8 9 and $'8 9 can be obtained using the exponential
function.

To further clarify table 12.1 it should be pointed out that the confidence limits for individual probabilities
are exact and unsymmetrical, as explained on page 285, but for pairwise comparisons the large sample
normal approximations are employed. If the confidence regions estimated by this procedure include zero the
differences are reported as not significant, otherwise the relative magnitudes of the pair are indicated. As
elsewhere in SimFIT the significance level can be set by the user. Also it should be noted that the number
needed to treat (NNT)is simply the reciprocal of the absolute value of the difference 3 (8, 9) = ?8 − ? 9 except
that, to avoid overflow, this is constrained to the range 1 ≤ ##) ≤ 106.

12.2 Meta analysis

A pair of success/failure classifications with H successes in # trials, i.e. with frequencies =11 = H1, =12 =

#1 − H1, =21 = H2, and =22 = #2 − H2, results in a 2 by 2 contingency table, and meta analysis is used for
exploring : sets of such 2 by 2 contingency tables. That is, each row of each table is a pair of numbers of
successes and number of failures, so that the Odds ratio in contingency table : can be defined as

Odds ratio: =
H1:/(#1: − H1:)
H2:/(#2: − H2:)

=
=11:=22:

=12:=21:

.

Typically, the individual contingency tables would be for partitioning of groups before and after treatment,
and a common situation would be where the aim of the meta analysis would be to assess differences between
the results summarized in the individual contingency tables, or to construct a best possible Odds ratio taking
into account the sample sizes for appropriate weighting. Suppose, for instance, that contingency table number
: is

=11: =12: =1+:
=21: =22: =2+:
=+1: =+2: =++:

184 SimFIT reference manual

where the marginals are indicated by plus signs in the usual way. Then, assuming conditional independence
and a hypergeometric distribution (page 418), the mean and variance of =11: are given by

� (=11:) = =1+:=+1:/=++:
+ (=11:) =

=1+:=2+:=+1:=+2:

=2
++: (=++: − 1)

,

and, to test for significant differences between< contingency tables, the Cochran-Mantel-Haenszel test statistic
�"�, given by

�"� =

{�����
<∑
:=1

(=11: − � (=11:))
�����− 1

2

)2

<∑
:=1

+ (=11:)

can be regarded as an approximately chi-square variable with one degree of freedom. Some authors omit the
continuity correction and sometimes the variance estimate is taken to be

+̂ (=11:) = =1+:=2+:=+1:=+2:/=3
++: .

As an example, read in meta.tf1 and observe the calculation of the test statistic as shown in table 12.2. The
estimated common odds ratio \̂"� presented in table 12.2 is calculated allowing for random effects using

\̂"� =

<∑
:=1

(=11:=22:/=++:)

<∑
:=1

(=12:=21:/=++:)
,

while the variance is used to construct the confidence limits from

f̂2 [log(\̂"�)] =

<∑
:=1

(=11: + =22:)=11:=22:/=2
++:

2

(
<∑
:=1

=11:=22:/=++:

)2

+

<∑
:=1

[(=11: + =22:)=12:=21: + (=12: + ==21:)=11:=22:]/=2
++:

2

(
<∑
:=1

=11:=22:/=++:

) (
<∑
:=1

=12:=21:/=++:

)

+

<∑
:=1

(=12: + =21:)=12:=21:/=2
++:

2

(
<∑
:=1

=12:=21:/=++:

)2
.

Also, in table 12.2, the overall 2 by 2 contingency table using the pooled sample assuming a fixed effects
model is listed for reference, along with the overall odds ratio and estimated confidence limits calculated using
the expressions presented previously for an arbitrary log odds ratio (page 183). Table 12.3
illustrates another technique to study sets of 2 by 2 contingency tables. SimFIT can calculate all the standard
probability statistics for sets of paired experiments. In this case the pairwise differences are illustrated along
with the number needed to treat i.e. ##) = 1/3, but it should be remembered that such estimates have to be
interpreted with care. For instance, the differences and log ratios change sign when the rows are interchanged.

Analysis of proportions 185

To test H0: equal binomial pvalues

Number of 2 by 2 tables = 8 (sum of Y = 4081, sum of N = 8419)

Overall estimate of binomialp = 0.4847 (95%cl = 0.4740,0.4955)

2 log lambda (2LL) = 310.9, NDOF = 15

p = P(chisq. >= 2LL) = 0.0000 Reject H0 at 1% slevel

Chisq. test stat (C) = 306.9, NDOF = 15

p = P(chisq. >= C) = 0.0000 Reject H0 at 1% slevel

CochranMantelHaenszel 2 x 2 x k Meta Analysis

y N Odds Ratio E[n(1,1)] Var[n(1,1)]

126 226 2.19600 113.00000 16.89720

35 96

908 1596 2.14296 773.23448 179.30144

497 1304

913 1660 2.17526 799.28296 149.27849

336 934

235 407 2.85034 203.5 31.13376

58 179

402 710 2.31915 355.0 57.07177

121 336

182 338 1.58796 169.0 28.33333

72 170

60 159 2.36915 53.0 9.0

11 54

104 193 2.00321 96.5 11.04518

21 57

H0: conditional independence (all odds ratios = 1)

CMH Test Statistic = 2.794E+02

p = P(chisq. >= CMH) = 0.0000 Reject H0 at 1% slevel

Common Odds Ratio = 2.174, 95%cl = (1.914, 2.471)

Overall 2 by 2 table

y N y

2930 2359

1151 1979

Overall Odds Ratio = 2.136 95%cl = (1.95, 2.338)

Table 12.2: Analysis of proportions: meta analysis

Again, it should be emphasized that SimFIT outputs values and confidence limits both for the differences
31,2 = ?̂1 − ?̂2 and the calculated ##) = 1/31,2 values, but the choice between these quantities for data
interpretation is controversial. To appreciate the reason why a value of ##) calculated from a sample is just
a coarse estimate of the size of a sample needed to treat in order to obtain one additional cure, and could be
very misleading, consider the situation of binomial trials with exactly known probabilities ?1 and ?2, and
?1 > ?2. The condition that the expectation of a binomial variable -1 with probability ?1 should be one
greater than than a binomial variable -2 with probability ?2 given a sample size # is

� (-1) = � (-2) + 1

#?1 = #?2 + 1, so that

=
1

?1 − ?2

.

186 SimFIT reference manual

d(i,j) = p_hat(i) p_hat(j), NNT = 1/|d(i,j)|

i j d(i,j) lower95% upper95% Result Var(d) NNT (95%c.l.)

1 2 0.19294 0.07691 0.30897, p(1) > p(2) 0.00350 6 (3,14)

3 4 0.18779 0.15194 0.22364, p(3) > p(4) 0.00033 6 (4,7)

5 6 0.19026 0.15127 0.22924, p(5) > p(6) 0.00040 6 (4,7)

7 8 0.25337 0.16969 0.33706, p(7) > p(8) 0.00182 4 (2,6)

9 10 0.20608 0.14312 0.26903, p(9) > p(10) 0.00103 5 (3,7)

11 12 0.11493 0.02360 0.20626, p(11) > p(12) 0.00217 9 (4,43)

13 14 0.17365 0.04245 0.30486, p(13) > p(14) 0.00448 6 (3,24)

15 16 0.17044 0.02682 0.31406, p(15) > p(16) 0.00537 6 (3,38)

Table 12.3: Analysis of proportions: risk difference

Of course ##) calculated from data is not the exact # as just derived but is given by the random function

##) =
1

?̂1 − ?̂2

where there is experimental uncertainty in the parameter estimates. This is one reason why many experts
recommend relying on conclusions based directly on the difference 31,2, because this quantity is more robust
for the purpose of hypothesis testing than ##) where reciprocation exaggerates random effects. Another
reason is that it is possible to calculate accurate confidence limits for the difference 31,2, but confidence limits
calculated for ##) are unsymmetrical and much less intuitive.

Figure 12.2 shows the Log-Odds-Ratio plot with confidence limits resulting from this analysis, after trans-
ferring to advanced graphics as just described for ordinary analysis of proportions. The relative position of

0

2

4

6

8

0 1

Meta Analysis of 2 by 2 Contingency Tables

log10[Odds Ratios]

C
on

tr
ol

 P
ar

am
et

er
 x

Figure 12.2: Meta analysis and log odds ratios

the data with respect to the line Log-Odds-Ratio = 0 clearly indicates a shift from 50:50 but non-disjoint
confidence limits do not suggest statistically significant differences. For further details of the error bars and
more advanced plotting see page 188

Analysis of proportions 187

Contingency table analysis is compromised when cells have zero frequencies, as many of the usual summary
statistics become undefined. Structural zeros are handled by applying loglinear GLM analysis but sampling
zeros presumably arise from small samples with extreme probabilities. Such tables can be analyzed by exact
methods, but usually a positive constant is added to all the frequencies to avoid the problems. Table 12.4
illustrates how this problem is handled in SimFIT when analyzing data in the test file meta.tf4; the correction

CochranMantelHaenszel 2 x 2 x k Meta Analysis

y N Odds Ratio E[n(1,1)] Var[n(1,1)]

*** 0.01 added to all cells for next calculation

0 6 0.83361 0.01091 0.00544

0 5

*** 0.01 added to all cells for next calculation

3 6 601.0 1.51 0.61686

0 6

*** 0.01 added to all cells for next calculation

6 6 1199.00995 4.01 0.73008

2 6

*** 0.01 added to all cells for next calculation

5 6 0.00825 5.51 0.25454

6 6

*** 0.01 added to all cells for next calculation

2 2 0.40120 2.01426 0.00476

5 5

H0: conditional independence (all odds ratios = 1)

CMH Test Statistic = 3.862

P(chisq. >= CMH) = 0.0494 Reject H0 at 5% slevel

Common Odds Ratio = 6.749, 95%cl = (1.144, 39.81)

Table 12.4: Analysis of proportion: meta analysis with zero frequencies

of adding 0.01 to all contingency tables frequencies being indicated. Values ranging from 0.00000001 to
0.5 have been suggested elsewhere for this purpose, but all such choices are a compromise and, if possible,
sampling should be continued until all frequencies are nonzero.

12.3 Bioassay, estimating percentiles

Where it is required to construct a dose response curve from sets of (H, #) data at different levels of an
independent variable, G, it is sometimes useful to apply probit analysis or logistic regression to estimate
percentiles, like LD50 (page 113) using generalized linear models (page 49). To observe how this works,
read in the test file ld50.tf1 and try the various options for choosing models, plotting graphs and examining
residuals.

12.4 Trichotomous data

This procedure is used when an experiment has three possible outcomes, e.g., an egg can fail to hatch, hatch
male, or hatch female, and you wish to compare the outcome from a set of experiments. For example, read
in trinom.tf1 then trinom.tf2 to see how to detect significant differences graphically (i.e., where there
are non-overlapping confidence regions) in trinomial proportions, i.e., where groups can be split into three
categories. For details of the trinomial distribution see page 418 and for plotting contours see page 287.

188 SimFIT reference manual

12.5 Plotting binomial error bars

Figure 12.3 shows binomial parameter estimates for H successes in # trials. The error bars represent exact,
unsymmetrical confidence limits (see page 285), not those calculated using the normal approximation.

0.00

0.50

1.00

0 1 2 3 4 5

Binomial Parameter Estimates

Control Variable x

p̂
=

 y
/N

Figure 12.3: Binomial parameter error bars

12.6 Plotting Log-Odds error bars

Figure 12.3 can also be manipulated by transforming the estimates ?̂ = H/# and confidence limits. For
instance, the ratio of success to failure (i.e. Odds H/(# − H)) or the logarithm (i.e. Log Odds) can be used, as
in figure 12.4, to emphasize deviation from a fixed ? value, e.g. ? = 0.5 with a log-odds of 0. Figure 12.4
was created from a simple log-odds plot by using the [Advanced] option to transfer the G, ?̂/(1 − ?̂) data into
simplot, then selecting a reverse H-semilog transform.

1

2

3

4

5

-1.50 -0.50 0.50 1.50

Log Odds Plot

log10[p̂/(1 - p̂)]

C
on

tr
ol

 V
ar

ia
bl

e
x

Figure 12.4: Log-Odds error bars

Analysis of proportions 189

12.7 Plotting meta analysis error bars

-1.00 -0.50 0.00 0.50 1.00 1.50

log10[Odds Ratios]

m
et

a.
tf1

m
et

a.
tf2

m
et

a.
tf3

Figure 12.5: Log-Odds-Ratios error bars

It is often useful to plot Log-Odds-Ratios, so the
creation of figure 12.5 will be outlined.

(1) The data

Test files meta.tf1, meta.tf2, and meta.tf3 were
analyzed in sequence using the SimFIT Meta Anal-
ysis procedure (page 183). Note that, in these files,
column 3 contains spacing coordinates so that data
will be plotted consecutively.

(2) The ASCII coordinate files

During Meta Analysis, 100(1−U)% confidence lim-
its on the Log-Odds-Ratio resulting from a 2 by 2
contingency tables with cell frequencies =8 9 can be
constructed from the approximation 4̂ where

4̂ = /U/2

√
1
=11

+ 1
=12

+ 1
=21

+ 1
=22

.

When Log-Odds-Ratios with error bars are dis-
played, the overall values (shown as filled symbols)
with error bars are also plotted with a G coordinate
one less than smallest G value on the input file. For
this figure, error bar coordinates were transferred
into the project archive using the [Advanced] option
to save ASCII coordinate files.

(3) Creating the composite plot

Program simplot was opened and the six error
bar coordinate files were retrieved from the project
archive. Experienced users would do this more eas-
ily using a library file of course. Reverse H-semilog
transformation was selected, symbols were chosen,
axes, title, and legends were edited, then half bracket
hooks identifying the data were added as arrows and
extra text.

(4) Creating the PostScript file

Vertical format was chosen then, using the option to
stretch PostScript files (page 210), the H coordinate
was stretched by a factor of two.

(5) Editing the PostScript file

To create the final PostScript file for LATEX a tighter
bounding box was calculated using gsview then,
using notepad, clipping coordinates at the top of the
file were set equal to the BoundingBox coordinates,
to suppress excess white space. This can also be
done using the [Style] option to omit painting a white
background, so that PostScript files are created with
transparent backgrounds, i.e. no white space, and
clipping is irrelevant.

Part 13

Multivariate statistics

13.1 Introduction

It is assumed that the data are in the form of a = by < matrix, where the = rows represent cases and the <
columns are variables, and it is wished to explore relationships between the rows and columns. Frequently
this requires graphical display, so data files for multivariate analysis often have row and column labels in
addition to the =< observations.

13.2 Correlation: parametric (Pearson product moment)

Given any set of = nonsingular (G8 , H8) pairs, a correlation coefficient A can be calculated as

A =

=∑
8=1

(G8 − Ḡ) (H8 − H̄)
√√

=∑
8=1

(G8 − Ḡ)2

=∑
8=1

(H8 − H̄)2

where −1 ≤ A ≤ 1 and, using 1GH for the slope of the regression of - on . , and 1HG for the slope of the
regression of . on - , it will be shown later that

A2
= 1HG1GH .

However, only when - is normally distributed given . , and . is normally distributed given - can simple
statistical tests be used for significant linear correlation. Figure 13.1 illustrates how the elliptical contours of
constant probability for a bivariate normal distribution discussed on page 421 are aligned with the - and .
axes when - and . are uncorrelated, i.e., d = 0 but are inclined otherwise. In this example `- = `. = 0 and
fG = f. = 1, but in the upper figure d = 0, while in the lower figure d = 0.9. The Pearson product moment
correlation coefficient A is an estimator of d, and it can can be used to test for independence of - and . . For
instance, when the (G8 , H8) pairs are from such a bivariate normal distribution, the statistic

C = A

√
= − 2
1 − A2

has a Student’s C-distribution with = − 2 degrees of freedom.

The SimFIT product moment correlation procedure can be used when you have a data matrix - consisting of
< > 1 columns of = > 1 measurements (not counts or categorical data) and wish to test for pairwise linear
correlations, i.e., where pairs of columns can be regarded as consistent with a joint normal distribution. In
matrix notation, the relationships between such a = by < data matrix - , the same matrix . after centering by

Multivariate statistics 191

Bivariate Normal Distribution: ρ = 0

XY

Z

3

-3

3

-3
1.964×10-5

1.552×10-1

Bivariate Normal: ρ = 0

X

Y

-3

3

3-3

Key Contour
 1 1.440×10-2

 2 2.878×10-2

 3 4.316×10-2

 4 5.755×10-2

 5 7.193×10-2

 6 8.631×10-2

 7 0.101
 8 0.115
 9 0.129
 10 0.144

12

3

4

56

7

8

910

Bivariate Normal Distribution: ρ = 0.9

XY

Z

3

-3

3

-3
2.992×10-40

3.604×10-1

Bivariate Normal: ρ = 0.9

X

Y

-3

3

3-3

Key Contour
 1 3.309×10-2

 2 6.618×10-2

 3 9.927×10-2

 4 0.132
 5 0.165
 6 0.199
 7 0.232
 8 0.265
 9 0.298
 10 0.331

1

2

3

4

5

6

7

8
9

10

Figure 13.1: Bivariate density surfaces and contours

subtracting each column mean from the corresponding column, the sum of squares and products matrix �,
the covariance matrix (, the correlation matrix ', and the diagonal matrix � of standard deviations are

� = .).

(=
1

= − 1
�

� = diag(√B11,
√
B22, . . . ,

√
B<<)

' = �−1(�−1

(= �'�.

So, for all pairs of columns, the sample correlation coefficients A 9 : are given by

A 9 : =
B 9 :

√
B 9 9 B::

,

where B 9 : =
1

= − 1

=∑
8=1

(G8 9 − Ḡ 9) (G8: − Ḡ:),

and the corresponding C 9 : values and significance levels ? 9 : are calculated then output in matrix format with
the correlations as a strict upper triangular matrix, and the significance levels as a strict lower triangular
matrix.

Table 13.1 shows the results from analyzing the test file g02baf.tf1, which refers to a set of 3 column vectors
of length 5. To be more precise, the values 08 9 for matrix � in table 13.1 are interpreted as now described.

192 SimFIT reference manual

Matrix A, Pearson correlation results

Upper triangle = r, Lower = corresponding twotail p values

..... 0.5704 0.1670

0.3153 0.7486

0.7883 0.1455

Test for absence of any significant correlations

H0: correlation matrix is the identity matrix

Determinant = 0.229

Test statistic (TS) = 3.194

Degrees of freedom = 3

p = P(chisq >= TS) = 0.3627

Table 13.1: Correlation: Pearson product moment analysis

For 9 > 8 in the upper triangle, then 08 9 = A8 9 = A 98 are the correlation coefficients, while for 8 > 9 in the lower
triangle 08 9 = ?8 9 = ? 98 are the corresponding two-tail probabilities. The self-correlations are all 1, of course,
and so they are represented by dotted lines. Table 13.1 indicates that none of the correlations are significant in
this case, that is, the probability of obtaining such pairwise linearity in a random swarm of points is not low,
but after the correlation matrix the results of a likelihood ratio test for the absence of significant correlations
are displayed. To test the hypothesis of no significant correlations, i.e. �0: the covariance matrix is diagonal,
or equivalently �0: the correlation matrix ' is the identity matrix, the statistic

−2 log_ = −(= − (2< + 11)/6) log |' |

is used, which has the asymptotic chi-square distribution with <(< − 1)/2 degrees of freedom.

After the results have been calculated you can choose pairs of columns for further analysis, as shown for
the test file cluster.tf1 in table 13.2, where there seem to be significant correlations. First the test for
significant correlation was done, then columns 1 and 2 were selected for further analysis, consisting of all
the statistics necessary to study the regression of column 1 on column 2 and vice versa. Various graphical
techniques are then possible to visualize correlation between the columns selected by superimposing best-fit
lines or confidence region ellipses (page 196). Highly significant linear correlation is indicated by best-fit
lines with similar slopes as well as A values close to 1 and small ? values. Note that, after a correlation
analysis, a line can be added to the scattergram to indicate the extent of rotation of the axes of the ellipses
from coincidence with the -,. axes.

13.2.1 Plotting lines on correlation diagrams

You can plot either both unweighted regression lines, the unweighted reduced major axis line, or the
unweighted major axis line on such scattergrams and the difference between these types will now be outlined.

For n pairs (G8 , H8) with mean G = Ḡ and mean H = H̄, the variances and covariance required are

Multivariate statistics 193

Test for absence of any significant correlations

H0: correlation matrix is the identity matrix

Determinant = 0.002476

Test statistic (TS) = 45.01

Degrees of freedom = 28

P(chisq >= TS) = 0.0220 Reject H0 at 5% sig.level

For the next analysis: X is column 1, Y is column 2

Linear regression: y(x) = A + B*x, x(y) = C + D*y

Sample size = 12

For X: mean = 8.8333, std. dev. = 5.7814, var. = 33.424

For Y: mean = 9.9167, std. dev. = 7.5973, var. = 57.72

Parameter Estimate Std.Err. Est./Std.Err. p

B (slope) 0.69583 0.35252 1.9739 0.0766

A (const) 3.7702 3.6748 1.0260 0.3291

r (Ppmcc) 0.52951 0.26826 1.9739 0.0766

rsquared 0.28038, yvariation due to x = 28.04%

z(Fisher) 0.58946, Note: z = (1/2)log[(1+r)/(1r)],

r^2=B*D, t=r*sqrt[(n2)/(1r^2))]=Est./Std.Err. for B,D,and r

The Pearson productmoment corr. coeff. r estimates rho and

95% conf. limits using z are 0.0771 =< rho =< 0.85

Source Sum of squares ndof Mean square Fvalue p

due to regression 178.02 1 178.02 3.8962 0.7665

about regression 456.90 10 45.69

total 634.92 11

Conclusion: B is not significantly different from zero (p > 0.05)

A is not significantly different from zero (p > 0.05)

The two bestfit unweighted regression lines are:

y(x) = 3.7702 + 0.69583*x, x(y) = 4.8375 + 0.40294*y

Table 13.2: Correlation: analysis of selected columns

(GG =
1

= − 1

=∑
8=1

(G8 − Ḡ)2

(HH =
1

= − 1

=∑
8=1

(H8 − H̄)2

(GH =
1

= − 1

=∑
8=1

(G8 − Ḡ) (H8 − H̄) .

Also, for an arbitrary point (G8 , H8) and a straight line defined by H = 0 + 1G the squares of the vertical,

194 SimFIT reference manual

horizontal, and orthogonal (i.e. perpendicular) distances, E2
8 , ℎ

2
8 , and >2

8 between the point and the line are

E2
8 = [H8 − (0 + 1G8)]2

ℎ2
8 = E

2
8 /12

>2
8 = E

2
8 /(1 + 12) .

13.2.1.1 Ordinary least squares

If G is regarded as an exact variable free from random variation or measurement error while H has random
variation, then the best fit line from minimizing the sum of E2

8 is

H1 (G) = V̂1G + [H̄ − V̂1Ḡ]

where V̂1 = (GH/(GG. However, if H is regarded as an exact variable while G has random variation, then the
best fit line for G as a function of H from minimizing the sum of ℎ2

8 would be

G2 (H) = (1/V̂2)H + [Ḡ − (1/V̂2) H̄]

where V̂2 = (HH/(GH or, rearranging to express the line as H2 (G),

H2 (G) = V̂2G + [H̄ − V̂2Ḡ],

emphasizing that the slope of the regression line for H2 (G) is the reciprocal of the slope for G2 (H). Since
neither of these two best fit lines can be regarded as satisfactory, SimFIT plots both lines such that H1 (G)
covers the range of G values while G2 (H) covers the range of H values. However these two lines intersect at
(Ḡ, H̄) and, from the fact that the ratio of slopes equals the square of the correlation coefficient, that is,

A2
= V̂1/V̂2,

then two best fit lines with similar slopes suggests strong linear correlation, whereas one line almost parallel to
the G axis and the other almost parallel to the H axis would indicate negligible linear correlation. For instance,
if there is no linear correlation between G and H, then the slope of the regression line for H(G) i.e. V̂1 would
be zero, as would be the slope of the regression line for G(H) i.e. 1/V̂2 leading to A2 = 0. Conversely strong
linear correlation would lead to V̂1 = V̂2 and A2 = 1.

The major axis and reduced major axis lines to be discussed next are attempts to get round the necessity to
plot two lines and just have one best fit line intermediate between these two lines to represent the correlation.

13.2.1.2 The major axis line

Here it is the sum of >2
8 , the squares of the orthogonal distances between the points and the best fit line, that

is minimized to yield the slope as

V̂3 =
1
2

(
V̂2 − (1/V̂1) + W

√
4 + (V̂2 − (1/V̂1))2

)

where W = 1 if (GH > 0, W = 0 if (GH = 0, and W = −1 if (GH < 0, so that the major axis line is

H3 (G) = V̂3G + [H̄ − V̂3Ḡ] .

Actually V̂3 is the slope of the first principal component axis and so it points in the direction of maximum
variability.

Multivariate statistics 195

13.2.1.3 The reduced major axis line

Instead of minimizing the sum of squares of the vertical distances E2
8 , or horizontal distances ℎ2

8 , it is possible
to minimize the sum of the areas of the triangles formed by the E8 , ℎ8 with the best fit line as hypotenuse, i.e.
E8ℎ8/2, to obtain the reduced major axis line as

H4 (G) = V̂4G + [H̄ − V̂4Ḡ] .

Here

V̂4 = W

√
(HH/(GG

= W

√
V̂1 V̂2

so that the slope of the reduced major axis line is the geometric mean of the slopes of the regression of H on G
and G on H.

196 SimFIT reference manual

13.2.1.4 Plotting scattergrams, clusters, and connections

Plotting both regression lines is the most useful and least controversial as in figure 13.2.

7.00

7.50

8.00

8.50

10.0 10.5 11.0 11.5

Wing Length (cm)

T
ai

l L
en

gt
h

(c
m

)

Figure 13.2: Correlations and scattergrams

If a single line must be plotted to summarize the overall correlation it should be the reduced major axis line, as
this allows for uncertainty in both variables and is not so controversial as the major axis line, which requires
both axes to have similar units, as in allometry. It should not be either of the regression lines, since the line
plotted must be independent of which variable is regarded as G and which is regarded as H.

Clusters can be plotted as sideways displaced and reduced symbols, while connections need individual data
files for distinct lines and symbols, as in figure 13.3.

1

2

3

4

5

Plotting Clusters and Connections

Sc
or

es
 a

nd
 A

ve
ra

ge
s

Scores
Smith
Jones
Brown
Bell

January

February

M
arch

April
M

ay
June

Figure 13.3: Clusters and connections

Multivariate statistics 197

13.2.2 Plotting bivariate confidence ellipses: basic theory

For a ?-variate normal sample of size = with mean Ḡ and variance matrix estimate (, the region

%

{
(Ḡ − `)) (−1(Ḡ − `) ≤ ?(= − 1)

=(= − ?) �
U
?,=−?

}
≤ 1 − U

can be regarded as a 100(1− U)% confidence region for `. Figure 13.4 illustrates this for columns 1 and 2 of
cluster.tf1 discussed previously (page 193). Alternatively, the region satisfying

%

{
(G − Ḡ)) (−1(G − Ḡ) ≤ ?(=2 − 1)

=(= − ?) �
U
?,=−?

}
≤ 1 − U

can be interpreted as a region that with probability 1−U would contain another independent observation G, as
shown for the swarm of points in figure 13.4. The ` confidence region contracts with increasing =, limiting

0

5

10

15

20

25

0 5 10 15 20

99% Confidence Region for the Mean

Column 1

C
ol

um
n

2

-20

-10

0

10

20

-8 -4 0 4 8

95% Confidence Region for New Observation

x

y

Figure 13.4: Confidence ellipses for a bivariate normal distribution

application to small samples, but the new observation ellipse does not, making it useful for visualizing if data
do represent a bivariate normal distribution, while inclination of the principal axes away from parallel with
the plot axes demonstrates linear correlation. This technique is only justified if the data are from a bivariate
normal distribution and are independent of the variables in the other columns, as indicated by the correlation
matrix.

198 SimFIT reference manual

13.2.3 Plotting bivariate confidence ellipses: regions

Often a two dimensional swarm of points results from projecting data that have been partitioned into groups
into a subspace of lower dimension in order to visualize the distances between putative groups, e.g., after
principal components analysis or similar. If the projections are approximately bivariate normal then confidence
ellipses can be added, as in figure 13.5.

-16

-8

0

8

16

-16 -8 0 8 16

95% Confidence Ellipses

x

y

Figure 13.5: 95% confidence regions

The following steps were used to create figure 13.5 and can be easily adapted for any number of sets of two
dimensional group coordinates.

❍ For each group a file of values for G and H coordinates in the projected space was saved.

❍ Each file was analyzed for correlation using the SimFIT correlation analysis procedure.

❍ After each correlation analysis, the option to create a 95% confidence ellipse for the data was selected,
and the ellipse coordinates were saved to file.

❍ A library file was created with the ellipse coordinates as the first three files, and the groups data files as
the next three files.

❍ The library file was read into simplot, then colors and symbols were chosen.

Note that, because the ellipse coordinates are read in as the first coordinates to be plotted, the option to plot
lines as closed polygons can be used to represent the confidence ellipses as colored background regions.

Multivariate statistics 199

13.3 Correlation: nonparametric (Kendall tau and Spearman rank)

These nonparametric procedures can be used when the data matrix does not consist of columns of normally
distributed measurements, but may contain counts or categorical variables, etc. so that the conditions for
Pearson product moment correlation are not satisfied and ranks have to be used. Suppose, for instance, that
the data matrix has = rows (observations) and < columns (variables) with = > 1 and < > 1, then the G8 9 are
replaced by the corresponding column-wise ranks H8 9 , where groups of tied values are replaced by the average
of the ranks that would have been assigned in the absence of ties. Kendall’s tau g9 : for variables 9 and : is
then defined as

g9 : =

=∑
ℎ=1

=∑
8=1

5 (Hℎ 9 − H8 9) 5 (Hℎ: − H8:)
√
[=(= − 1) −)9] [=(= − 1)):]

,

where 5 (D) = 1 if D > 0,

= 0 if D = 0,

= −1 if D < 0,

and)9 =
∑

C 9 (C 9 − 1) .

Here C 9 is the number of ties at successive tied values of variable 9 , and the summation is over all tied values.
For large samples g9 : is approximately normally distributed with

` = 0

f2
=

4= + 10
9=(= − 1)

which can be used as a test for the absence of correlation. Another alternative is to calculate Spearman’s rank
coefficient 2 9 : , defined as

2 9 : =

=(=2 − 1) − 6
=∑
8=1

(H8 9 − H8:)2 − ()9 +):)/2
√
[=(=2 − 1) −)9] [=(=2 − 1)):]

where now)9 =
∑

C 9 (C29 − 1)

and a test can be based on the fact that, for large samples, the statistic

C 9 : = 2 9 :

√
= − 2

1 − 22
9 :

is approximately C-distributed with = − 2 degrees of freedom.

For example, read in and analyze the test file npcorr.tfl as previously to obtain Table 13.3. To be more
precise, matrices � and � in table 13.3 are to be interpreted as follows. In the first matrix �, for 9 > 8 in the
upper triangle, then 08 9 = 28 9 = 2 98 are Spearman correlation coefficients, while for 8 > 9 in the lower triangle
08 9 = g8 9 = g98 are the corresponding Kendall coefficients. In the second matrix �, for 9 > 8 in the upper
triangle, then 18 9 = ?8 9 = ? 98 are two-tail probabilities for the corresponding 28 9 coefficients, while for 8 > 9

in the lower triangle 18 9 = ?8 9 = ? 98 are the corresponding two-tail probabilities for the corresponding g8 9 .
Note that, from these matrices, g9 : , 2 9 : and ? 9 : values are given for all possible correlations 9 , :. Also, note
that these nonparametric correlation tests are tests for monotonicity rather that linear correlation but, as with
the previous parametric test, the columns of data must be of the same length and the values must be ordered
according to some correlating influence such as multiple responses on the same animals. If the number of
categories is small or there are many ties, then Kendall’s Tau is to be preferred and conversely. Since you are
not testing for linear correlation you should not add regression lines when plotting such correlations.

200 SimFIT reference manual

Nonparametric correlation results

Matrix A: Upper triangle = Spearman’s, Lower = Kendall’s tau

..... 0.2246 0.1186

0.0294 0.3814

0.1176 0.2353

Matrix B: Two tail pvalues

..... 0.5613 0.7611

0.9121 0.3112

0.6588 0.3772

Table 13.3: Correlation: Kendall-tau and Spearman-rank

13.4 Correlation: partial

Partial correlations are useful when it is believed that some subset of the variables in a multivariate data set
can realistically be regarded as normally distributed random variables, and correlation analysis is required
for this subset of variables, conditional upon the remaining variables being regarded as fixed at their current
values. This is most easily illustrated in the case of three variables, and table 13.4 illustrates the calculation of
partial correlation coefficients, together with significance tests and confidence limits for the correlation matrix
in pacorr.tf1. Assuming a multivariate normal distribution and linear correlations, the partial correlations

Partial correlation data: 1=Intelligence, 2=Weight, 3=Age

1.0000 0.6162 0.8267

1.0000 0.7321

1.0000

No. variables = 3, sample size = 30

r(1,2) = 0.6162

r(1,3) = 0.8267

r(2,3) = 0.7321

......

r(1,2|3) = 0.0286 (95%c.l. = 0.3422, 0.3918)

t = 0.1488, ndof = 27, p = 0.8828

......

r(1,3|2) = 0.7001 (95%c.l. = 0.4479, 0.8490)

t = 5.094, ndof = 27, p = 0.0000 Reject H0 at 1% sig.level

......

r(2,3|1) = 0.5025 (95%c.l. = 0.1659, 0.7343)

t = 3.020, ndof = 27, p = 0.0055 Reject H0 at 1% sig.level

Table 13.4: Correlation: partial

between any two variables from the set 8, 9 , : conditional upon the third can be calculated using the usual
correlation coefficients as

A8, 9 |: =
A8 9 − A8:A 9 :√

(1 − A2
8:
) (1 − A2

9 :
)
.

If there are ? variables in all but ? − @ are fixed then the sample size = can be replaced by = − (? − @) in the
usual significance tests and estimation of confidence limits, e.g. =− (? − @) − 2 for a C test. From table 13.4 it
is clear that when variable 3 is regarded as fixed, the correlation between variables 1 and 2 is not significant

Multivariate statistics 201

but, when either variable 1 or variable 2 are regarded as fixed, there is evidence for significant correlation
between the other variables.

The situation is more involved when there are more than three variables, say =G - variables which can be
regarded as fixed, and the remaining =H . variables for which partial correlations are required conditional on
the fixed variables. Then the variance-covariance matrix Σ can be partitioned as in

Σ =

[
ΣGG ΣGH

ΣHG ΣHH

]

when the variance-covariance of . conditional upon - is given by

ΣH |G = ΣHH − ΣHGΣ
−1
GGΣGH,

while the partial correlation matrix ' is calculated by normalizing as

' = diag(ΣH |G)−
1
2 ΣH |G diag(ΣH |G)−

1
2 .

This analysis requires a technique for indicating that a full correlation matrix is required for all the variables,
but then in a subsequent step some variables are to be regarded as - variables, and others as . variables. All
this can be done interactively but SimFIT provides a convenient method for doing this directly from the data
file. For instance, at the end of the test file g02byf.tf1, which is a full data set, not a correlation matrix, will
be found the additional lines

begin{indicators}

1 1 1

end{indicators}

and the indicator variables have the following significance. A value of −1 indicates that the corresponding
variable is to be used in the calculation of the full correlation matrix, but then this variable is to be regarded
as a . variable when the partial correlation matrix is calculated. A value of 1 indicates that the variable is to
be included in the calculation of the full correlation matrix, then regarded as an - variable when the partial
correlation matrix is to be calculated. Any values of 0 indicate that the corresponding variables are to be
suppressed. Table 13.5 illustrates the successive results for test file g02byf.tf1 when Pearson correlation is
performed, followed by partial correlation with variables 1 and 2 regarded as . and variable 3 regarded as - .
Exactly as for the full correlation matrix, the strict upper triangle of the output from the partial correlation

Matrix A, Pearson product moment correlation results:

Upper triangle = r, Lower = corresponding twotail p values

..... 0.7560 0.8309

0.0011 0.9876

0.0001 0.0000

Test for absence of any significant correlations

H0: correlation matrix is the identity matrix

Determinant = 0.003484

Test statistic (TS) = 68.86

Degrees of freedom = 3

P(chisq >= TS) = 0.0000 Reject H0 at 1% sig.level

Matrix B, partial correlation results for variables: yyx

Upper triangle: partial r, Lower: corresponding 2tail p values

...0.7381

0.0026 ...

Table 13.5: Correlation: partial correlation matrix

202 SimFIT reference manual

analysis contains the partial correlation coefficients A8 9 , while the strict lower triangle holds the corresponding
two tail probabilities ?8 9 where

?8 9 = %

(
C=−=G−2 ≤ −|A8 9 |

√
= − =G − 2

1 − A2
8 9

)
+ %

(
C=−=G−2 ≥ |A8 9 |

√
= − =G − 2

1 − A2
8 9

)
.

To be more precise, the values 08 9 and 18 9 in the matrices � and � of table 13.5 are interpreted as now
described. In the first matrix �, for 9 > 8 in the upper triangle, then 08 9 = A8 9 = A 98 are full correlation
coefficients, while for 8 > 9 in the lower triangle 08 9 = ?8 9 = ? 98 are the corresponding two-tail probabilities.
In the second matrix �, for 9 > 8 in the upper triangle, then 18 9 = A8 9 = A 98 are partial correlation coefficients,
while for 8 > 9 in the lower triangle 18 9 = ?8 9 = ? 98 are the corresponding two-tail probabilities.

13.5 Correlation: canonical

This technique is employed when a = by < data matrix includes at least two groups of variables, say =G
variables of type - , and =H variables of type . , measured on the same = subjects, so that < ≥ =G + =H . The
idea is to find two transformations, one for the - variables to generate new variables + , and one for the .
variables to generate new variables *, with ; components each for ; ≤ min(=G , =H), such that the canonical
variates D1, E1 calculated from the data using these transformations have maximum correlation, then D2, E2,
and so on. Now the variance-covariance matrix of the - and . data can be partitioned as(

(GG (GH
(HG (HH

)

and it is required to find transformations that maximize the correlations between the - and . data sets.
Actually, the equations

((GH(−1
HH(HG − '2(GG)0 = 0

((HG(−1
GG(GH − '2(HH)1 = 0

have the same nonzero eigenvalues as the matrices (−1
GG(GH(

−1
HH(HG and (−1

HH(HG(
−1
GG(GH, and the square roots

of these eigenvalues are the canonical correlations, while the eigenvectors of the two above equations define
the canonical coefficients, i.e. loadings. Table 13.6 shows the results from analyzing data in the test file
g03adf.tf1, which has 9 rows and 4 columns. Users of this technique should note that the columns of

Variables: yxxy

Number of x = 2, Number of y = 2, Number unused = 0

Minimum of rank of x and rank of y = 2

Correlations Eigenvalues Proportions Chisq. NDOF p

0.9570 0.91591 0.8746 14.391 4 0.0061

0.3624 0.13133 0.1254 0.77438 1 0.3789

CVX: Canonical coefficients for centralized X

0.4261 1.034

0.3444 1.114

CVY: Canonical coefficients for centralized Y

0.1415 0.1504

0.2384 0.3424

Table 13.6: Correlation: canonical

the data matrix must be indicated by setting a = by 1 integer vector with values of 1 for - , 0 for variable
suppressed, or -1 for. . Such variable indicators can be initialized from the trailing section of the data file, by
using the special token begin{indicators}, as will be seen at the end of g03adf.tf1, where the following
indicator variables are appended

Multivariate statistics 203

begin{indicators}

1 1 1 1

end{indicators}

indicating that variables 1 and 4 are to be considered as. variables, while variables 2 and 3 are to be regarded
as - variables. However, the assignment of data columns to groups of type - , suppressed, or . can also be
adjusted interactively if required. Note that the eigenvalues are proportional to the correlation explained by
the corresponding canonical variates, so a scree diagram can be plotted to determine the minimum number
of canonical variates needed to adequately represent the data. This diagram plots the eigenvalues together
with the average eigenvalue, and the canonical variates with eigenvalues above the average should be retained.
Alternatively, assuming multivariate normality, the likelihood ratio test statistics

−2 log_ = −(= − (:G + :H + 3)/2)
;∑

9=8+1

log(1 − '2
9)

can be calculated for 8 = 0, 1, . . . , ; − 1, where :G ≤ =G and :H ≤ =H are the ranks of the - and. data sets and
; = min(:G , :H). These are asymptotically chi-square distributed with (:G − 8) (:H − 8) degrees of freedom,
so that the case 8 = 0 tests that none of the ; correlations are significant, the case 8 = 1 tests that none of the
remaining ; − 1 correlations are significant, and so on. If any of these tests in sequence are not significant,
then the remaining tests should, of course, be ignored.

Figure 13.6 illustrates two possible graphical displays for the canonical variates defined by matrix.tf5, where

-3

-2

-1

0

1

2

-3 -2 -1 0 1 2

Canonical Correlation

Canonical Variable v1

C
an

on
ic

al
 V

ar
ia

bl
e

u1

-3

-2

-1

0

1

2

-3 -2 -1 0 1 2

Canonical Correlation

Canonical Variable v2

C
an

on
ic

al
 V

ar
ia

bl
e

u2

Figure 13.6: Canonical correlations for two groups

columns 1 and 2 are designated the . sub-matrix, while columns 3 and 4 hold the - matrix. The canonical
variates for - are constructed from the =G by =2E loading or coefficient matrix �+- , where �+- (8, 9)
contains the loading coefficient for the 8th G variable on the 9th canonical variate D 9 . Similarly �+.) is the =H
by =2E loading coefficient matrix for the 8th H variable on the 9th canonical variate E 9 . More precisely, if 2EG 9
is column 9 of �+- , and 2EH 9 is column 9 of �+. , while G(:) is the vector of centralized - observations for
case :, and H(:) is the vector of centralized . observations for case :, then the components D(:) 9 and E(:) 9
of the = vector canonical variates D 9 and E 9 are

E(:) 9 = 2EG)9 G(:), : = 1, 2, . . . , =

D(:) 9 = 2EH)9 H(:), : = 1, 2, . . . , =.

It is important to realize that the canonical variates for * and + do not represent any sort of regression of .
on - , or - on. , they are just new coordinates chosen to present the existing correlations between the original
- and . in a new space where the correlations are then ordered for convenience as

'2(D1, E1) ≥ '2(D2, E2) ≥ . . . ≥ '2(D;, E;) .

204 SimFIT reference manual

Clearly, the left hand plot shows the highest correlation, that is, between D1 and E1, whereas the right hand plot
illustrates weaker correlation between D2 and E2. Note that further linear regression and correlation analysis
can also be performed on the canonical variates if required, and also the loading matrices can be saved to
construct canonical variates using the SimFIT matrix multiplication routines, and vectors of canonical variates
can be saved directly from plots like those in figure 13.6.

13.6 Cluster analysis: calculating a distance matrix

The idea is, as in data mining, where you have a = by < matrix 08 9 of < variables (columns) for each of =
cases (rows) and wish to explore clustering, that is groupings together of like entities. To do this, you choose
an appropriate pre-analysis transformation of the data, a suitable distance measure, a meaningful scaling
procedure, and a sensible linkage function. SimFIT will then calculate a distance matrix, or a similarity
matrix, and plot the clusters as a dendrogram. As an example, analyze the test file cluster.tf1 giving the
results displayed in table 13.7.

Variables included:

1 2 3 4 5 6 7 8

Transformation = Untransformed

Distance = Euclidean distance

Scaling = Unscaled

Linkage = Group average

Weighting [weights r not used]

Distance matrix (strict lower triangle) is:

2) 22.0

3) 36.2 28.8

4) 22.9 29.7 36.6

5) 19.5 16.6 31.1 24.5

6) 39.8 32.7 40.6 31.8 26.1

7) 21.7 28.3 38.2 21.3 19.3 36.2

8) 14.1 24.1 42.6 18.8 18.9 34.2 18.5

9) 32.7 23.0 45.4 44.9 23.6 38.7 36.6 33.4

10) 31.6 23.9 37.2 41.0 22.2 43.9 33.5 33.9 (+)

10) 24.7

11) 32.2 24.4 39.1 41.8 20.2 41.4 31.3 33.4 (+)

11) 19.9 8.25

12) 29.9 22.7 37.7 39.0 17.2 38.4 29.2 31.4 (+)

12) 18.1 11.4 6.24

Table 13.7: Cluster analysis: distance matrix

The distance 3 9 : between objects 9 and : is just a chosen variant of the weighted !? norm

3 9 : = {
<∑
8=1

F8 9:� (0 98/B8 , 0:8/B8)}?, for some �, e.g.,

(a) The Euclidean distance � (U, V) = (U − V)2 with ? = 1/2 and F8 9: = 1

(b) The Euclidean squared difference � (U, V) = (U − V)2 with ? = 1 and F8 9: = 1

(c) The absolute distance � = |U − V| with ? = 1 and F8 9: = 1, otherwise known as the Manhattan or city
block metric.

However, as the values of the variables may differ greatly in size, so that large values would dominate the
analysis, it is usual to subject the data to a preliminary transformation or to apply a suitable weighting. Often

Multivariate statistics 205

it is best to transform the data to standardized (0, 1) form before constructing the dendrogram, or at least to
use some sort of scaling procedure such as:

(i) use the sample standard deviation as B8 for variable 8,

(ii) use the sample range as B8 for variable 8, or

(iii) supply precalculated values of B8 for variable 8.

Bray-Curtis dissimilarity uses the absolute distance except that the weighting factor is given by

F8 9: =
1∑<

8=1 (0 98/B8 + 0:8/B8)

which is independent of the variables 8 and only depends on the cases 9 and :, and distances are usually
multiplied by 100 to represent percentage differences. Bray-Curtis similarity is the complement, i.e., 100
minus the dissimilarity. The Canberra distance measure, like the Bray-Curtis one, also derives from the
absolute distance except that the weighting factor is now

F8 9: =
1

_(0 98/B8 + 0:8/B8)
.

There are various conventions for defining _ and deciding what to do when values or denominators are zero
with the Bray-Curtis and Canberra distance measures, and the scheme used by SimFIT is as follows.

• If any values are negative the calculation is terminated.

• If any Bray-Curtis denominator is zero the calculation is terminated.

• If there are no zero values, then _ is equal to the number of variables in the Canberra measure.

• If both members of a pair are zero, then _ is decreased by one for each occurrence of such a pair, and
the pairs are ignored.

• If one member of a pair is zero, then it is replaced by the smallest non-zero value in the data set divided
by five, then scaled if required.

13.7 Cluster analysis: nearest neighbors

Once a distance matrix has been calculated, it is sometimes useful to calculate the nearest neighbors, as
illustrated in table 13.8 for the data in table 13.7.

In this table, column 1 refers to the objects in logical order, column 2 indicates the object that is closest, i.e.,
the nearest neighbor, while column 3 records these minimum distances. Clearly, the nearest neighbors will
depend upon the parameters used to configure the calculation of the distance matrix.

206 SimFIT reference manual

13.8 Cluster analysis: dendrograms

The test file cluster.tf1 should be examined to see how to provide labels, as in figure 13.7, and further
details about plotting dendrograms will now be discussed.

0.0

10.0

20.0

30.0

40.0
A

-1

H
-8

G
-7

D
-4

B
-2

E
-5 I-
9

J-
10

K
-1

1

L-
12 F
-6

C
-3

Cluster Analysis Dendrogram

D
is

ta
nc

e

Figure 13.7: Dendrograms and multivariate cluster analysis

The shape of the dendrogram depends on the choice of analytical techniques and the order of objects plotted
is arbitrary: groups at a given fixed distance can be rotated and displayed in either orientation. Another
choice which will affect the dendrogram shape is the method used to recalculate distances after each merge
has occurred. Suppose there are three clusters 8, 9 , : with =8 , = 9 , =: objects in each cluster and let clusters 9
and : be merged to give cluster 9 :. Then the distance from cluster 8 to cluster 9 : can be calculated in several
ways.

[1] Single link: 38, 9 : = min(38 9 , 38:)

[2] Complete link: 38, 9 : = max(38 9 , 38:)

Object Nearest Distance

1 8 14.1067

2 5 16.5529

3 2 28.7576

4 8 18.7617

5 2 16.5529

6 5 26.0960

7 8 18.4932

8 1 14.1067

9 12 18.1384

10 11 8.24621

11 12 6.24500

12 11 6.24500

Table 13.8: Cluster analysis: nearest neighbors

Multivariate statistics 207

[3] Group average: 38, 9 : = (= 938 9 + =:38:)/(= 9 + =:)

[4] Centroid: 38, 9 : = (= 938 9 + =:38: − = 9=:3 9 :/(= 9 + =:))/(= 9 + =:)

[5] Median: 38, 9 : = (38 9 + 38: − 3 9 :/2)/2

[6] Minimum variance: 38, 9 : = {(=8 + = 9)38 9 + (=8 + =:)38: − =83 9 : }/(=8 + = 9 + =:)

An important application of distance matrices and dendrograms is in partial clustering. Unlike the situation
with full clustering where we start with = groups, each containing a single case, and finish with just one group
containing all the cases, in partial clustering the clustering process is not allowed to be completed. There are
two distinct ways to arrest the clustering procedure.

1. A number, , between 1 and =−1 is chosen, and clustering is allowed to proceed until just subgroups
have been formed. It may not always be possible to satisfy this requirement, e.g. if there are ties in the
data.

2. A threshold, �, is set somewhere between the first clustering distance and the last clustering distance,
and clustering terminates when this threshold is reached. The position of such clustering thresholds
will be plotted on the dendrogram, unless � is set equal to zero.

As an example of this technique consider the results in table 13.9. This resulted from analysis of the famous

Fisher’s Iris data, 3 groups, All 4 variables, Untransformed,

Euclidean distance, Unscaled, Group average linkage,

[weights r not used], Dendrogram subclusters for K = 3

Odd rows: data ... Even rows: corresponding group number

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1

13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1

25 26 27 28 29 30 31 32 33 34 35 36

1 1 1 1 1 1 1 1 1 1 1 1

37 38 39 40 41 42 43 44 45 46 47 48

1 1 1 1 1 1 1 1 1 1 1 1

49 50 51 52 53 54 55 56 57 58 59 60

1 1 2 2 2 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72

2 2 2 2 2 2 2 2 2 2 2 2

73 74 75 76 77 78 79 80 81 82 83 84

2 2 2 2 2 2 2 2 2 2 2 2

85 86 87 88 89 90 91 92 93 94 95 96

2 2 2 2 2 2 2 2 2 2 2 2

97 98 99 100 101 102 103 104 105 106 107 108

2 2 2 2 2* 2* 3 2* 2* 3 2* 3

109 110 111 112 113 114 115 116 117 118 119 120

2* 3 2* 2* 2* 2* 2* 2* 2* 3 3 2*
121 122 123 124 25 126 127 128 129 130 131 132

2* 2* 3 2* 2* 3 2* 2* 2* 3 3 3

133 134 135 136 37 138 139 140 141 142 143 144

2* 2* 2* 3 2* 2* 2* 2* 2* 2* 2* 2*
145 146 147 148 49 150

2* 2* 2* 2* 2* 2*

Table 13.9: Cluster analysis: partial clustering for Iris data

208 SimFIT reference manual

Fisher iris data set in iris.tf1 when = 3 subgroups were requested. We note that groups 1 (setosa)
and 2 (versicolor) contained the all the cases from the known classification, but most of the known group 3
(virginica) cases (those identified by asterisks) were also assigned to subgroup 2. This table should also be
compared to table 13.12 resulting from -means clustering analysis of the same data set. From the SimFIT
dendrogram partial clustering procedure it is also possible to create a SimFIT MANOVA type file for any type
of subsequent MANOVA analysis and, to aid in the use of dendrogram clusters as training sets for allocating
new observations to groups, the subgroup centroids are also appended to such files. Alternatively a file ready
for K-means cluster analysis can be saved, with group centroids appended to serve as starting estimates.
Finally, attention should be drawn to the advanced techniques provided for plotting dendrogram thresholds
and subgroups illustrated next.

Multivariate statistics 209

13.8.1 Plotting dendrograms: standard format

Dendrogram shape is arbitrary in two ways; the G axis order is arbitrary as clusters can be rotated around any
clustering distance leading to 2=−1 different orders, and the distance matrix depends on the settings used. For
instance, a square root transformation, Bray-Curtis similarity, and a group average link generates the second
dendrogram in figure 13.8 from the first. The H plotted are dissimilarities, while labels are 100 − H, which
should be remembered when changing the H axis range.

Users should not manipulate dendrogram parameters to create a dendrogram supporting some preconceived
clustering scheme. You can set a label threshold and translation distance from the [--axis] menu so that, if
the number of labels exceeds the threshold, even numbered labels are translated, and font size is decreased.

0

10

20

30

40

50

P
C

1
P

C
6

H
C

5
H

C
6

91
A

91
B

H
C

7
H

C
8

H
C

4
25

B
61

A 52
27

A
10

0A 34 76
30

B
27

B
37

B
24

B
26

B
28

A
P

C
5

28
B

97
B

97
A

P
C

2
53

A
P

C
8

24
A

33
B 68

25
A 29

32
B

36
B

60
A

76
B

61
B

P
C

4
P

C
7

P
C

3
60

B 73
31

B
33

A
53

B
35

A
37

A
72

B
31

A
36

A
32

A
30

A
35

B
72

A
99

A 47
26

A
99

B
10

0B

D
is

ta
nc

e

Untransformed data

Euclidean distance

Unscaled

Single link

100%

80%

60%

40%

20%

0%

PC1
PC2

PC5
PC8

PC6
HC8

PC3
PC4

PC7
HC7

HC4
24A

33B
76B

30B
100A

34

53A

76

30A

61B
60A

27A
27B

52

37B

68

28A

97A
26A

60B
29

36A
36B

31B
31A

35B
32A

32B
35A

72A
72B

99A
99B

37A
47

100B
33A

53B
73

24B
26B

28B
97B

91A
91B

25A
25B

61A
HC5

HC6

P
er

ce
nt

ag
e

S
im

ila
rit

y

Bray-Curtis Similarity Dendrogram

Figure 13.8: Plotting dendrograms: standard format

210 SimFIT reference manual

13.8.2 Plotting dendrograms: stretched format

Sometimes dendrograms are more readable if the white space is stretched without distorting the labels.

100%

80%

60%

40%

20% 0%

PC1
PC2
PC5
PC8
PC6
HC8
PC3
PC4
PC7
HC7
HC4
24A
33B
76B
30B

100A
34

53A
76

30A
61B
60A
27A
27B

52
37B

68
28A
97A
26A
60B

29
36A
36B
31B
31A
35B
32A
32B
35A
72A
72B
99A
99B
37A

47
100B
33A
53B

73
24B
26B
28B
97B
91A
91B
25A
25B
61A
HC5
HC6

Figure 13.9: Plotting dendrograms: stretched format

So SimFIT PostScript graphs have a very useful fea-
ture: you can stretch or compress the white space
between plotted lines and symbols without changing
the line thickness, symbol size, or font size and aspect
ratio. For instance, stretching, clipping and sliding
procedures are valuable in graphs which are crowded
due to overlapping symbols or labels, as in figure 13.8.
If such dendrograms are stretched retrospectively us-
ing editps, the labels will not separate as the fonts
will also be stretched so letters become ugly due to
altered aspect ratios. SimFIT can increase white space
between symbols and labels while maintaining cor-
rect aspect ratios for the fonts in PostScript hardcopy
and, to explain this, the creation of figure 13.9 will be
described.

The title, legend and double G labeling were sup-
pressed, and landscape mode with stretching, clipping
and sliding was selected from the PostScript control
using the [Shape] then [Landscape +] options, with
an G stretching factor of two. Stretching increases
the space between each symbol, or the start of each
character string, arrow or other graphical object, but
does not turn circles into ellipses or distort letters. As
graphs are often stretched to print on several sheets of
paper, sub-sections of the graph can be clipped out,
then the clipped sub-sections can be slid to the start of
the original coordinate system to facilitate printing.

If stretch factors greater than two are used, legends
tend to become detached from axes, and empty white
space round the graph increases. To remedy the former
complication, the default legends should be suppressed
or replaced by more closely positioned legends while,
to cure the later effect, GSview can be used to calculate
new BoundingBox coordinates (by transforming .ps
to .eps). If you select the option to plot an opaque
background even when white (by mistake), you may
then find it necessary to edit the resulting .eps file in a
text editor to adjust the clipping coordinates (identified
by %#clip in the .eps file) and background polygon
filling coordinates (identified by %#pf in the .ps file) to
trim away unwanted white backgroundborders that are
ignored by GSview when calculating BoundingBox
coordinates. Another example of this technique is on
page 189, where it is also pointed out that creating
transparent backgrounds by suppressing the painting
of a white background obviates the need to clip away
extraneous white space.

Multivariate statistics 211

13.8.3 Plotting dendrograms: subgroups

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25

1
18

41
8

40
50

28
29

5
38

36
11

49
20

47
22

21
32

37
12

25
24

27
44

2
46

13
10

35
26

30
31

3
4

48
7

9
39

43
14

23
6

19
45

15
17

33
34

16
42

51
53

87
77

78
55

59
66

76
52

57
86

64
92

79
74

72
75

98
69

88
12

0
71

12
8

13
9

15
0

73
84

13
4

12
4

12
7

14
7

10
2

14
3

11
4

12
2

11
5

10
1

11
6

13
7

14
9

10
4

11
7

13
8

11
1

14
8

11
2

10
5

12
9

13
3

11
3

14
0

14
2

14
6

12
1

14
4

14
1

14
5

12
5

10
9

13
5

54
90

70
81

82
65

80
60

56
91

62
68

83
93

89
96

95
97

10
0

67
85

63
10

7
58

94
99

61
10

3
10

8
13

1
12

6
13

0
13

6
10

6
12

3
11

9
11

0
11

8
13

2

D
is

ta
nc

e
Figure 13.10: Plotting dendrograms: thresholds

The procedure described on page 210 can also be
used to improve the readability of dendrograms
where subgroups have been assigned by partial clus-
tering (page 207). Figure 13.10 shows a graph from
iris.tf1 when three subgroups are requested, or a
threshold is set corresponding to the horizontal dot-
ted line. Figure 13.11 was created by these steps.
First the title was suppressed, the H-axis range was
changed to (0, 4.25) with 18 tick marks, the (G, H)
offset was canceled as this suppresses axis moving,
the label font size was increased from 1 to 3, and the
G-axis was translated to 0.8.
Then the PostScript stretch/slide/clip procedure was
used with these parameters

Gstretch = 1.5

Hstretch = 2.0

Gclip = 0.15, 0.95

Hclip = 0.10, 0.60.

Windows users without PostScript printing facilities must create a *.eps file using this technique, then use
the SimFIT procedures to create a graphics file they can use, e.g. *.jpg. Use of a larger font and increased
G-stretching would be required to read the labels, of course.

1
18

41
8

40
50

28
29

5
38

36
11

49
20

47
22

21
32

37
12

25
24

27
44

2
46

13
10

35
26

30
31

3
4

48
7

9
39

43
14

23
6

19
45

15
17

33
34

16
42

51
53

87
77

78
55

59
66

76
52

57
86

64
92

79
74

72
75

98
69

88
12

0
71

12
8

13
9

15
0

73
84

13
4

12
4

12
7

14
7

10
2

14
3

11
4

12
2

11
5

10
1

11
6

13
7

14
9

10
4

11
7

13
8

11
1

14
8

11
2

10
5

12
9

13
3

11
3

14
0

14
2

14
6

12
1

14
4

14
1

14
5

12
5

10
9

13
5

54
90

70
81

82
65

80
60

56
91

62
68

83
93

89
96

95
97

10
0

67
85

63
10

7
58

94
99

61
10

3
10

8
13

1
12

6
13

0
13

6
10

6
12

3
11

9
11

0
11

8
13

2

Figure 13.11: Plotting dendrograms: subgroups

212 SimFIT reference manual

13.9 Cluster analysis: classical metric scaling, MDS

Scaling techniques provide various alternatives to dendrograms for visualizing distances between cases, so
facilitating the recognition of potential groupings in a space of lower dimension than the number of cases.
For instance, once a distance matrix � = (38 9) has been calculated for = cases with < variables, as described
for dendrograms (page 206), it may be possible to calculate principal coordinates. This involves constructing
a matrix � defined by

48 9 = − 1
2
(32
8 9 − 32

8. − 32
. 9 + 32

..),

where 32
8. is the average of 32

8 9 over the suffix 9 , etc., in the usual way. The idea is to choose an integer :,
where 1 < : << = − 1, so that the data can be represented approximately in a space of dimension less than
the number of cases, but in such a way that the distance between the points in that space correspond to the
distances represented by the 38 9 of the distance matrix as far as possible. If � is positive definite, then the
ordered eigenvalues _8 > 0 of � will be nonnegative and the proportionality expression

% =

:∑
8=1

_8
/ =−1∑
8=1

_8

will show how well the cases of dimension = are represented in this subspace of dimension :. The most useful
case is when : = 2, or : = 3, and the 38 9 satisfy

38 9 ≤ 38: + 3 9 : ,

so that a two or three dimensional plot will display distances corresponding to the 38 9 . If this analysis is
carried out but some relatively large negative eigenvalues result, then the proportion % may not adequately
represent the success in capturing the values in distance matrix in a subspace of lower dimension that can be
plotted meaningfully. It should be pointed out that the principal coordinates will actually be the same as the
principal components scores when the distance matrix is based on Euclidean norms. Further, where metrical
scaling succeeds, the distances between points plotted in say two or three dimensions will obey the triangle
inequality and so correspond reasonably closely to the distances in the dissimilarity matrix, but if it fails it
could be useful to proceed to non-metrical scaling, which is discussed next.

13.10 Cluster analysis: non-metric (ordinal) scaling

Often a distance matrix is calculated where some or all of the variables are ordinal, so that only the relative
order is important, not the actual distance measure. Non-metric (i.e. ordinal) scaling is similar to the metric
scaling previously discussed, except that the representation in a space of dimension 1 < : << = − 1 is sought
in such a way as to attempt to preserve the relative orders, but not the actual distances. The closeness of
a fitted distance matrix to the observed distance matrix can be estimated as either ()'�((, or (()'�((,
given by

()'�((=

√√√∑=
8=1

∑8−1
9=1(3̂8 9 − 3̃8 9)2∑=
8=1

∑8−1
9=1 3̂

2
8 9

(()'�((=

√√√∑=
8=1

∑8−1
9=1(3̂2

8 9
− 3̃2

8 9
)2∑=

8=1

∑8−1
9=1 3̂

4
8 9

,

where 3̂8 9 is the Euclidean squared distance between points 8 and 9 , and 3̃8 9 is the fitted distance when
the 3̂8 9 are monotonically regressed on the 38 9 . This means that 3̃8 9 is monotonic relative to 38 9 and is
obtained from 3̂8 9 with the smallest number of changes. This is a nonlinear optimization problem which
may depend critically on starting estimates, and so can only be relied upon to locate a local, not a global
solution. For this reason, starting estimates can be obtained in SimFIT by a preliminary metric scaling, or
alternatively the values from such a scaling can be randomly perturbed before the optimization, in order to

Multivariate statistics 213

explore possible alternative solution points. Note that SimFIT can save distance matrices to files, so that
dendrogram creation, classical metric, and non-metric scaling can be carried out retrospectively, without the
need to generate distance matrices repeatedly from multivariate data matrices. Such distance matrices will
be stored as vectors, corresponding to the strict lower triangle of the distance matrix packed by rows, (i.e. the
strict upper triangle packed by columns). Table 13.10 tabulates the results from analyzing the distance matrix,

Eigenvalues from MDS (divided by the trace of the E matrix)

0.78713

0.28085

0.15963

0.074761

0.031624

0.020654

0.0

0.012186

0.013685

0.030479

0.045469

0.056206

0.079207

0.11741

[Sum 1 to 2]/[sum 1 to 13] = 0.9558 (95.58%) (actual values)

[Sum 1 to 2]/[sum 1 to 13] = 0.6709 (67.09%) (absolute values)

STRESS = 0.12557 (start = Metric 0%)

SSTRESS = 0.14962 (start = Metric 0%)

Table 13.10: Cluster analysis: metric and non-metric scaling

stored in the test file g03faf.tf1, by the metric, and also both non-metric techniques. This table first lists
the eigenvalues from classical metric scaling, where each eigenvalue has been normalized by dividing by the
sum of all the eigenvalues, then the ()'�((and (()'�((values are listed. Note that the type of starting
estimates used, together with the percentages of the metric values used in any random starts, are output by
SimFIT and it will be seen that, with this distance matrix, there are small but negative eigenvalues, and hence
the proportion actually exceeds unity, and in addition two-dimensional plotting could be misleading. However
it is usual to consider such small negative eigenvalues as being effectively zero, so that metric scaling in two
dimensions is probably justified in this case. Figure 13.12 confirms this by showing considerable agreement
between the two dimensional plots from metric scaling, and also non-metric scaling involving the ()'�((
calculation. Note that the default labels in such plots may be integers corresponding to the case numbers, and
not case labels, but such plot labels can be edited interactively, or overwritten from a labels file if required.

13.11 Cluster analysis: K-means clustering

Once a = by< matrix of values 08 9 for = cases and< variables has been provided, the cases can be sub-divided
into non-empty clusters where < =, provided that a by < matrix of starting estimates 18 9 has been
specified. The procedure is iterative, and proceeds by moving objects between clusters to minimize the
objective function

 ∑
:=1

∑
8∈(:

<∑
9=1

F8 (08 9 − 0̄: 9)2

where (: is the set of objects in cluster : and 0̄: 9 is the weighted sample mean for variable 9 in cluster :. The
weighting factors F8 can allow for situations where the objects may not be of equal value, e.g., if replicates
have been used to determine the 08 9 .

214 SimFIT reference manual

-0.40

-0.20

0.00

0.20

0.40

-0.60 -0.40 -0.20 0.00 0.20 0.40

Classical Metric Scaling

Component 1

C
om

po
ne

nt
 2

1

2
34

56

7

8

9 10
11

12

13

14

-0.40

-0.20

0.00

0.20

0.40

-0.60 -0.40 -0.20 0.00 0.20 0.40

Non-Metric Scaling

Component 1

C
om

po
ne

nt
 2

1

2
3

4

5
6

7

8

9
10

11

12
13

14

Figure 13.12: Classical metric and non-metric scaling

As an example, analyze the data in test file g03eff.tf1 using the starting coordinates appended to this file,
which are identical to the starting clusters in test file g03eff.tf2, to see the results displayed in table 13.11.
Note that the final cluster centroids minimizing the objective function, given the starting estimates supplied,

Variables included:

1 2 3 4 5

Number of clusters = 3

Transformation = Untransformed

Weighting = Unweighted for replicates

Cases (odd rows) and Clusters (even rows)

1 2 3 4 5 6 7 8 9 10 11 12

1 1 3 2 3 1 1 2 2 3 3 3

13 14 15 16 17 18 19 20

3 3 3 3 3 1 1 3

Final cluster centroids

81.183 11.667 7.15 2.05 6.6

47.867 35.8 16.333 2.4 6.7333

64.045 25.209 10.745 2.8364 6.6545

Table 13.11: Cluster analysis: K-means clustering

are calculated, and the cases are assigned to these final clusters. Plots of the clusters and final cluster centroids
can be created as in figure 13.13 for variables G1 and G2, with optional labels if these are supplied on the
data file (as for dendrograms). With two dimensional data representing actual distances, outline maps can be
added and other special effects can be created, as shown on page 218.

Table 13.12 illustrates analysis of the Fisher Iris data set in the file iris.tf1, using starting clusters in
iris.tf2. It should be compared with table 13.9. The data were maintained in the known group order (as
in manova1.tf5), and the clusters assigned are seen to be identical to the known classification for group 1
(setosa), while limited misclassification has occurred for groups 2 (versicolor, 2 assigned to group 3), and 3
(viginica, 14 assigned to group 2), as shown by the starred values. Clearly group 1 is distinct from groups 2
and 3 which show some similarities to each other, a conclusion also illustrated in figure 13.14, which should be

Multivariate statistics 215

10.0

20.0

30.0

40.0

40 60 80 100

K-means clusters

Variable 1

V
ar

ia
bl

e
2

1
2

3

4

5

6
7

89

1011

12

13

14

15

16

17

18
19

20

Figure 13.13: Plotting K-means clusters: individual labels

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 3* 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 3* 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 3 2* 3 3 3 3 2* 3

3 3 3 3 3 2* 2* 3 3 3 3 2*
3 2* 3 2* 3 3 2* 2* 3 3 3 3

3 2 3 3 3 3 2* 3 3 3 2* 3

3 3 2* 3 3 2*
Cluster Size WSSQ Sum of weights

1 50 15.15 50.0

2 62 39.82 62.0

3 38 23.88 38.0

Final cluster centroids

5.006 3.4280 1.4620 0.246

5.9016 2.7484 4.3935 1.4339

6.85 3.0737 5.7421 2.0711

Table 13.12: K-means clustering for Iris data

compared with figure 13.24 using principal components (page 223) and canonical variates (page 233). It must
be emphasized that in figure 13.14 the groups were generated by K-means clustering, while figure 13.24 was
created using pre-assigned groups. Another difference is that the graph from clusters generated by K-means

216 SimFIT reference manual

2.00

3.00

4.00

5.00

4.00 5.00 6.00 7.00 8.00

Sepal Length

S
ep

al
 W

id
th

Technique: K-means Clustering
Data: Fisher Iris Measurements

Figure 13.14: Plotting K-means clusters: Fisher Iris data

clustering is in the actual coordinates (or a transformation of the original coordinates) while the graphs in
principal components or canonical variates are not in the original variables, but special linear combinations
of the physical variables, chosen to emphasize features of the total data set.

Also note that in figure 13.14 there are data assigned to groups with centroids that are not nearest neighbors
in the space plotted. This is because the clusters are assigned using the distances from cluster centroids when
all dimensions are taken into account, not just the two plotted, which explains this apparent anomaly.
Certain other aspects of the SimFIT implementation of K-means clustering should be made clear.

1. If variables differ greatly in magnitude, data should be transformed before cluster analysis but note
that, if this is done interactively, the same transformation will be applied to the starting clusters. If a
transformation cannot be applied to data, clustering will not be allowed at all, but if a starting estimate
cannot be transformed (e.g., square root of a negative number), then that particular value will remain
untransformed.

2. If, after initial assignment of data to the starting clusters some are empty, clustering will not start, and
a warning will be issued to decrease the number of clusters requested, or edit the starting clusters.

3. Clustering is an iterative procedure, and different starting clusters may lead to different final cluster
assignments. So, to explore the stability of a cluster assignment, you can perturb the starting clusters
by adding or multiplying by a random factor, or you can even generate a completely random starting
set. For instance, if the data have been normalized to zero mean and unit variance, then choosing
uniform random starting clusters from* (−1, 1), or normally distributed values from # (0, 1) might be
considered.

4. After clusters have been assigned you may wish to pursue further analysis, say using the groups for
canonical variate analysis, or as training sets for allocation of new observations to groups. To do this,

Multivariate statistics 217

you can create a SimFIT MANOVA type file with group indicator in column 1. Such files also have the
centroids appended, and these can be overwritten by new observations (not forgetting to edit the extra
line counter following the last line of data) for allocating to the groups as training sets.

5. If weighting, variable suppression, or interactive transformation is used when assigning K-means
clusters, all results tables, plots and MANOVA type files will be expressed in coordinates of the
transformed space.

218 SimFIT reference manual

13.11.1 Plotting K-Means clusters: UK airports

Stretching and clipping are also valuable when graphs have to be re-sized to achieve geometrically correct
aspect ratios, as in the map shown in figure 13.15, which can be generated by the K-means clustering procedure
using program simstat (see page 213) as follows.

• Input ukmap.tf1 with coordinates for UK airports.

• Input ukmap.tf2 with coordinates for starting centroids.

• Calculate centroids then transfer the plot to advanced graphics.

• Read in the UK coastal outline coordinates as an extra file from ukmap.tf3.

• Suppress axes, labels, and legends, then clip away extraneous white space.

• Stretch the PS output using the [Shape] then [Portrait +] options, and save the stretched eps file.

K-Means Clusters

Figure 13.15: Plotting K-means clusters: UK airports

Multivariate statistics 219

13.11.2 Plotting K-Means clusters: highlighting centroids

It is frequently useful to be able highlight groups of data points in a two dimensional swarm, as in figure 13.16.

10

20

30

40

40 60 80 100

K-means cluster centroids

Variable 1

V
ar

ia
bl

e
2

A

B

C

D

E

F

G

H
I

J
K

L

M

N

O

P

Q

R
S

T

(47.8, 35.8, 16.3, 2.4, 6.7)

(64.0, 25.2, 10.7, 2.8, 6.7)

(81.2, 12.7, 7.2, 2.1, 6.6)

Figure 13.16: Plotting K-means clusters: highlighting centroids

In this case a partition into three groups has been done by K-means clustering, and to appreciate how to use
this technique, note that figure 13.16 can be generated by the K-means clustering procedure using program
simstat (see page 213) as follows.

• Input the K-means clustering test file kmeans.tf1.

• Calculate the centroids, using the starting estimates appended to the test file. View them, which then
adds them to the results file, then record the centroid coordinates from the results file.

• Select to plot the groups with associated labels, but then it will prove necessary to move several of the
labels by substituting new labels, or shifting the G or H coordinates to clarify the graph, as described on
page 222.

• Add the solid background ellipses using the lines/arrows/boxes option because both head and tail
coordinate must be specified using the red arrow, as well as an eccentricity value for the ellipses. Of
course, any filled shapes such as circles, squares, or triangles can be chosen, and any size or color can
be used.

• Add the centroid coordinates as extra text strings.

Of course, this technique can be used to highlight or draw attention to any subsets of data points, for instance
groups in principal component analysis, to be discussed shortly.

220 SimFIT reference manual

13.11.3 Plotting K-Means clusters: variables or scores

Figure 13.17 illustrates the results from kmeans.tf1. Note that, in the upper figure, symbols F, S, and P have

5.0

10.0

15.0

20.0

10.0 15.0 20.0 25.0 30.0 35.0 40.0

K-means Clusters: Variables 2 and 3

Variable 2

V
ar

ia
bl

e
3

A

B

C

D

E

F G

H

I

J

K

L
MN

O
P

Q

R
S

T

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

K-Means: Scores 1 and 2

Score 1

S
co

re
 2

AB

C

DE

F

G
HI

J K

L

M

N

O
P

Q

R

S
T

Figure 13.17: Plotting K-means clusters: variables or scores

been translated for clarity, and it should be compared to figure 13.13, for the same data with variables 1 and
2. This highlights an important point when plotting clusters for more than 2 variables: the plot shape depends
on the variables chosen. So, for a more representative plot when there are more than 2 variables it is better
to plot principal component scores instead of variables, which can be done interactively using the correlation
matrix technique.

In the lower figure, symbols B, O, M, and P have been translated for clarity, but now the principal component
scores 1 and 2 have been plotted, which will usually be a better representation of the clustering, as the shape
of the plot is not so strongly influenced by the variables chosen.

Multivariate statistics 221

13.12 Labeling multivariate plots

Labels are text strings (with associated template strings) that do not have arbitrary positions, but are plotted
to identify the data. Some examples would be as follows.

• Labels adjacent to segments in a pie chart.

• Labels on the - axis to indicate groups in bar charts.

• Labels on the - axis to identify clusters in dendrograms (page 209).

• Labels plotted alongside symbols in 2D plots, such as principal components (page 222).

Test files such as cluster.tf1 illustrate the usual way to supply labels appended to data files in order to
over-ride the defaults set from the configuration options, but sometimes it is convenient to supply labels
interactively from a file, or from the clipboard, and not all procedures in SimFIT use the labels supplied
appended to data files. Figure 13.18 illustrates this. Test file cluster.tf1 was input into the procedure

0

5

10

15

20

25

0 10 20

Column 1

C
ol

um
n

 2

1
2

3
4

5
6

7

8

9

10

11

12

0

5

10

15

20

25

0 10 20

Column 1

C
ol

um
n

 2

Figure 13.18: Labelling statistical graphs

for exhaustive analysis of a matrix in simstat, and the option to plot columns as an advanced 2D plot was
selected. This created the left hand figure, where default integer labels indicate row coordinates. Then the
option to add labels from a file was chosen, and test file labels.txt was input. This is just lines of characters
in alphabetical order to overwrite the default integers. Then the option to read in a template was selected,
and test file templates.txt was input. This just contains a succession of lines containing 6, indicating
that alphabetical characters are to be plotted as bold maths symbols, resulting in the right hand figure. To
summarize, the best way to manipulate labels in SimFIT plots is as follows.

1. Write the column of case labels, or row of variable labels, from your data-base or spread-sheet program
into an ASCII text file.

2. This file should just consist of one label per line and nothing else (like labels.txt)

3. Paste this file at the end of your SimFIT data matrix file, editing the extra line counter (as in
cluster.tf1) as required.

4. If there are = lines of data, the extra line counter (after the data but before the labels) must be at least =
to use this label providing technique (See page 508).

5. Alternatively use the more versatile begin{labels} ... end{labels} technique (See page 508).

222 SimFIT reference manual

-0.750

-0.500

-0.250

0.000

0.250

0.500

-0.500 -0.250 0.000 0.250 0.500 0.750

PC 1

P
C

 2
A-1 B-2

C-3

D-4

E-5

F-6

G-7

H-8 I-9

J-10
K-11

L-12

-0.750

-0.500

-0.250

0.000

0.250

0.500

-0.500 -0.250 0.000 0.250 0.500 0.750

PC 1

P
C

 2

A-1 B-2

C-3

D-4

F-6

G-7

H-8 I-9

K-11

E-5

J-10

L-12

Figure 13.19: Principal components

6. Archive the labels file if interactive use is anticipated as in figure 13.18.

7. If Special symbols or accents are required, a corresponding templates file with character display codes
(page 377) can be prepared.

13.13 Adjusting multivariate plot labels

Principal components for multivariate data can be explored by plotting scree diagrams and scattergrams
after using the calculations options in program simstat. If labels are appended to the data file, as with
cluster.tf2, they can be plotted, as in figure 13.19.
The labels that are usually plotted along the G axis are used to label the points, but moved to the side of the
plotting symbol. Colors are controlled from the [Colour] options as these are linked to the color of the symbol
plotted, even if the symbol is suppressed. The font is the one that would be used to label the G axis if labels
were plotted instead of numbers. Clearly arbitrary labels cannot be plotted at the same time on the G axis.

Multivariate statistics 223

Often it is required to move the labels because of clashes, as above. This is done by using the G axis editing
function, setting labels that clash equal to blanks, then using the normal mechanism for adding arbitrary text
and arrows to label the coordinates in the principal components scattergram. To facilitate this process, the
default text font is the same as the axes numbering font. Alternatively, the plotting menus provide the option
to move labels by defining parameters to shift individual labels horizontally or vertically.

13.14 Principal components analysis

In the principal components analysis of a = by < data matrix, new coordinates H are selected by rotation of
the original coordinates G so that the proportion of the variance projected onto the new axes decreases in the
order H1, H2, . . . , H<. The hope is that most of the variance can be accounted for by a subset of the data in H
coordinates, so reducing the number of dimensions required for data analysis. Basing principal components
analysis on the correlation matrix rather than the covariance or sum of squares and cross product matrices is
often recommended as it prevents the analysis being unduly dominated by variables with large values, thus
eliminating the need to centralize and scale the data. Remember that the loadings and scores are not unique
but will be consistent subject to the parameters used for the analysis. To calculate scores from loadings the
data matrix required must be mean centered and either unscaled if the covariance matrix is invoked, scaled by
standard deviations if the correlation matrix method is used, or multiplied by

√
(= − 1) if the sum of squares

and cross-products matrix is selected. The data format for principal components analysis is exactly the same
as for cluster analysis; namely a data matrix with = rows (cases) and < columns (variables).

If the data matrix is - with covariance, correlation or scaled sum of squares and cross products matrix (, then
the quadratic form

0)1 (01

Variables included:

1 2 3

Transformation: Untransformed

Matrix type: Variancecovariance matrix

Score type: Score variance = eigenvalue

Replicates: Unweighted for replicates

Eigenvalues Proportion Cumulative chisq DOF p

8.274 0.6515 0.6515 8.613 5 0.1255

3.676 0.2895 0.9410 4.118 2 0.1276

0.7499 0.0590 1.0000 0.0 0 0.0000

Principal Component loadings (by column)

0.138 0.699 0.702

0.25 0.661 0.707

0.958 0.273 0.0842

Principal Component scores (by column)

2.15 0.173 0.107

3.8 2.89 0.51

0.153 0.987 0.269

4.71 1.3 0.652

1.29 2.28 0.449

4.1 0.144 0.803

1.63 2.23 0.803

2.11 3.25 0.168

0.235 0.373 0.275

2.75 1.07 2.09

Table 13.13: Principal components analysis

224 SimFIT reference manual

is maximized subject to the normalization 0)
1
01 = 1 to give the first principal component

21 =

<∑
8=1

018G8 .

Similarly, the quadratic form
0)2 (02

is maximized, subject to the normalization and orthogonality conditions 0)
2
02 = 1 and 0)

2
01 = 0, to give the

second principal component

22 =

<∑
8=1

028G8

and so on. The vectors 08 are the eigenvectors of (with eigenvalues _2
8 , where the proportion of the variation

accounted for by the 8th principal component can be estimated as

_2
8 /

<∑
9=1

_2
9 .

Actually SimFIT uses a singular value decomposition (SVD) of a centered and scaled data matrix, say
-B = (- − -̄)/

√
(= − 1) as in

-B = +Λ%
)

to obtain the diagonal matrix Λ of singular values, the matrix of left singular vectors + as the = by < matrix
of scores, and the matrix of right singular vectors % as the < by < matrix of loadings.

Table 13.13 shows analysis of the data in g03aaf.tf1, where column 9 of the loading matrix contains the
coefficients required to express H 9 as linear function of the variables G1, G2, . . . , G<, and row 8 of the scores
matrix contains the values for row 8 of the original data expressed in variables H1, H2, . . . , H<. In this instance
the data were untransformed and the variance covariance matrix was used to illustrate the statistical test for
relevant eigenvalues but, where different types of variables are used with widely differing means and variances
it is more usual to analyze the correlation matrix, instead of the covariance matrix, and many other scaling
options and weighting options are available for more experienced users.

-0.25

0.00

0.25

-0.25 0.00 0.25

Principal Components for Iris Data

PC 1

P
C

 2

Set

Set
Set
Set

Set

Set

Set
Set

Set

Set

Set

Set

Set
Set

Set

Set

Set

Set

Set
Set

Set

Set

Set
SetSet

Set

Set
Set
Set

SetSet

Set

Set
Set

Set
Set

SetSet

Set

Set
Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Ver
VerVer

Ver

Ver
Ver

Ver

Ver

Ver

Ver

Ver

Ver

Ver

Ver
Ver

Ver

Ver

Ver

Ver
Ver

Ver

Ver

Ver

Ver
Ver
Ver

Ver
Ver

Ver

Ver

VerVer

Ver Ver
Ver

Ver
Ver

Ver

Ver

Ver
Ver

Ver

Ver

Ver

Ver

Ver
Ver

Ver

Ver

Ver

Vir

Vir

Vir

Vir
Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

Vir

VirVir

Vir
Vir

Vir

Vir
Vir

Vir

VirVir

Vir

Vir
Vir

Vir
Vir

VirVirVir

Vir

Vir
Vir

Vir

Vir

Vir

Vir

Vir

-1.0

-0.8

-0.5

-0.3

0.0

0.3

-0.50 -0.25 0.00 0.25 0.50 0.75

Loadings for Iris Data

Loading 1

Lo
ad

in
g

 2

Se-le

Se-wi

Pe-le
Pe-wi

Figure 13.20: Principal component scores and loadings

Figure 13.20 shows the scores and loadings for the data in test file iris.tf1 plotted as a scattergram after
analyzing the correlation matrix. The score plot displays the score components for all samples using the
selected principal components, so some may prefer to label the legends as principal components instead of
scores, and this plot is used to search for possible groupings among the sample. The loading plot displays

Multivariate statistics 225

0

1

2

3

1 4 7 10 13 16

Principal Components Scree Diagram

Number

E
ig

en
va

lu
es

 a
nd

 A
ve

ra
ge

Figure 13.21: Principal components scree diagram

the coefficients that express the selected principal components H 9 as linear functions of the original variables
G1, G2, . . . , G<, so this plot is used to observe the contributions of the original variables G to the new ones
H. Note that a 95% confidence Hotelling)2 ellipse is also plotted, which assumes a multivariate normal
distribution for the original data and uses the � distribution. The confidence ellipse is based on the fact that,
if H̄ and (are the estimated mean vector and covariance matrix from a sample of size = and, if G is a further
independent sample from an assumed ?−variate normal distribution, then

(G − H̄)) (−1(G − H̄) ∼ ?(=2 − 1)
=(= − ?) �?,=−? ,

where the significance level for the confidence region can be altered interactively. The components can be
labeled using any labels supplied at the end of the data, but this can cause confusion where, as in the present
case, the labels overlap leading to crowding. A method for moving labels to avoid such confusion is provided,
as illustrated on page 222. However, with such dense labels it is best to just plot the scores using different
symbols for the three groups, as shown for comparison with canonical variates analysis of the same data set
in figure 13.24. Note that figure 13.20 also illustrates an application of the SimFIT technique for adding extra
data interactively to create the cross-hairs intersecting at (0, 0), and it also shows how labels can be added
to identify the variables in a loadings plot. It should be noted that, as the eigenvectors are of indeterminate
sign and only the relative magnitudes of coefficients are important, the scattergrams can be plotted with either
the scores calculated from the SVD, or else with the scores multiplied by minus one, which is equivalent to
reversing the direction of the corresponding axis in a scores or loadings plot.

An important topic in this type of analysis is deciding how to choose a sufficient number of principal
components to represent the data adequately. As the eigenvalues are proportional to the fractions of variance
along the principal component axes, a table of the cumulative proportions is calculated, and some users may
find it useful to include sufficient principal components to account for a given amount of the variance, say
70%. Figure 13.21 shows how scree plots can be displayed to illustrate the number of components needed
to represent the data adequately. For instance, in this case, it seems that approximately half of the principal
components are required. A useful rule of thumb for selecting the minimum number of components is
to observe where the scree diagram crosses the average eigenvalue or becomes flattened indicating that all
subsequent eigenvalues contribute to a comparable extent. In cases where the correlation matrix is not used,
a chi-square test statistic is also provided along with appropriate probability estimates to make the decision

226 SimFIT reference manual

Xdata for rotation: g03bcf.tf1

Ydata for target: g03bcf.tf2

No. of rows 3, No. of columns 2

Type: To origin then Ycentroid

Scaling: Scaling

Alpha = 1.5563E+00

Residual sum of squares = 1.9098E02

Residuals from Procrustes rotation

0.096444

0.084554

0.051449

Rotation matrix from Procrustes rotation

0.96732 0.25357

0.25357 0.96732

Yhat matrix from Procrustes rotation

0.093442 0.023872

1.0805 0.025918

0.012959 1.9502

Table 13.14: Procrustes analysis

more objective. In this case, if : principal components are selected, the chi-square statistic

(= − 1 − (2< + 5)/6)
{
−

<∑
8=:+1

log(_2
8) + (< − :) log

(
<∑

8=:+1

_2
8 /(< − :)

)}

with (< − : − 1) (< − : + 2)/2 degrees of freedom can be used to test for the equality of the remaining
< − : eigenvalues. If one of these test statistics, say the : + 1th, is not significant then it is usual to assume
: principal components should be retained and the rest regarded as of little importance. So, if it is concluded
that the remaining eigenvalues are of comparable importance, then a decision has to be made whether to
eliminate all or preserve all. For instance, from the last column of ? values referring to the above chi-square
test in table 13.13, it might be concluded that a minimum of two components are required to represent this
data set adequately. The common practise of always using two or three components just because these can be
visualized is to be deplored.

13.15 Procrustes analysis

This technique is useful when there are two matrices - and . with the same dimensions, and it wished to see
how closely the - matrix can be made to fit the target matrix. using only distance preserving transformations,
like translation and rotation. For instance, - could be a matrix of loadings, and the target matrix . could be
a reference matrix of loadings from another data set. Table 13.14 illustrates the outcome from analyzing data
in the test files g03bcf.tf1 with - data to be rotated, and g03bcf.tf2 containing the target matrix . . First
the centroids of - and . are translated to the origin to give -2 and .2. Then the matrix of rotations ' that
minimize the sum of squared residuals is found from the singular value decomposition as

-)2 .2 = *�+
)

' = *+) ,

and after rotation a dilation factor U can be estimated by least squares, if required, to give the estimate

.̂2 = U-2'.

Additional options include normalizing both matrices to have unit sums of squares, normalizing the - matrix
to have the same sum of squares as the . matrix, and translating to the original. centroid after rotation. Also,

Multivariate statistics 227

Number of rows 10, Number of columns 3

Type: Unstandardised, Scaling: Varimax, Gamma = 1

Data for G03BAF

0.7881 0.152 0.352

0.874 0.381 0.041

0.814 0.043 0.213

0.798 0.17 0.204

0.641 0.07 0.042

0.755 0.298 0.067

0.782 0.221 0.028

0.767 0.091 0.358

0.733 0.384 0.229

0.771 0.101 0.071

Rotation matrix ... Varimax

0.63347 0.53367 0.56029

0.75803 0.57333 0.31095

0.15529 0.62169 0.76772

Rotated matrix ... Varimax

0.32929 0.2.8884 0.75901

0.84882 0.2.7348 0.33974

0.44997 0.3.2664 0.63297

0.34496 0.3.9651 0.65659

0.45259 0.2.7584 0.36962

0.26278 0.6.1542 0.46424

0.33219 0.5.6144 0.48537

0.47248 0.6.8406 0.18319

0.20881 0.7.5370 0.35429

0.42287 0.5.1350 0.40888

Table 13.15: Varimax rotation

as well as displaying the residuals, the sum of squares, the rotation and best fit matrices, options are provided
to plot arbitrary rows or columns of these matrices.

13.16 Varimax and Quartimax rotation

Generalized orthomax rotation techniques can be used to simplify the interpretation of loading matrices, e.g.
from canonical variates or factor analysis. These are only unique up to rotation so, by applying rotations
according to stated criteria, different contributions of the original variables can be assessed. Table 13.15
illustrates how this analysis is performed using the test file g03baf.tf1. The input loading matrix Λ has <
rows and : columns and results from the analysis of an original data matrix with = rows (i.e. cases) and <
columns (i.e. variables), where : factors have been calculated for : ≤ <. If the input loading matrix is not
standardized to unit length rows, this can be done interactively. The rotated matrix Λ∗ is calculated so that the
elements _∗8 9 are either relatively large or small. This involves maximizing the function

+ =

:∑
9=1

<∑
8=1

(_∗8 9)4 − W

<

:∑
9=1

[
<∑
8=1

(_∗8 9)2

]2

for one of several cases as follows

• Varimax rotation: W = 1

• Quartimax rotation: W = 0.

228 SimFIT reference manual

• Equamax rotation: W = :/2.

• Parsimax rotation: W = ?(: − 1)/(? + : + 2).

• User chosen rotation: W input.

The resulting rotation matrix ' satisfies Λ∗ = Λ' and, when the matrices have been calculated they can be
viewed, written to the results log file, saved to a text file, or plotted.

13.17 Multivariate analysis of variance (MANOVA)

Sometimes a designed experiment is conducted in which more than one response is measured at each treatment,
so that there are two possible courses of action.

1. Do a separate ANOVA analysis for each variable.
The disadvantages of this approach are that it is tedious, and also it relies upon the questionable
assumption that each variable is statistically independent of every other variable, with a fixed variance
for each variable. The advantages are that the variance ratio tests are intuitive and unambiguous, and
also there is no requirement that sample size per group should be greater than the number of variables.

2. Do an overall MANOVA analysis for all variables simultaneously.
The disadvantages of this technique are that it relies on the assumption of a multivariate normal
distribution with identical covariance matrices across groups, it requires a sample size per group greater
than the number of variables, and also there is no unique and intuitive best test statistic. Further, the
power will tend to be lower than the power of the corresponding ANOVA. The advantages are that
analysis is compact, and several useful options are available which simplify situations like the analysis
of repeated measurements.

Central to a MANOVA analysis are the assumptions that there are = observations of a random < dimensional
vector divided into 6 groups, each with =8 observations, so that = =

∑6

8=1
=8 where =8 ≥ < for 8 = 1, 2, . . . , 6.

If H8 9 is the < vector for individual 9 of group 8, then the sample mean H̄8 , corrected sum of squares and
products matrix �8 , and covariance matrix (8 for group 8 are

H̄8 =
1
=8

=8∑
9=1

H8 9

�8 =

=8∑
9=1

(H8 9 − H̄8) (H8 9 − H̄8))

(8 =
1

=8 − 1
�8 .

For each ANOVA design there will be a corresponding MANOVA design in which corrected sums of squares
and product matrices replace the ANOVA sums of squares, but where other test statistics are required in
place of the ANOVA � distributed variance ratios. This will be clarified by dealing with typical MANOVA
procedures, such as testing for equality of means and equality of covariance matrices across groups.

MANOVA example 1. Testing for equality of all means

Source of variation d.f. ssp matrix
Between groups 6 − 1 �

Within groups = − 6 ,

Total = − 1 T

Table 13.16: MANOVA example 1a. Typical one way MANOVA layout

Multivariate statistics 229

If all groups have the same multivariate normal distribution, then estimates for the mean ` and covariance
matrix Σ can be obtained from the overall sample statistics ˆ̀ = H̄ and Σ̂

ˆ̀ =
1
=

6∑
8=1

=8∑
9=1

H8 9

Σ̂ =
1

= − 1

6∑
8=1

=8∑
9=1

(H8 9 − ˆ̀) (H8 9 − ˆ̀))

obtained by ignoring group means H̄8 and summing across all groups. Alternatively, the pooled between-
groups �, within-groups, , and total sum of squares and products matrices) can be obtained along with the
within-groups covariance matrix (using the group mean estimates H̄8 as

� =

6∑
8=1

=8 (H̄8 − H̄) (H̄8 − H̄))

, =

6∑
8=1

=8∑
9=1

(H8 9 − H̄8) (H8 9 − H̄8))

=

6∑
8=1

(=8 − 1)(8

= (= − 6)(
) = � +,
= (= − 1)Σ̂.

Table 13.16 is typical, and clearly strong differences between groups will be indicated if � is much larger than
, . The usual likelihood ratio test statistic is Wilk’s lambda defined as

Λ =
|, |

|�| + |, |
but other statistics can also be defined as functions of the eigenvalues of �,−1. Unlike � and, separately,
the matrix �,−1 is not symmetric and positive definite but, if the < eigenvalues of �,−1 are \8 , then Wilk’s
lambda, Roy’s largest root ', the Lawley-Hotelling trace) , and the Pillai trace % can be defined as

Λ =

<∏
8=1

1
1 + \8

' = max(\8)

) =

<∑
8=1

\8

% =

<∑
8=1

\8

1 + \8
.

Table 13.17 resulted when manova1.tf3 was analyzed and the methods used to calculate the significance
levels will be outlined. Table 13.18 indicates conditions on the number of groups 6, variables <, and total
number of observations = that lead to exact � variables for appropriate transforms of Wilk’s Λ. For other
conditions the asymptotic expression

−
(
2= − 2 − < − 6

2

)
logΛ ∼ �<,6−1

is generally used. The Lawley-Hotelling trace is a generalized Hotelling’s)2
0

statistic, and so the null
distribution of this can be approximated as follows.

230 SimFIT reference manual

MANOVA H0: all mean vectors are equal

Number of groups = 3

Number of variables = 2

Number of observations = 15

Statistic Value Transform Deg. Freedom p

Wilks lambda 0.1917 7.062 4 22 0.0008 Reject H0 at 1%

Roys largest root 2.801

LawleyHotelling T 3.173 8.727 4 11 0.0017 Reject H0 at 1%

Pillais trace 0.00000001

Table 13.17: MANOVA example 1b. Test for equality of all means

Parameters � statistic Degrees of freedom

6 = 2, any <
(26 − < − 1) (1 − Λ)

<Λ
<, 26 − < − 1

6 = 3, any <
(36 − < − 2) (1 −

√
Λ)

<
√
Λ

2<, 2(= − < − 2)

< = 1, any 6
(= − 6) (1 − Λ)

(6 − 1)Λ 6 − 1, = − 6

< = 2, any 6
(= − 6 − 1) (1 −

√
Λ)

(6 − 1)
√
Λ

2(6 − 1), 2(= − 6 − 1)

Table 13.18: MANOVA example 1c. The distribution of Wilk’s Λ

Defining the degrees of freedom and multiplying factors U and V by

a1 = 6 − 1

a2 = = − 6

a =
<a1(a2 − <)

a1 + a2 − <a1 − 1

U =
(a2 − 1) (a1 + a2 − < − 1)

(a2 − <) (a2 − < − 1) (a2 − < − 3)
V =

<a1

a2 − < + 1
,

then the case a > 0 leads to the approximation

) ∼ V�a,a2−<+1,

otherwise the alternative approximation
) ∼ Uj2

5

is employed, where 5 = <a1/{U(a2 − < − 1)}. The null distributions for Roy’s largest root and Pillai’s trace
are more complicated to approximate, which is one reason why Wilk’s Λ is the most widely used test statistic.

MANOVA example 2. Testing for equality of selected means

Table 13.19 resulted when groups 2 and 3 were tested for equality, another example of a Hotelling’s)2 test.
The first result uses the difference vector 32,3 between the means estimated from groups 2 and 3 with the
matrix, = (= − 6)(estimated using the pooled sum of squares and products matrix to calculate and test)2

Multivariate statistics 231

MANOVA H0: selected group means are equal

First group = 2 (5 cases)

Second group = 3 (5 cases)

Number of observations = 15 (to estimate CV)

Number of variables = 2

Hotelling T^2 = 12.0

Test statistic S = 5.498

Numerator DOF = 2

Denominator DOF = 11

p = P(F >= S) = 0.0221 Reject H0 at 5% sig.level

MANOVA H0: selected group means are equal

First group = 2 (5 cases)

Second group = 3 (5 cases)

Number of observations = 10 (to estimate CV)

Number of variables = 2

Hotelling T^2 = 15.18

Test statistic S = 6.64

Numerator DOF = 2

Denominator DOF = 7

p = P(F >= S) = 0.0242 Reject H0 at 5% sig.level

Table 13.19: MANOVA example 2. Test for equality of selected means

according to

)2
=

(
(= − 6)=2=3

=2 + =3

)
3)2,3,

−132,3

= − 6 − < + 1
<(= − 6))2 ∼ �<,=−6−<+1,

while the second result uses the data from samples 2 and 3 as if they were the only groups as follows

(2,3 =
(=2 − 1)(2 + (=3 − 1)(3

=2 + =3 − 2

)2
=

(
=2=3

=2 + =3

)
3)2,3(

−1
2,332,3

=2 + =3 − < − 1
<(=2 + =3 − 2))

2 ∼ �<,=2+=3−<−1.

The first method could be used if all covariance matrices are equal (see next) but the second might be preferred
if it was only likely that the selected covariance matrices were identical.

MANOVA example 3. Testing for equality of all covariance matrices

Table 13.20 shows the results from using Box’s test to analyze manova1.tf2 for equality of covariance
matrices. This depends on the likelihood ratio test statistic � defined by

� = "

{
(= − 6) log |(| −

6∑
8=1

(=8 − 1) log |(8 |
}
,

where the multiplying factor " is

" = 1 − 2<2 + 3< − 1
6(< + 1) (6 − 1)

(
6∑
8=1

1
=8 − 1

− 1
= − 6

)

232 SimFIT reference manual

MANOVA H0: all covariance matrices are equal

Number of groups = 3

Number of observations = 21

Number of. variables = 2

Test statistic C = 1.924

Degrees of Freedom = 6

p = P(chisqd. >= C) = 0.0038 Reject H0 at 1% sig.level

Table 13.20: MANOVA example 3. Test for equality of all covariance matrices

and, for large =, � is approximately distributed as j2 with <(< + 1) (6 − 1)/2 degrees of freedom. Just as
tests for equality of variances are not very robust, this test should be used with caution, and then only with
large samples, i.e. =8 >> <.

MANOVA example 4. Profile analysis

Figure 13.22 illustrates the results from plotting the group means from manova1.tf1 using the profile analysis

10.0

20.0

30.0

1 2 3 4 5

MANOVA Profile Analysis

Variables

G
ro

up
 M

ea
ns

Group 1
Group 2

Figure 13.22: MANOVA profile analysis

option, noting that error bars are not added as a multivariate distribution is assumed, while table 13.21 shows
the results of the statistical analysis. Profile analysis attempts to explore a common question that often arises
in repeated measurements ANOVA namely, can two profiles be regarded as parallel. This amounts to testing
if the sequential differences between adjacent means for groups 8 and 9 are equal, that is, if the slopes between
adjacent treatments are constant across the two groups, so that the two profiles represent a common shape. To

Multivariate statistics 233

MANOVA H0: selected group profiles are equal

First group = 1 (5 cases)

Second group = 2 (5 cases)

Number of observations = 10 (to estimate CV)

Number of variables = 5

Hotelling T^2 = 35.65

Test statistic S = 5.57

Numerator DOF = 4

Denominator DOF = 5

p = P(F >= S) = 0.0438 Reject H0 at 5% sig.level

Table 13.21: MANOVA example 4. Profile analysis

do this, we first define the < − 1 by < transformation matrix by

 =

©«

1 −1 0 0 0 . . .

0 1 −1 0 0 . . .

0 0 1 −1 . . .

.

ª®®®
¬
.

Then a Hotelling’s)2 test is conducted using the pooled estimate for the covariance matrix (8 9 = [(=8 −1)(8 +
(= 9 − 1)(9]/(=8 + = 9 − 2) and mean difference vector 38 9 = H̄8 − H̄ 9 according to

)2
=

(
=8= 9

=8 + = 9

)
(38 9)) ((8 9))−1(38 9)

and comparing the transformed statistic

=8 + = 9 − <
(=8 + = 9 − 2) (< − 1))

2 ∼ �<−1,=1+=2−<

to the corresponding � distribution. Clearly, from table 13.21, the profiles are not parallel for the data in test
file manova1.tf1.

13.18 Comparing groups: canonical variates (discriminant functions)

If MANOVA investigation suggests that at least one group mean vector differs from the the rest, it is usual to
proceed to canonical variates analysis, although this technique can be also be used for data exploration when
the assumption of multivariate normality with equal covariance matrices is not justified. Transforming multi-
variate data using canonical variates is a technique for highlighting differences between groups. Table 13.22
shows the results from analyzing data in the test file manova1.tf4 which has three groups, each of size three.
The most useful application of this technique is to plot the group means together with the data and 95%
confidence regions in canonical variate space in order to visualize how close or how far apart the groups are.
This is done for the first two canonical variates in figure 13.23, which requires some explanation. First of all,
note that canonical variates, unlike principal components, are not simply obtained by a distance preserving
rotation: the transformation is non-orthogonal and best represents the Mahalanobis distance between groups.
In figure 13.23 we see the group means identified by the filled symbols labelled as 1, 2 and 3, each surrounded
by a 95% confidence region, which in this case is circular as equally scaled physical distances are plotted
along the axes. The canonical variates are uncorrelated and have unit variance so, assuming normality, the
100(1 − U)% confidence region for the population mean is a circle radius

A =

√
j2
U,2

/=8 ,

234 SimFIT reference manual

Rank = 3

Correlations Eigenvalues Proportions Chisq. NDOF p

0.8826 3.5238 0.9795 7.9032 6 0.2453

0.2623 0.0739 0.0205 0.3564 2 0.8368

Canonical variate means

0.9841 0.2797

1.181 0.2632

2.165 0.01642

Canonical coefficients

1.707 0.7277

1.348 0.3138

0.9327 1.22

Table 13.22: Comparing groups: canonical variates

-4

-3

-2

-1

0

1

2

3

-5 -4 -3 -2 -1 0 1 2 3 4

Canonical Variate Means

CV 1

C
V

 2

1

2
3

A

B

C

Figure 13.23: Comparing groups: canonical variates and confidence regions

where group 8 has =8 observations and j2
U,2

is the value exceeded by 100U% of a chi-square distribution with

2 degrees of freedom. Note that a circle radius
√
j2
U,2

defines a tolerance region, i.e. the region within which

100(1 − U)% of the whole population is expected to lie. Also, the test file manova1.tf4 has three other
observations appended which are to be compared with the main groups in order to assign group membership,
that is, to see to which of the main groups 1, 2 and 3 the extra observations should be assigned. The half-filled
diamonds representing these are identified by the labels A, B and C which, like the identifying numbers 1,
2, and 3, are plotted automatically by SimFIT to identify group means and extra data. In this case, as the
data sets are small, the transformed observations from groups 1, 2 and 3 are also shown as circles, triangles
and squares respectively, which is easily done by saving the coordinates from the plotted transforms of the
observations in ASCII text files which are then added interactively as extra data files to the means plot.

The aim of canonical variate analysis is to find the transformations 08 that maximize �8 , the ratios of � (the
between group sum of squares and products matrices) to , (the within-group sum of squares and products

Multivariate statistics 235

matrix), i.e.

�8 =
0)8 �08/(6 − 1)
0)
8
,08/(= − 6)

where there are 6 groups and = observations with < covariates each, so that 8 = 1, 2, . . . , ; where ; is the lesser
of the number of groups minus one and the rank of the data matrix. The canonical variates are obtained by
solving the symmetric eigenvalue problem

(� − _2,)G = 0,

where the eigenvalues _2
8 define the ratios �8 , and the eigenvectors 08 corresponding to the _2

8 define the
transformations. So, just as with principal components, a scree diagram of the eigenvalues in decreasing order
indicates the proportion of the ratio of between-group to within-group variance captured by the canonical
variates. Note that table 13.22 lists the rank : of the data matrix, the number of canonical variates ; =

min(:, 6 − 1), the eigenvalues _2
8 , the canonical correlations _2

8 /(1 + _2
8), the proportions _2

8 /
∑;
9=1 _

2
9 , the

group means, the loadings, and the results of a chi-square test. If the data are assumed to be from a common
multivariate distribution, then to test for a significant dimensionality greater than some level i, the statistic

j2
= (= − 1 − 6 − (: − 6)/2)

;∑
9=8+1

log(1 + _2
9)

has an asymptotic chi-square distribution with (:−8) (6−1−8) degrees of freedom. If the test is not significant
for some level ℎ, then the remaining tests for 8 > ℎ should be ignored. It should be noted that the group
means and loadings are calculated for data after column centering and the canonical variates have within
group variance equal to unity. Also, if the covariance matrices V = �/(6 − 1) and l = ,/(= − 6) are used,
then l−1V = (= − 6),−1�/(6 − 1), so eigenvectors of,−1� are the same as those of l−1V, but eigenvalues
of,−1� are (6 − 1)/(= − 6) times the corresponding eigenvalues of l−1V.

Figure 13.24 illustrates the famous Fisher Iris data set contained in manova1.tf5 and shown in table 13.12,

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

Principal Components for Iris Data

PC 1

P
C

 2

-3

-2

-1

0

1

2

3

-10 -5 0 5 10

Canonical Variates for Iris Data

CV 1

C
V

 2 1

2

3

Figure 13.24: Comparing groups: principal components and canonical variates

using the first two principal components and also the first two canonical variates. In this instance there are
only two canonical variates, so the canonical variates diagram is fully representative of the data set, and both
techniques illustrate the distinct separation of group 1 (circles = setosa) from groups 2 (triangles = versicolor)
and 3 (squares = virginica), and the lesser separation between groups 2 and 3. Users of these techniques
should always remember that, as eigenvectors are only defined up to an arbitrary scalar multiple and different
matrices may be used in the principal component calculation, principal components and canonical variates
may have to be reversed in sign and re-scaled to be consistent with calculations reported using software
other than SimFIT. To see how to compare extra data to groups involved in the calculations, the test file
manova1.tf4 should be examined.

236 SimFIT reference manual

13.18.1 Comparing groups: Mahalanobis distances (discriminant analysis)

Discriminant analysis can be performed for grouped multivariate data as in table 13.23for test file g03daf.tf1,

D^2 for all groups assuming unequal CV

0.0 9.557 51.974

8.5140 0.0 25.297

25.121 4.7114 0.0

D^2 for samples/groups assuming unequal CV

3.3393 0.75213 50.928

20.777 5.6559 0.059653

21.363 4.8411 19.498

0.71841 6.2803 124.73

55.0 88.86 71.785

36.17 15.785 15.749

Table 13.23: Comparing groups: Mahalanobis distances

by calculating Mahalanobis distances between group means, or between group means and samples. The
squared Mahalanobis distance �2

8 9 between two group means Ḡ8 and Ḡ 9 can be defined as either

�2
8 9 = (Ḡ8 − Ḡ 9)) (−1(Ḡ8 − Ḡ 9)

or �2
8 9 = (Ḡ8 − Ḡ 9)) (−1

9 (Ḡ8 − Ḡ 9)

depending on whether the covariance matrices are assumed to be equal, when the pooled estimate (is used,
or unequal when the group estimate (9 is used. This distance is a useful quantitative measure of similarity
between groups, but often there will be extra measurements which can then be appended to the data file, as
with manova1.tf2, so that the distance between measurement : and group 9 can be calculated as either

�2
: 9 = (G: − Ḡ 9)) (−1(G: − Ḡ 9)

or �2
: 9 = (G: − Ḡ 9)) (−1

9 (G: − Ḡ 9) .

From table 13.20 on page 232 we see that, for these data, the covariances must be regarded as unequal, so
from table 13.23 we conclude that the groups are similarly spaced but, whereas extra data points 1 to 4 seem
to belong to group 2, extra data points 5 and 6 can not be allocated so easily.

13.18.2 Comparing groups: Assigning new observations

Assigning new observations to groups defined by training sets can be made more objective by employing
Bayesian techniques than by simply using distance measures, but only if a multivariate normal distribution
can be assumed. For instance, table 13.24 displays the results from assigning the six observations appended to
g03dcf.tf1 to groups defined by using the data as a training set, under the assumption of unequal variance-
covariance matrices and equal priors. The calculation is for 6 groups, each with = 9 observations on <
variables, and it is necessary to make assumptions about the identity or otherwise of the variance-covariance
matrices, as well as assigning prior probabilities. Then Bayesian arguments lead to expressions for posterior
probabilities @ 9 , under a variety of assumptions, given prior probabilities c 9 as follows.

• Estimative with equal variance-covariance matrices (Linear discrimination)

log @ 9 ∝ − 1
2
�2
: 9 + log c 9

• Estimative with unequal variance-covariance matrices (Quadratic discrimination)

log @ 9 ∝ − 1
2
�2
: 9 + log c 9 − 1

2
log |(9 |

Multivariate statistics 237

Size of training set = 21

Number of groups = 3

Method: Predictive

CVmat: Unequal

Priors: Equal

Observation Groupallocated

1 2

2 3

3 2

4 1

5 3

6 3

Posterior probabilities

0.0939 0.9046 0.0015

0.0047 0.1682 0.8270

0.0186 0.9196 0.0618

0.6969 0.3026 0.0005

0.3174 0.0130 0.6696

0.0323 0.3664 0.6013

Atypicality indices

0.5956 0.2539 0.9747

0.9519 0.8360 0.0184

0.9540 0.7966 0.9122

0.2073 0.8599 0.9929

0.9908 0.9999 0.9843

0.9807 0.9779 0.8871

Table 13.24: Comparing groups: Assigning new observations

• Predictive with equal variance-covariance matrices

@ 9 ∝
c 9

((= 9 + 1)/= 9)</2{1 + [= 9/((= − 6) (= 9 + 1))]�2
: 9
} (=−6+1)/2

• Predictive with unequal variance-covariance matrices

@ 9 ∝
c 9Γ(= 9/2)

Γ((= 9 − <)/2) ((=2
9
− 1)/= 9)</2 |(9 |1/2{1 + (= 9/(=2

9
− 1))�2

: 9
}= 9 /2

Subsequently the posterior probabilities are normalized so that
∑6

9=1
@ 9 = 1 and the new observations are

assigned to the groups with the greatest posterior probabilities. In this analysis the priors can be assumed to
be all equal, proportional to sample size, or user defined. Also, atypicality indices � 9 are computed to estimate
how well an observation fits into an assigned group. These are

• Estimative with equal or unequal variance-covariance matrices

� 9 = %(�2
: 9/2, </2)

• Predictive with equal variance-covariance matrices

� 9 = '(�2
: 9/(�

2
: 9 + (= − 6) (= 9 − 1)/= 9), </2, (= − 6 − < + 1)/2)

• Predictive with unequal variance-covariance matrices

� 9 = '(�2
: 9/(�2

: 9 + (=2
9 − 1)/= 9), </2, (= 9 − <)/2),

238 SimFIT reference manual

where %(G, U) is the incomplete gamma function (page 426), and '(G, U, V) is the incomplete beta function
(page 424). Values of atypicality indices close to one for all groups suggest that the corresponding new
observation does not fit well into any of the training sets, since one minus the atypicality index can be
interpreted as the probability of encountering an observation as or more extreme than the one in question
given the training set. As before, observations 5 and 6 do not seem to fit into any of the groups.

Note that extra observations can be edited interactively or supplied independently in addition to the technique
of appending to the data file as with manova.tf2. However, the assignment of extra observations to the
training sets depends on the data transformation selected and variables suppressed or included in the analysis,
and this must be considered when supplying extra observations interactively. Finally, once extra observations
have been assigned, you can generate an enhanced training set, by creating a SimFIT MANOVA type file in
which the new observations have been appended to the groups to which they have been assigned.

13.18.3 Plotting training sets and assigned observations

Figure 13.25 displays the training set from manova1.tf2, together with the assignment of the extra observa-

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Training Set for Group Assignment

Variable 1

V
ar

ia
bl

e
2

1.1

1.2

1.3

1.4

1.5

1.6

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

3.13.2

3.3
3.4

3,5

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Expanded Training Set

Variable 1

V
ar

ia
bl

e
2

1.1

1.2

1.3

1.4

1.5

1.6

X4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

X1

X3

3.13.2

3.3
3.4

3.5
X2

X5

X6

Figure 13.25: Training sets and groups assigned

tions appended to manova1.tf2 just described. Note that observation 9 in group 1, labeled 2.9, and the extra
observation number 1, labeled X1, have been displaced for clarity.

13.19 Factor analysis

This technique is used when it is wished to express a multivariate data set in<manifest, or observed variables,
in terms of : latent variables, where : < <. Latent variables are variables that by definition are unobservable,
such as social class or intelligence, and thus cannot be measured but must be inferred by estimating the
relationship between the observed variables and the supposed latent variables. The statistical treatment is
based upon a very restrictive mathematical model that, at best, will only be a very crude approximation and,
most of the time, will be quite inappropriate. For instance, Krzanowski (in Principles of Multivariate Analysis,
Oxford, revised edition, 2000) explains how the technique is used in the psychological and social sciences,
but then goes on to state

At the extremes of, say, Physics or Chemistry, the models become totally unbelievable. p477

It should only be used if a positive answer is provided to the question, “Is the model valid?” p503

However, despite such warnings, the technique is now widely used, either to attempt to explain observables
in terms of hypothetical unobservables, or as just another technique for expressing multivariate data sets in a
space of reduced dimension. In this respect it is similar to principal components analysis (page223), except

Multivariate statistics 239

that the technique attempts to capture the covariances between the variables, not the variances. If the observed
variables G can be represented as a linear combination of the unobservable variables or factors 5 , so that the
partial correlation A8 9.; between G8 and G 9 with 5; fixed is effectively zero, then the correlation between G8 and
G 9 can be said to be explained by 5;. The idea is to estimate the coefficients expressing the dependence of G
on 5 in such a way that the the residual correlation between the G variables is a small as possible, given the
value of :.

The assumed relationship between the mean-centered observable variables G8 and the factors is

G8 =

:∑
9=1

_8 9 5 9 + 48 for 8 = 1, 2, . . . , <, and 9 = 1, 2, . . . , :

where _8 9 are the loadings, 58 are independent normal random variables with unit variance, and 48 are
independent normal random variables with variances k8 . If the variance covariance matrix for G is Σ, defined
as

Σ = ΛΛ
) + Ψ,

where Λ is the matrix of factor loadings _8 9 , and Ψ is the diagonal matrix of variances k8 , while the sample
covariance matrix is (, then maximum likelihood estimation requires the minimization of

� (Ψ) =
<∑

9=:+1

(\ 9 − log \ 9) − (< − :),

where \ 9 are eigenvalues of (∗ = Ψ−1/2(Ψ−1/2. Finally, the estimated loading matrix Λ̂ is given by

Λ̂ = Ψ
1/2+ (Θ − �)1/2,

where + are the eigenvectors of (∗, Θ is the diagonal matrix of \8 , and � is the identity matrix.

Table 13.25 illustrates the analysis of data in g03caf.tf, which contains a correlation matrix for = = 211 and
< = 9. The proportion of variation for each variable G8 accounted for by the : factors is the communality∑:
9=1 _

2
8 9 , the Psi-estimates are the variance estimates, and the residual correlations are the off-diagonal

elements of
� − (ΛΛ) + Ψ)

where � is the sample correlation matrix. If a good fit has resulted and sufficient factors have been included,
then the off-diagonal elements of the residual correlation matrix should be small with respect to the diagonals
(listed with arbitrary values of unity to avoid confusion). Subject to the normality assumptions of the model,
the minimum dimension : can be estimated by fitting sequentially with : = 1, : = 2, : = 3, and so on, until
the likelihood ratio test statistic

)(= [= − 1 − (2< + 5)/6 − 2:/3]� (Ψ̂)

is not significant as a chi-square variable with [(< − :)2 − (< + :)]/2 degrees of freedom. Note that data
for factor analysis can be input as a general = by < multivariate matrix, or as either a < by < covariance or
correlation matrix. However, if a square covariance or correlation matrix is input then there are two further
considerations: the sample size must be supplied independently, and it will not be possible to estimate or plot
the sample scores in factor space, as the original sample matrix will not be available.

It remains to explain the estimation of scores, which requires the original data of course, and not just the
covariance or correlation matrix. This involves the calculation of a < by : factor score coefficients matrix Φ,
so that the estimated vector of factor scores 5̂ , given the G vector for an individual can be calculated from

5̂ = G)Φ.

240 SimFIT reference manual

Number of variables = 9, Transformation = Untransformed

Matrix type = Input correlation/covariance matrix

Number of factors = 3, Replicates = Unweighted

F(Psihat) = 0.035017

Test stat TS = 7.1494

Degrees of Freedom = 12 (Number of cases = 211)

p = P(chisq >= TS) = 0.8476

Eigenvalues Communalities Psiestimates

15.968 0.54954 0.45046

4.3577 0.57293 0.42707

1.8475 0.38345 0.61655

1.156 0.78767 0.21233

1.119 0.61947 0.38053

1.0271 0.82308 0.17692

0.92574 0.60046 0.39954

0.89508 0.53846 0.46154

0.8771 0.76908 0.23092

Residual correlations

0.0004

0.0128 0.0220

0.0114 0.0053 0.0231

0.0100 0.0194 0.0162 0.0033

0.0046 0.0113 0.0122 0.0009 0.0008

0.0153 0.0216 0.0108 0.0023 0.0294 0.0123

0.0011 0.0105 0.0134 0.0054 0.0057 0.0009 0.0032

0.0059 0.0097 0.0049 0.0114 0.0020 0.0074 0.0033 0.0012

Factor loadings by columns

0.6.6421 0.3.2087 0.073519

0.6.8883 0.2.4714 0.19328

0.4.9262 0.3.0216 0.22243

0.8.3720 0.2.9243 0.035395

0.7.0500 0.3.1479 0.15278

0.8.1870 0.3.7667 0.10452

0.6.6150 0.3.9603 0.077747

0.4.5793 0.2.9553 0.49135

0.7.6567 0.4.2743 0.011701

Table 13.25: Factor analysis 1: calculating loadings

However, when calculating factor scores from the factor score coefficient matrix in this way, the observable
variables G8 must be mean centered, and also scaled by the standard deviations if a correlation matrix has been
analyzed. The regression method uses

Φ = Ψ
−1
Λ(� + Λ

)
Ψ

−1
Λ)−1,

while the Bartlett method uses

Φ = Ψ
−1
Λ(Λ)Ψ−1

Λ)−1.

Table 13.26 shows the analysis of g03ccf.tf1, a correlation matrix for 220 cases, 6 variables and 2 factors,
but a further possibility should be mentioned. As the factors are only unique up to rotation, it is possible to
perform a Varimax or Quartimax rotation (page 227) to calculate a rotation matrix ' before working out the
score coefficients, which may simplify the interpretation of the observed variables in terms of the unobservable
variables.

Multivariate statistics 241

TS = 2.3346, p = P(chisq >= TS) = 0.6745,

DOF = 4 (n = 220, m = 6, k = 2)

Eigenvalues Communalities Psiestimates

5.6142 0.48983 0.51017

2.1428 0.40593 0.59407

1.0923 0.35627 0.64373

1.0264 0.62264 0.37736

0.99082 0.56864 0.43136

0.89051 0.37179 0.62821

Factor loadings by columns

0.55332 0.42856

5.6816 0.28832

3.9218 0.44996

7.4042 0.2728

7.2387 0.21131

5.9536 0.13169

Factor score coefficients, Method: Regression, Rotation: None

0.19318 0.39203

0.17035 0.22649

0.10852 0.32621

0.34950 0.33738

0.29891 0.22861

0.16881 0.097831

Table 13.26: Factor analysis 2: calculating factor scores

13.20 Biplots

The biplot is used to explore relationships between the rows and columns of any arbitrary matrix, by projecting
the matrix onto a space of smaller dimensions using the singular value decomposition (SVD Page 309). It is
based upon the fact that, as a = by < matrix - of rank : can be expressed as a sum of : rank 1 matrices as
follows

- = f1D1E
)
1 + f2D2E

)
2 + · · · + f:D:E): ,

then the best fit rank A matrix . with A < : which minimizes the objective function

(=

<∑
8=1

=∑
9=1

(G8 9 − H8 9)2

= trace[(- − .) (- − .))]

is the sum of the first A of these rank 1 matrices. Further, such a least squares approximation results in the
minimum value

(<8= = f
2
A+1 + f2

A+2 + · · · + f2
:

so that the rank A least squares approximation. accounts for a fraction

f2
1
+ · · · + f2

A

f2
1
+ f2

2
+ · · · + f2

:

of the total variance, where : is less than or equal to the smaller of = and <, : is greater than or equal to A,
and f8 = 0 for 8 > :.

Figure 13.26 illustrates a biplot for the data in test file houses.tf1. The technique is based upon creating one

242 SimFIT reference manual

-60 -20 20 60

-80

-40

0

40

Toilet
Kitchen

Bath

Electricity

Water

Radio

TV set

Refrigerator

Christian
Armenian

Jewish

MoslemAm.Colony Sh.Jarah

Shaafat Bet-Hanina

A-Tur Isawyie Silwan Abu-Tor

Sur-Bahar Bet-Safafa

Figure 13.26: Two dimensional biplot for East Jerusalem Households

of several possible rank-2 representations of of a = by < matrix - with rank : of at least two as follows. Let
the SVD of - be

- = *Σ+)

=

:∑
8=1

f8D8E
)
8

so that the best fit rank-2 matrix . to the original matrix - will be

. =

©
«

D11 D21

D12 D22

...
...

D1= D2=

ª®®®®¬

(
f1 0
0 f2

) (
E11 E12 . . . E1<

E21 E22 . . . E2<

)
.

Then. can be written in several ways as��) , where� is a = by 2 matrix and � is a < by 2 matrix as follows.

1. General representation

. =

©«

D11
√
f1 D21

√
f2

D12
√
f1 D22

√
f2

...
...

D1=
√
f1 D2=

√
f2

ª®®®®
¬

(
E11

√
f1 E12

√
f1 . . . E1<

√
f1

E21
√
f2 E22

√
f2 . . . E2<

√
f2

)

2. Representation with row emphasis

. =

©
«

D11f1 D21f2

D12f1 D22f2

...
...

D1=f1 D2=f2

ª®®®®
¬

(
E11 E12 . . . E1<

E21 E22 . . . E2<

)

Multivariate statistics 243

3. Representation with column emphasis

. =

©
«

D11 D21

D12 D22

...
...

D1= D2=

ª®®®®¬

(
E11f1 E12f1 . . . E1<f1

E21f2 E22f2 . . . E2<f2

)

4. User-defined representation

. =

©
«

D11f
U
1

D21f
U
2

D12f
U
1

D22f
U
2

...
...

D1=f
U
1

D2=f
U
2

ª®®®®¬

(
E11f

V

1
E12f

V

1
. . . E1<f

V

1

E21f
V

2
E22f

V

2
. . . E2<f

V

2

)

where 0 < U < 1, and V = 1 − U.

To construct a biplot we take the = row effect vectors 68 and < column effect vectors ℎ 9 as vectors with origin
at (0, 0) and defined in the general representation as

6)8 = (D18

√
f1, D28

√
f2)

ℎ)9 = (E1 9

√
f1, E2 9

√
f2)

with obvious identities for the alternative row emphasis and column emphasis factorizations. The biplot
consists of = vectors with end points at (D18

√
f1, D28

√
f2) and < vectors with end points at (E1 9

√
f1, E2 9

√
f2)

so that interpretation of the biplot is then in terms of the inner products of vector pairs. That is, vectors
with the same direction correspond to proportional rows or columns, while vectors approaching right angles
indicate near orthogonality, or small contributions. Another possibility is to display a difference biplot in
which a residual matrix ' is first created by subtracting the best fit rank-1 matrix so that

' = - − f1D1E
)
1

=

:∑
8=2

f8D8E
)
8

and this is analyzed, using appropriate vectors calculated with f2 and f3 of course. Again, the row vectors
may dominate the column vectors or vice versa whatever representation is used and, to improve readability,
additional scaling factors may need to be introduced. For instance, figure 13.26 used the residual matrix and
scaling factors of -100 for rows and -1 for columns to reflect and stretch the vectors until comparable size was
attained. To do this over-rides the default autoscaling option, which is to scale each set of vectors so that the
largest row and largest column vector are of unit length, whatever representation is chosen.

Biplots are most useful when the number of rows and columns is not too large, and when the rank-2
approximation is satisfactory as an approximation to the data or residual matrix. Note that biplot labels should
be short, and they can be appended to the data file as with houses.tf1, or pasted into the plot as a table of
label values. Fine tuning to re-position labels was necessary with figure 13.26, and this can be done by editing
the PostScript file in a text editor (page 366), or by using the same techniques described for scattergrams with
labels (page 222).

Sometimes, as with figure 13.27, it is useful to inspect biplots in three dimensions. This has the advantage
that three singular values can be used, but the plot may have to be viewed from several angles to get a good
idea of which vectors of like type are approaching a parallel orientation (indicating proportionality of rows
or columns) and which pairs of vectors 8, 9 of opposite types are orthogonal (i.e., at right angles, indicating
small contributions to G8 9)
As with other projection techniques, such as principal components, it is necessary to justify that the number
of singular values used to display a biplot does represent the data matrix adequately. To do this, consider
table 13.27 from the singular value decomposition of houses.tf1.

244 SimFIT reference manual

Three Dimensional Multivariate Biplot

-.4

.6

0

-1
-.4

.35

Toilet Kitchen
Bath

Electricity

Water

Radio

TV set

Refrigerator

Christian

Armenian

Jewish

Moslem

Am.Colony Sh.Jarah

Shaafat Bet-Hanina

A-Tur Isawyie

Silwan Abu-Tor

Sur-Bahar Bet-SafafaX
Y

Z

Figure 13.27: Three dimensional biplot for East Jerusalem Households

rank = 8

Index Sigma(i) Fraction Cumulative Sigma(i)^2 Fraction Cumulative

1 499.39 0.7486 0.7486 249394.0 0.9631 0.9631

2 88.348 0.1324 0.8811 7805.36 0.0301 0.9933

3 33.6666 0.0505 0.9315 1133.44 0.0044 0.9977

4 17.8107 0.0267 0.9582 317.222 0.0012 0.9989

5 12.8584 0.0193 0.9775 165.339 0.0006 0.9995

6 10.4756 0.0157 0.9932 109.738 0.0004 1.0000

7 3.37372 0.0051 0.9983 11.382 0.0000 1.0000

8 1.15315 0.0017 1.0000 1.32974 0.0000 1.0000

Table 13.27: Singular values for East Jerusalem Households

In this example, it is clear that the first two or three singular values do represent the data adequately, and this
is further reinforced by figure 13.28 where the percentage variance represented by the successive singular
values is plotted as a function of the singular value index. Here we see plotted the cumulative variance�+ (8)

�+ (8) =
100

∑8
9=1 f

2
9∑:

9=1 f
2
9

plotted as a function of the index 8, and such tables or plots should always be inspected to make sure that
�+ (8) is greater than some minimum value (say 70 percent, for instance) for 8 = 2 or 8 = 3 as appropriate.

Multivariate statistics 245

95%

96%

97%

98%

99%

100%

1 2 3 4 5 6 7 8

Index i

P
er

ce
nt

ag
e

V
ar

ia
nc

e

Figure 13.28: Percentage variance from singular value decomposition

Part 14

Time series

14.1 Introduction

A time series is a vector G(C) of = > 1 observations G8 obtained at a sequence of points C8 , e.g., times, distances,
etc., at fixed intervals Δ , i.e.

Δ = C8+1 − C8 , for 8 = 1, 2, . . . , = − 1,

and it is assumed that there is some seasonal variation, or other type of autocorrelation to be estimated. A
linear trend can be removed by first order differencing

∇GC = GC − GC−1,

while seasonal patterns of seasonality B can be eliminated by first order seasonal differencing

∇BGC = GC − GC−B .

14.2 Time series data smoothing

Sometimes it is useful to be able to smooth a time series in order to suppress outliers and reveal trends more
clearly. In extreme cases it may even be better to create a smoothed data set for further correlation analysis
or model fitting. The obvious way to do this is to apply a moving average of span =, which replaces the data
values by the average of = adjacent values to create a smooth set. When = is odd, it is customary to set the new
smooth point equal to the mean of the original value and the (=−1)/2 values on either side but, when = is even,
the Hanning filter is used that is, double averaging or alternatively using an appropriately weighted mean of
span (=+1). Because such moving averages could be unduly influenced by outliers, running medians can also
be used, however a very popular smoothing method is the 4253H twice smoother. This starts by applying a
span 4 running median centered by 2, followed by span 5 then span 3 running medians, and finally a Hanning
filter. The rough (i.e., residuals) are then treated in the same way and the first-pass smooth are re-roughed by
adding back the smoothed rough, then finally the rough are re-calculated. Figure 14.1 illustrates the effect of
this)4253� smoothing.

14.3 Time series lags and autocorrelations

This procedure should be used to explore a time series before fitting an ARIMA model (page 249). The general
idea is to observe the autocorrelations and partial autocorrelations in order to identify a suitable differencing
scheme. You input a vector of length #- , which is assumed to represent a time series sequence with fixed
differences, e.g., every day, at intervals of 10 centimeters, etc. Then you choose the orders of non-seasonal
differencing #�, and seasonal differencing #�(, along with seasonality #(, the maximum number of lags
required # , and the maximum number of partial autocorrelations of interest !. All autocorrelations and
partial autocorrelations requested are then worked out, and a statistic (to test for the presence of significant

Time series 247

200

400

600

800

0 10 20 30 40 50

T4253H Data smoothing

Time

D
at

a
an

d
S

m
oo

th

Figure 14.1: The T4253H data smoother

Original dimension (NX) = 100

After differencing (NXD) = 99

Nonseasonal order (ND) = 1

Seasonal order (NDS) = 0

Seasonality (NS) = 0

No. of lags (NK) = 10

No. of PACF (NVL) = 10

Xmean (differenced) = 0.4283

Xvariance (differenced) = 0.3152

Statistic (S) = 83.13

P(chisq >= S) = 0.0000

Lag R PACF VR ARP

1 0.5917 0.5917 0.6498 0.3916

2 0.5258 0.2703 0.6024 0.3988

3 0.3087 0.1299 0.5922 0.001601

4 0.1536 0.1440 0.5799 0.1440

5 0.0345 0.05431 0.5782 0.1365

6 0.0297 0.01105 0.5782 0.04528

7 0.0284 0.07109 0.5752 0.1474

8 0.0642 0.04492 0.5741 0.1306

9 0.1366 0.1759 0.5563 0.06707

10 0.2619 0.2498 0.5216 0.2498

Table 14.1: Autocorrelations and Partial Autocorrelations

autocorrelations in the data is calculated. Table 14.1 shows the results from analysis of times.tf1. Note that
differencing of orders 3 = #�, � = #�(, and seasonality B = #(may be applied repeatedly to a series so

248 SimFIT reference manual

that
FC = ∇3∇�B GC

will be shorter, of length #-� = = − 3 − � × B, and will extend for C = 1 + 3 + � × B, . . . , #- .

Non-seasonal differencing up to order 3 is calculated sequentially using

∇1G8 = G8+1 − G8 for 8 = 1, 2, . . . , = − 1
∇2G8 = ∇1G8+1 − ∇1G8 for 8 = 1, 2, . . . , = − 2
. . .

∇3G8 = ∇3−1G8+1 − ∇3−1G8 for 8 = 1, 2, . . . , = − 3
while seasonal differencing up to order � is calculated by the sequence

∇3∇1
BG8 = ∇3G8+B − ∇3G8 for 8 = 1, 2, . . . , = − 3 − B

∇3∇2
BG8 = ∇3∇1

BG8+B − ∇3∇1
BG8 for 8 = 1, 2, . . . = − 3 − 2B

. . .

∇3∇�B G8 = ∇3∇�+1
B G8+B − ∇3∇�+1

B G8 for 8 = 1, 2, . . . , = − 3 − � × B.
Note that, as indicated in table 14.1, either the original sample - of length #- , or a differenced series -�
of length #-�, can be analyzed interactively, by simply adjusting #�, #�(, or #(. Also the maximum
number of autocorrelations # < #-� and maximum number of partial autocorrelations ! ≤ # , can
be controlled, although the maximum number of valid partial autocorrelations #+! may turn out to be less
than !. Now, defining either G = - , and = = #- , or else G = -� and = = #-� as appropriate, and
using = # , the mean and variance are recorded, plus the autocorrelation function ', comprising the
autocorrelation coefficients of lag : according to

A: =

=−:∑
8=1

(G8 − Ḡ) (G8+: − Ḡ)
/ =∑
8=1

(G8 − Ḡ)2.

If = is large and much larger than , then the (statistic

(= =

 ∑
:=1

A2
:

has a chi-square distribution with degrees of freedom under the hypothesis of zero autocorrelation, and so
it can be used to test that all correlations are zero. The partial autocorrelation function %��� has coefficients
at lag : corresponding to ?:,: in the autoregression

GC = 2: + ?:,1GC−1 + ?:,2GC−2 + · · · + ?:,;GC−: + 4:,C

where 4:,C is the predictor error, and the ?:,: estimate the correlation between GC and GC+: conditional upon
the intermediate values GC+1, GC+2, . . . , GC+:−1. Note that the parameters change as : increases, and so : = 1
is used for ?1,1, : = 2 is used for ?2,2, and so on. These parameters are determined from the Yule-Walker
equations

A8 = ?:,1A8−1 + ?:,2A8−2 + · · · + ?:,:A8−: , 8 = 1, 2, . . . , :

where A 9 = A | 9 | when 9 < 0, and A0 = 1. An iterative technique is used and it may not always be possible to
solve for all the partial autocorrelations requested. This is because the predictor error variance ratios +' are
defined as

E: = +0A (4:,C)/+0A (GC)
= 1 − ?:,1A1 − ?:,2A2 − · · · − ?:,:A: ,

unless |?:,: | ≥ 1 is encountered at some : = !0, when the iteration terminates, with #+! = !0 − 1. The
Autoregressive parameters of maximum order �'% are the final parameters ?!, 9 for 9 = 1, 2, . . . , #+!
where #+! is the number of valid partial autocorrelation values, and ! is the maximum number of partial

Time series 249

autocorrelation coefficients requested, or else ! = !0 − 1 as before in the event of premature termination of
the algorithm.

Figure 14.2 shows the data in test file times.tf1 before differencing and after first order non-seasonal
differencing has been applied to remove the linear trend. Note that, to obtain hardcopy of any differenced

0

10

20

30

40

50

0 20 40 60 80 100

Undifferenced Time Series

Time

U
nd

iff
er

en
ce

d
V

al
ue

s

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

0 20 40 60 80 100

Time Series (Non-Seasonal Differencing Order = 1)

Time

D
iff

er
en

ce
d

V
al

ue
s

Figure 14.2: Time series before and after differencing

series, a file containing the C values and corresponding differenced values can be saved from the graph as
an ASCII coordinate file, then column 1 can be discarded using editfl. A valuable way to detect significant
autocorrelations is to plot the autocorrelation coefficients, or the partial autocorrelation coefficients, as in
figure 14.3. The statistical significance of autocorrelations at specified lags can be judged by plotting the
approximate 95% confidence limits or, as in this case, by plotting 2/√=, where = is the sample size (after
differencing, if any). Note that in plotting time series data you can always choose the starting value and the
increment between observations, otherwise defaults starting at 1 with an increment of 1 will be assumed.

-0.50

0.00

0.50

1.00

0 2 4 6 8 10

Autocorrelation Function

Lags

A
C

F
 v

al
ue

s

-0.50

0.00

0.50

1.00

0 2 4 6 8 10

Partial Autocorrelation Function

Lags

P
A

C
F

 v
al

ue
s

Figure 14.3: Times series autocorrelation and partial autocorrelations

14.4 Autoregressive integrated moving average models (ARIMA)

It must be stressed that fitting an ARIMA model is a very specialized iterative technique that does not yield
unique solutions. So, before using this procedure, you must have a definite idea, by using the autocorrelation
and partial autocorrelation options (page 246), or by knowing the special features of the data, exactly what
differencing scheme to adopt and which parameters to fit. Users can select the way that starting estimates are
estimated, they can monitor the optimization, and they can alter the tolerances controlling the convergence,
but only expert users should alter the default settings.

It is assumed that the time series data G1, G2, . . . , G= follow an ARIMA model so that a differenced series given
by

FC = ∇3∇�B G8 − 2

250 SimFIT reference manual

can be fitted, where 2 is a constant, 3 is the order of non-seasonal differencing, � is the order of seasonal
differencing and B is the seasonality. The method estimates the expected value 2 of the differenced series in
terms of an uncorrelated series 0C and an intermediate series 4C using parameters q, \,Φ,Θ as follows. The
seasonal structure is described by

FC = Φ1FC−B +Φ2FC−2×B + · · · +Φ%FC−%×B + 4C − Θ14C−B − Θ24C−2×B − · · · − Θ&4C−&×B

while the non-seasonal structure is assumed to be

4C = q14C−1 + q24C−2 + · · · + q?4C−? + 0C − \10C−1 − \20C−2 − · · · − \@0C−@.

The model parameters q1, q2, . . . , q?, \1, \2, . . . , \@ and Φ1,Φ2, . . . ,Φ%,Θ1Θ2, . . . ,Θ& are estimated by
nonlinear optimization, the success of which is heavily dependent on choosing an appropriate differencing
scheme, starting estimates and convergencecriteria. After fitting an ARIMA model, forecasts can be estimated
along with 95% confidence limits.

For example, table 14.2 shows the results from fitting the data in times.tf1 with a non-seasonal order of

Original dimension (NX) = 100

After differencing (NXD) = 99

Nonseasonal order (ND) = 1

Seasonal order (NDS) = 0

Seasonality (NS) = 0

Number of forecasts (NF) = 3

Number of parameters (NP) = 1

Number of iterations (ITC) = 2

Sum of squares (SSQ) = 0.199E+02

Parameter Value Std. err. Type

phi(1) 0.60081 0.08215 Autoregressive

C(0) 0.42959 0.1124 Constant term

pred(1) 43.935 0.453 Forecast

pred(2) 44.208 0.8551 Forecast

pred(3) 44.544 1.233 Forecast

Table 14.2: Fitting an ARIMA model to time series data

one and no seasonality, along with forecasts and associated standard errors, while figure 14.4 illustrates the
fit. On the first graph the original time series data are plotted along with forecasts and 95% confidence limits
for the predictions. However it should be realized that only the differenced time series has been fitted, that is,
after first order differencing to remove the linear trend. So in the second plot the best fit ARIMA model is
shown as a continuous line, while the differenced data are plotted as symbols.

14.5 Auto- and cross-correlation matrices

This technique is used when there are two time series, or in fact any series of signals recorded at a sequence
of fixed discrete intervals of time or space etc., and a comparison of the two series is required.

Table 14.3 illustrates the results from analyzing test file g13dmf.tf1 for the first ten nonzero lags using the
SimFIT time series options.
The data must be supplied as two vectors, say - and . of length = for instance, with - as column 1 of a =
by 2 matrix, and . as column 2. The routine first calculates the sample means Ḡ and H̄, the sample variances
+G and +H, and sample correlation coefficient A. Then, for a selected number of lags < = 1, 2, . . . , :, the
auto-correlations and cross-correlations are output as a sequence of 2 by 2 matrices.

Time series 251

Since 1/
√
= is a rough approximation to the standard errors of these estimates, the approximate significance

for the sample cross-correlations is indicated as in table 14.3 using the following labeling scheme.

|A (8, 9) | > 3.29/
√
= : ∗ ∗ ∗

|A (8, 9) | > 2.58/
√
= : ∗∗

|A (8, 9) | > 1.96/
√
= : ∗.

Finally, the off-diagonal i.e., cross-correlation, coefficient with largest absolute value is indicated. If this value
is close to unity it indicates that the series are closely similar, and the value of < at which this occurs indicates
the extent to which the series have to be slid past each other to obtain maximum similarity of profiles. Usually,
the largest value of < selected for analysis would be for : ≤ =/4.

Defining the denominator � as follows

� =

√√
=∑
8=1

(G8 − Ḡ)2

√√
=∑
8=1

(H8 − H̄)2

0.0

20.0

40.0

60.0

0 20 40 60 80 100 120

ARIMA forecasts with 95% Confidence Limits

Time

O
bs

er
va

tio
ns

Forecasts

-2.00

0.00

2.00

4.00

0 20 40 60 80 100

Differenced Series and ARIMA Fit

Time

D
at

a
an

d
B

es
t F

it Differenced Series
Best ARIMA Fit

Figure 14.4: Fitting an ARIMA model to time series data

252 SimFIT reference manual

Auto and crosscorrelations: n = 48, approx.st.dev. = 1.443E01

Mean of X = 4.37021E+00, Mean of Y = 7.86750E+00

For lag m = 0: sample X,Y Correlation coefficient r = 0.2493

m = 1: 0.7366(***) 0.1743

0.2114 0.5541(***)

m = 2 : 0.4562(**) 0.0764

0.0693 0.2602

m = 3 : 0.3795(**) 0.0138

0.0260 0.0381

m = 4 : 0.3227(*) 0.1100

0.0933 0.2357

m = 5 : 0.3414(*) 0.2694

0.0872 0.2499

m = 6 : 0.3634(*) 0.3436(*)

0.1323 0.2263

m = 7 : 0.2802 0.4254(**)

0.2069 0.1283

m = 8 : 0.2482 0.5217(***)

0.1970 0.0845

m = 9 : 0.2400 0.2664

0.2537 0.0745

m = 10: 0.1621 0.0197

0.2667 0.0047

Indicators: p<.005(***), p<.01(**), p<.05(*)

Max. offdiag., m = 8, |C(1,2)| = 0.5217

Table 14.3: Auto- and cross-correlation matrices

then the auto-correlations A (1, 1) and A (2, 2), and the cross-correlations A (1, 2) and A (2, 1) as functions of <
are given by

A (1, 1) = 1
�

=−<∑
8=1

(G8 − Ḡ) (G8+< − Ḡ)

A (1, 2) = 1
�

=−<∑
8=1

(G8 − Ḡ) (H8+< − H̄)

A (2, 1) = 1
�

=−<∑
8=1

(G8+< − Ḡ) (H8 − H̄)

A (2, 2) = 1
�

=−<∑
8=1

(H8 − H̄) (H8+< − H̄)

for < = 1, 2, . . . , :.

Part 15

Survival analysis

15.1 Introduction

In the context of survival analysis, the random survival time) ≥ 0, with density 5 (C), cumulative distribution
function � (C), survivor function ((C), hazard function ℎ(C), and integrated hazard function � (C) are defined
by

((C) = 1 − � (C)
ℎ(C) = 5 (C)/((C)

� (C) =
∫ C

0

ℎ(D) 3D

5 (C) = ℎ(C) exp{−� (C)}.

There will usually be one or more groups of subjects from which individuals are removed as time goes by.
Typically, members of the group are removed by some critical event, such as death, but often individuals leave
a group for other reasons, and these are referred to as censored observations. Survival analysis attempts to fit
models to such data in order to estimate parameters and thereby predict survival probabilities.

15.2 Fitting one set of survival times

The idea is that you have one or more samples of survival times (page 419) with possible censoring, but
no covariates, that you wish to analyze and compare for differences, using gcfit in mode 3, or simstat. In
other words, you observe one or more groups and, at known times, you record the frequency of failure or
censoring. You would want to calculate a nonparametric Kaplan-Meier estimate for the survivor function, as
well as a maximum likelihood estimate for some supposed probability density function, such as the Weibull
distribution. Finally, you would want to compare survivor functions in groups by comparing parameter
estimates, or using the Mantel-Haenszel log rank test, or by resorting to some model such as the proportional
hazards model, i.e. Cox regression by generalized linear modelling, particularly if covariates have to be taken
into account.

For example, figure 15.1 shows the result from analyzing the test file survive.tf4, which contains times for
both failure and right censoring. Note that more advanced versions of such plots are described on page 262.
Also, the parameter estimates from fitting the Weibull model (page 424) by maximum likelihood can be seen
in table 15.1. To understand these results, note that if the times C8 are distinct and ordered failure times, i.e.
C8−1 < C8 , and the number in the sample that have not failed by time C8 is =8 , while the number that do fail is
38 , then the estimated probabilities of failure and survival at time C8 are given by

?̂(failure) = 38/=8
?̂(survival) = (=8 − 38)/=8 .

254 SimFIT reference manual

0.0

0.5

1.0

0 5 10 15 20 25

Survival Analysis

Time

E
st

im
at

ed
 S

ur
vi

vo
r

F
un

ct
io

n

Kaplan-Meier Estimate

MLE Weibull Curve

Figure 15.1: Analyzing one set of survival times

Alternative MLE Weibull parameterizations

S(t) = exp[{exp(beta)}t^B]

= exp[{lambda}t^B]

= exp[{A*t}^B]

Parameter Value Std. err. ..95% conf. lim. .. p

B 1.371 0.238 0.84 1.90 0.000

beta 3.083 0.646 4.52 1.64 0.001

lambda 0.04583 0.0296 0.0201 0.112 0.153 *
A 0.1055 0.0177 0.066 0.145 0.000

thalf 7.257 1.36 4.22 10.3 0.000

Correlation coefficient(beta,B) = 0.9412

Table 15.1: Survival analysis: one sample

The Kaplan-Meier product limit nonparametric estimate of the survivor function (page 419) is defined as a
step function which is given in the interval C8 to C8+1 by the product of survival probabilities up to time C8 , that
is

(̂(C) =
8∏
9=1

(
= 9 − 3 9
= 9

)

Survival analysis 255

with variance estimated by Greenwood’s formula as

+̂ ((̂(C)) = (̂(C)2
8∑
9=1

3 9

= 9 (= 9 − 3 9)
.

It is understood in this calculation that, if failure and censoring occur at the same time, the failure is regarded
as having taken place just before that time and the censoring just after it. To understand fitting the Weibull
distribution, note that maximum likelihood parameter and standard error estimates are reported for three
alternative parameterizations, namely

((C) = exp(− exp(V)C�)
= exp(−_C�)
= exp(−(�C)�) .

Since the density and survivor function are

5 (C) = �_C�−1 exp(−_C�)
((C) = exp(−_C�),

and there are 3 failures and = − 3 right censored observations, the likelihood function ; (�, _) is proportional
to the product of the 3 densities for the failures in the overall set of = observations and the survivor functions,
that is

; (�, _) ∝ (�_)3
(∏
8∈�

C�−1
8

)
exp

(
−_

=∑
8=1

C�8

)

where � is the set of failure times. Actually, the log-likelihood function objective function

!(�, V) = 3 log(�) + 3V + (� − 1)
∑
8∈�

log(C8) − exp(V)
=∑
8=1

C�8

with _ = exp(V) is better conditioned, so it is maximized and the partial derivatives

!1 = m!/mV
!2 = m!/m�
!11 = m2!/mV2

!12 = m2!/m�mV
!22 = m2!/m�2

are used to form the standard errors and correlation coefficient according to

se(�̂) =
√
−!11/(!11!22 − !2

12
)

se(V̂) =
√
−!22/(!11!22 − !2

12
)

corr(�̂, V̂) = !12/
√
!11!22.

15.3 Comparing two sets of survival times

As an example of how to compare two data sets, consider the pairwise comparison of the survival times in
survive.tf3 and survive.tf4, leading to the results of figure 15.2. Note that you can plot the hazards
and the other usual transforms, and do graphical tests for the proportional hazards model. For instance, the
transformed Kaplan-Meier nonparametric survivor functions in figure 15.2 should be approximately linear
and parallel if the proportional hazards assumption and also the Weibull survival model are justified. To

256 SimFIT reference manual

Graphical Check for Proportional Hazards

log[Time]

lo
g[

-lo
g[

K
M

S
(t

)]
]

0.00 0.80 1.60 2.40 3.20

-3.00

-2.00

-1.00

0.00

1.00

2.00

Figure 15.2: Analyzing two sets of survival times

Results for the MantzelHaenszel (logrank) test

H0: h_A(t) = h_B(t) (equal hazards)

H1: h_A(t) = theta*h_B(t) (proportional hazards)

QMH test statistic = 16.79

p = P(chisq. >= QMH) = 0.0000 Reject H0 at 1% slevel

Estimate for theta = 0.1915

95% confidence range = 0.0828, 0.4429

Table 15.2: Survival analysis: two samples

prepare your own data you must first browse the test files survive.tf? and understand the format (column 1
is time, column 2 is 0 for failure and 1 for right censoring, column 3 is frequency), then use program makmat.
To understand the graphical and statistical tests used to compare two samples, and to appreciate the results
displayed in table 15.2, consider the relationship between the cumulative hazard function � (C) and the hazard
function ℎ(C) defined as follows

ℎ(C) = 5 (C)/((C)

� (C) =
∫ C

0

ℎ(D) 3D

= − log(((C)) .

Survival analysis 257

So various graphs can be plotted to explore the form of the cumulative survivor functions for the commonly
used models based on the identities

Exponential : � (C) = �C
Weibull : log(� (C)) = log �� + � log C

Gompertz : log(ℎ(C)) = log � + �C
Extreme value : log(� (C)) = U(C − V) .

For instance, for the Weibull distribution, a plot of log(− log((̂(C)) against log C, i.e. of the type plotted in
figure 15.2, should be linear, and the proportional hazards assumption would merely alter the constant term
since, for ℎ(C) = \��(�C)�−1,

log(− log(((C)) = log \ + log �� + � log C.

Testing for the presence of a constant of proportionality in the proportional hazards assumption amounts to
testing the value of \ with respect to unity. If the confidence limits in table 15.2 enclose 1, this can be taken
as suggesting equality of the two hazard functions, and hence equality of the two distributions, since equal
hazards implies equal distributions. The &"� statistic given in table 15.2 can be used in a chi-square test
with one degree of freedom for equality of distributions, and it arises by considering the 2 by 2 contingency
tables at each distinct time point C 9 of the following type.

Died Survived Total
Group A 3 9 � = 9 � − 3 9 � = 9 �
Group B 3 9� = 9� − 3 9� = 9�
Total 3 9 = 9 − 3 9 = 9

Here the total number at risk = 9 at time C 9 also includes subjects subsequently censored, while the numbers
3 9 � and 3 9� actually dying can be used to estimate expectations and variances such as

� (3 9 �) = = 9 �3 9/= 9

+ (3 9 �) =
3 9 (= 9 − 3 9)= 9 �= 9�

=2
9 (= 9 − 1)

.

Now, using the sums

$� =

∑
3 9 �

�� =

∑
� (3 9 �)

+� =

∑
+ (3 9 �)

as in the Mantel-Haenszel test, the log rank statistic can be calculated as

&"� =
($� − ��)2

+�
.

Clearly, the graphical test, the value of \, the 95% confidence range, and the chi-square test with one degree
of freedom support the assumption of a Weibull distribution with proportional hazards in this case. The
advanced technique for plotting survival analysis data is described on page 262.

15.4 Survival analysis using generalized linear models

Many survival models can be fitted to = uncensored and < right censored survival times with associated
explanatory variables using the GLM technique from linfit, gcfit in mode 4, or simstat. For instance, the
simplified interface allows you to read in data for the covariates, G, the variable H which can be either 1 for

258 SimFIT reference manual

right-censoring or 0 for failure, together with the times C in order to fit survival models. With a density 5 (C),
survivor function ((C) = 1 − � (C) and hazard function ℎ(C) = 5 (C)/((C) a proportional hazards model is
assumed for C ≥ 0 with

ℎ(C8) = _(C8) exp(
∑
9

V 9G8 9)

= _(C8) exp(V) G8)

Λ(C) =
∫ C

0

_(D) 3D

5 (C) = _(C) exp(V) G − Λ(C) exp(V) G))
((C) = exp(−Λ(C) exp(V) G)) .

15.4.1 The exponential survival model

The exponential model has constant hazard and is particularly easy to fit, since

[= V) G

5 (C) = exp([− C exp([))
� (C) = 1 − exp(−C exp([))
_(C) = 1

Λ(C) = C
ℎ(C) = exp([)

and � (C) = exp(−[),

so this simply involves fitting a GLM model with Poisson error type, a log link, and a calculated offset
of log(C). The selection of a Poisson error type, the log link and the calculation of offsets are all done
automatically by the simplified interface from the data provided, as will be appreciated on fitting the test file
cox.tf1. It should be emphasized that the values for H in the simplified GLM procedure for survival analysis
must be either H = 0 for failure or H = 1 for right censoring, and the actual time for failure C must be supplied
paired with the H values. Internally, the SimFIT simplified GLM interface reverses the H values to define the
Poisson variables and uses the C values to calculate offsets automatically. Users who wish to use the advanced
GLM interface for survival analysis must be careful to declare the Poisson variables correctly and provide the
appropriate offsets as offset vectors. Results from the analysis of cox.tf1 are shown in table 15.3.

15.4.2 The Weibull survival model

Weibull survival is similarly easy to fit, but is much more versatile than the exponential model on account of
the extra shape parameter U as in the following equations.

5 (C) = UCU−1 exp([− CU exp([))
� (C) = 1 − exp(−C exp([))
_(C) = UCU−1

Λ(C) = CU

ℎ(C) = UCU−1 exp([)
� (C) = Γ(1 + 1/U) exp(−[/U) .

However, this time, the offset is U log(C), where U has to be estimated iteratively and the covariance matrix
subsequently adjusted to allow for the extra parameter U that has been estimated. The iteration to estimate U
and covariance matrix adjustments are done automatically by the SimFIT simplified GLM interface, and the
deviance is also adjusted by a term −2= log Û.

Survival analysis 259

Model: exponential survival

Number of parameters = 4, Rank = 4, Number of points = 33, NDOF = 29

Parameter Value 95% conf. limits Std.error p

Constant 5.150 6.201 4.098 0.5142 0.0000

B(1) 0.4818 0.1146 0.849 0.1795 0.0119

B(2) 1.87 0.374 3.367 0.7317 0.0161

B(3) 0.3278 0.831 0.1754 0.2460 0.1931 **
Deviance = 38.55, A = 1.0

Model: Weibull survival

Number of parameters = 4, Rank = 4, Number of points = 33, NDOF = 29

Parameter Value 95% conf. limits Std.error p

Constant 5.041 6.182 3.899 0.558 0.0000

B(1) 0.4761 0.1079 0.8443 0.18 0.0131

B(2) 1.841 0.3382 3.344 0.7349 0.0181

B(3) 0.3244 0.8286 0.1798 0.2465 0.1985 **
Alpha 0.9777 0.889 1.066 0.04336 0.0000

Deviance = 37.06

Deviance 2n*log[alpha] = 38.55

Model: Cox proportional hazards

Number of parameters = 3, Number of points = 33, NDOF = 30

Parameter Value 95% conf. limits Std.error p

B(1) 0.7325 0.2483 1.217 0.2371 0.0043

B(2) 2.756 0.7313 4.78 0.9913 0.0093

B(3) 0.5792 1.188 0.02962 0.2981 0.0615 *
Deviance = 131.5

Table 15.3: GLM survival analysis

15.4.3 The extreme value survival model

Extreme value survival is defined by

5 (C) = U exp(UC) exp([− exp(UC + [))

which is easily fitted, as it is transformed by D = exp(C) into Weibull form, and so can be fitted as a Weibull
model using C instead of log(C) as offset. However it is not so useful as a model since the hazard increases
exponentially and the density is skewed to the left.

15.4.4 The Cox proportional hazards model

This model assumes an arbitrary baseline hazard function _0 (C) so that the hazard function is

ℎ(C) = _0 (C) exp([) .

It should first be noted that Cox regression techniques may often yield slightly different parameter estimates,
as these will often depend on the starting estimates, and also since there are alternative procedures for allowing
for ties in the data. In order to allow for Cox’s exact treatment of ties in the data, i.e., more than one failure or
censoring at each time point, this model is fitted by the SimFIT GLM techniques after first calculating the risk
sets at failure times C8 , that is, the sets of subjects that fail or are censored at time C8 plus those who survive
beyond time C8 . Then the model is fitted using the technique for conditional logistic analysis of stratified data
(page 5.5). The model does not involve calculating an explicit constant as that is subsumed into the arbitrary
baseline function. However, the model can accommodate strata in two ways. With just a few strata, dummy

260 SimFIT reference manual

indicator variables can be defined as in test files cox.tf2 and cox.tf3 but, with large numbers of strata, data
should be prepared as for cox.tf4.

As an example, consider the results shown in table 15.3 from fitting an exponential, Weibull, then Cox model
to data in the test file cox.tf1. In this case there is little improvement from fitting a Weibull model after
an exponential model, as shown by the deviances and half normal residuals plots. The deviances from the
full models (exponential, Weibull, extreme value) can be compared for goodness of fit, but they can not be
compared directly to the Cox deviance.

Survival analysis 261

15.5 Comprehensive Cox regression

Note that the Cox model can be completed by assuming a baseline hazard function, such as a piecewise
exponential function, and the advantage in doing this is so that the survivor functions for the strata can be
computed and the residuals can be used for goodness of fit analysis. Table 15.4 shows the results from analysis
of cox.tf4 using the comprehensive Cox regression procedure to calculate parameter scores, residuals, and
survivor functions, in addition to parameter estimates.

Cox regression: 1, Data set: 1, Offset included: No

Deviance = 1.09.25, Number of time points = 50

B(i) Estimate Score Lower95%cl Upper95%cl Std.error p

1 0.48926 0.00008156 1.423 0.4447 0.4643 0.2973 ***
2 0.16086 0.00002865 0.7239 1.046 0.4398 0.7162 ***
3 1.5749 0.0002992 0.5619 2.588 0.5036 0.0030

Table 15.4: Cox regression parameters

Also, figure 15.3 illustrates the plots of survivor functions.

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.25 0.50 0.75 1.00 1.25

Time

S
(t

)
=

 1
 -

 F
(t

)

Survivor Functions for Strata 1, 2, 3

Figure 15.3: Cox regression survivor functions

This data set has three covariates and three strata, hence there are three survivor functions, one for each stratum.
It is frequently beneficial to plot the survivor functions in order to visualize the differences in survival between

262 SimFIT reference manual

different sub-groups, i.e., strata, and in this case, the differences are clear. It should be pointed out that
parameter estimates using the comprehensive procedure may be slightly different from parameter estimates
obtained by the GLM procedure if there are ties in the data, as the Breslow approximation for ties may
sometimes be used by the comprehensive procedure, unlike the Cox exact method which is employed by the
GLM procedures.

Another advantage of the comprehensive procedure is that experienced users can input a vector of offsets, as
the assumed model is actually

_(C, G) = _0 (C) exp(V) G + l)

for parameters V, covariates G and offset l. Then the maximum likelihood estimates for V are obtained by
maximizing the Kalbfleisch and Prentice approximate marginal likelihood

! =

=3∏
8=1

exp(V) B8 + l8)
[∑;∈' (C(8)) exp(V) G; + l;)]38

where, =3 is the number of distinct failure times, B8 is the sum of the covariates of individuals observed to fail
at C (8) , and '(C (8)) is the set of individuals at risk just prior to C (8) .

In the case of multiple strata, the likelihood function is taken to be the product of such expressions, one for
each stratum. For example, with a strata, the marginal likelihood will be

! =

a∏
:=1

!: .

Once parameters have been estimated the survivor function exp(−�̂(C (8)) and residuals A (C;) are then calculated
using

�̂(C (8)) =
∑
C 9≤C8

(
3 9∑

;∈' (C(9)) exp(V̂) G; + l;)

)

A (C;) =�̂ (C;) exp(V̂) G; + l;),

where there are 3 9 failures at C 9 .

15.6 Plotting censored survival data

It is often necessary to display survival data for two groups in order to assess the relative hazards. For instance,
using gcfit in mode 3, or alternatively simstat, to analyze the test files survive.tf5 and survive.tf6, which
contain survival data for stage 3 (group A) and stage 4 (group B) tumors, yields the result that the samples
differ significantly according to the Mantel-Haenszel log rank test, as in table 15.5.

Results for the MantelHaenszel (logrank) test

H0: h_A(t) = h_B(t) (equal hazards)

H1: h_A(t) = theta*h_B(t) (proportional hazards)

QMH test statistic = 6.71

p = P(chisq. >= QMH) = 0.0096 Reject H0 at 1% slevel

Estimate for theta = 0.3786

95% confidence range = 0.1795, 0.7982

Table 15.5: Mantel-Haenzel log rank test

Survival analysis 263

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200 250 300 350

Kaplan-Meier Product-Limit Survivor Estimates

Days from start of trial

Ŝ
(t

)

Stage 3

Stage 4

+ indicates censored times

Figure 15.4: Plotting censored survival times

Figure 15.4 illustrates the Kaplan-Meier product limit survivor functions for these data using the advanced
survival analysis plotting mode.

In this plot, the survivor functions are extended to the end of the data range for both sets of data, even though
no deaths occurred at the extreme end of the time range. There are two features of this graph that should be
indicated. The first is that the coordinates supplied for plotting are in the form of a stair step type of survival
curve with steps and corners, so that alternative line types and colors can be used. Another point is that
censored observations are also plotted, in this case using plus signs as plotting symbols, which results in the
censored observations being identified as short vertical lines.

Attention should be drawn to the fact that, in survival analysis, SimFIT calculates the starting sample size
from the sum of all frequencies supplied in the data file either as right censored subjects or failures, so there
two possibilities.

1. The data file contains an entry for every case with an indication of either censorship or failure, i.e. every
frequency is reported as 1.

2. The data file contains results in compressed format, so that frequencies are provided for the numbers of
subjects censored or failing at sampling times.

In the first case all subjects remaining at the end of the observation period must be reported as censored
observations, while in the second case a final frequency must be supplied representing all subjects remaining
at the end as censored. View the test files survive.tf5 and survive.tf6 for further clarification.

Part 16

Areas, slopes, lag times and asymptotes

16.1 Introduction

It frequently happens that measurements of a response H as a function of time C are made in order to measure
an initial rate, a lag time, an asymptotic steady state rate, a horizontal asymptote or an area under the curve
(AUC). Examples could be the initial rate of an enzyme catalyzed reaction or the transport of labeled solute
out of loaded erythrocytes. Stated in equations we have the responses

H8 = 5 (C8) + n8 , 8 = 1, 2, . . . , =

given by a deterministic component plus a random error and it is wished to measure the following limiting
values

the initial rate =
35

3C
at C = 0

the asymptotic slope =
35

3C
as C → ∞

the final asymptote = 5 as C → ∞

the AUC =

∫ V

U

5 (C) 3C.

There are numerous ways to make such estimates in SimFIT and the method adopted depends critically on
the type of experiment. Choosing the wrong technique can lead to biased estimates, so you should be quite
clear which is the correct method for your particular requirements.

16.2 Models used by program inrate

The models used in this program are

51 = �C + �
52 = �C2 + �C + �
53 = U[1 − exp(−VC)] + �

54 =
+C=

 = + C= + �

55 = %C +& [1 − exp(−'C)] + �

and there are test files to illustrate each of these. It is usual to assume that 5 (C) is an increasing function of
C with 5 (0) = 0, which is easily arranged by suitably transforming any initial rate data. For instance, if you

Areas, slopes, lag times, and asymptotes 265

have measured efflux of an isotope from vesicles you would analyze the rate of appearance in the external
solute, that is, express your results as

5 (C) = initial counts - counts at time C

so that 5 (C) increase from zero at time C = 0. All you need to remember is that, for any constant ,

3

3C
{ − 5 (C)} = −35

3C
.

However it is sometimes difficult to know exactly when C = 0, e.g., if the experiment involves quenching, so
there exists an option to force the best fit curve to pass through the origin with some of the models if this is
essential. The models available will now be summarized.

1. 51: This is used when the data are very close to a straight line and it can only measure initial rates.

2. 52: This adds a quadratic correction and is used when the data suggest only a slight curvature. Like the
previous it can only estimate initial rates.

3. 53: This model is used when the data rapidly bend to a horizontal asymptote in an exponential manner.
It can be used to estimate initial rates and final horizontal asymptotes.

4. 54: This model can be used with = fixed (e.g., = = 1) for the Michaelis-Menten equation or with = varied
(the Hill equation). It is not used for initial rates but is sometimes better for estimating final horizontal
asymptotes than the previous model.

5. 55: This is the progress curve equation used in transient enzyme kinetics. It is used when the data have
an initial lag phase followed by an asymptotic final steady state. It is not used to estimate initial rates,
final horizontal asymptotes or AUC. However, it is very useful for experiments with cells or vesicles
which require a certain time before attaining a steady state, and where it is wished to estimate both the
length of lag phase and the final steady state rate.

To understand these issues, see what happens the test files. These are, models 51 and 52 with inrate.tf1,
model 53 with inrate.tf2, model 54 with inrate.tf3 and model 55 using inrate.tf4.

16.2.1 Estimating initial rates using inrate

A useful method to estimate initial rates when the true deterministic equation is unknown is to fit quadratic
�C2 + �C + �, in order to avoid the bias that would inevitably result from fitting a line to nonlinear data. Use
inrate to fit the test file inrate.tf1, and note that, when the model has been fitted, it also estimates the slope
at the origin. The reason for displaying the tangent in this way, as in figure 16.1, is to give you some idea
of what is involved in extrapolating the best fit curve to the origin, so that you will not accept the estimated
initial rate uncritically.

16.2.2 Lag times and steady states using inrate

Use inrate to fit %C +& [1 − exp (−'C)] + � to inrate.tf4 and observe that the asymptotic line is displayed
in addition to the tangent at the origin, as in figure 16.2. However, sometimes a burst phase is appropriate,
rather than lag phase, as figure 16.3.

16.3 Model-free fitting using compare

SimFIT can fit arbitrary models, where the main interest is data smoothing by model-free or nonparametric
techniques, rather than fitting mathematical models. For instance, polnom fits polynomials while calcurve

fits splines for calibration. For now we shall use compare to fit the test files compare.tf1 and compare.tf2

as in figure 16.4, where the aim is to compare two data sets by model free curve fitting using the automatic
spline knot placement technique described on page 270. Table 16.1 then summarizes the differences reported

266 SimFIT reference manual

10

20

30

40

0 2 4 6 8 10 12

Using INRATE to Determine Initial Rates

x

y
Data
Best Fit Quadratic
Tangent at x = 0

Figure 16.1: Fitting initial rates

0

2

4

6

8

10

0 2 4 6 8 10

Using INRATE to Fit Lag Kinetics

x

y

Data
Best Fit
Asymptote
Tangent at x = 0

Figure 16.2: Fitting lag times

for the two curves shown in figure 16.4. Program compare reads in one or two data sets, calculates means
and standard errors of means from replicates, fits constrained splines, and then compares the two fits. You can

Areas, slopes, lag times, and asymptotes 267

2

4

6

8

10

12

14

-4 -2 0 2 4 6 8 10

Using INRATE to Fit Burst Kinetics

x

y

Data
Best Fit
Asymptote
Tangent

Figure 16.3: Fitting burst kinetics

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6

Data Smoothing by Cubic Splines

X-values

Y
-v

al
u

es

Figure 16.4: Model free curve fitting

change a smoothing factor until the fit is acceptable and you can use the spline coefficients for calculations,
or store them for re-use by program spline. Using spline coefficients you can plot curve sections, estimate

268 SimFIT reference manual

Area under curve 1 (0.25 < x < 5.0) (A1) = 2.69

Area under curve 2 (0.3 < x < 5.5) (A2) = 2.84

For window number 1: 0.3 < x < 5.0, y_min = 0.0

Area under curve 1 inside window 1 (B1) = 2.69

Area under curve 2 inside window 1 (B2) = 2.63

Integral of |curve1 curve2| for the x_overlap (AA) = 0.262

For window number 2: 0.3 < x < 5.0, y_min = 0.028

Area under curve 1 inside window 2 (C1) = 2.56

Area under curve 2 inside window 2 (C2) = 2.50

Estimated percentage differences between the curves:

Over total range of x values: 100|A1 A2|/(A1 + A2) = 2.63 %

In window 1 (with a zero baseline): 100*AA/(B1 + B2) = 4.92 %

In window 2 (with y_min baseline): 100*AA/(C1 + C2) = 5.18 %

Table 16.1: Comparing two data sets

derivatives and areas, calculate the arc length and total absolute curvature of a curve, or characterize and
compare data sets which do not conform to known mathematical models. Comparing raw data sets with
profiles as in figure 16.4 is complicated by the fact that there may be different numbers of observations, and
observations may not have been made at the same G values. Program compare replaces a comparison of
two data sets by a comparison of two best-fit curves, chosen by data smoothing. Two windows are defined
by the data sets as well as a window of overlap, and these would be identical if both data sets had the same
G-range. Perhaps the absolute area between the two curves over the range where the data sets overlap �� is
the most useful parameter, which may be easier to interpret as a percentage. Note that, where data points or
fitted curves have negative H values, areas are replaced by areas with respect to a baseline in order to remove
ambiguity and makes areas positive over any window within the range set by the data extremes. The program
also reports the areas calculated by the trapezoidal method, but the calculations reported in table 16.1 are
based on numerical integration of the best-fit spline curves.

16.4 Estimating averages and AUC using deterministic equations

Observations H8 are often made at settings of a variable G8 as for a regression, but where the main aim is to
determine the area under a best fit theoretical curve �*� rather than any best fit parameters. Frequently also
H8 > 0, which is the case we now consider, so that there can be no ambiguity concerning the definition of the
area under the curve. One example would be to determine the average value 5average of a function 5 (G) for
U ≤ G ≤ V defined as

5average =
1

V − U

∫ V

U

5 (D) 3D.

Another example is motivated by the practise of fitting an exponential curve in order to determine an elimination
constant : by extrapolation, since ∫ ∞

0

exp(−:C) 3C = 1
:
.

Yet again, given any arbitrary function 6(G), where 6(G) ≥ 0 for U ≤ G ≤ V, a probability density function 5)
can always be constructed for a random variable) using

5) (C) =
6(C)∫ V

U

6(D) 3D

which can then be used to model residence times, etc. If the data do have a known form, then fitting an
appropriate equation is probably the best way to estimate slopes and areas. For instance, in pharmacokinetics

Areas, slopes, lag times, and asymptotes 269

you can use program exfit to fit sums of exponentials and also estimate areas over the data range and AUC by
extrapolation from zero to infinity since

∫ ∞

0

=∑
8=1

�8 exp(−:8C) 3C =
=∑
8=1

�8

:8

which is calculated as a derived parameter with associated standard error and confidence limits. Other
deterministic equations can be fitted using program qnfit since, after this program has fitted the requested
equation from the library or your own user-supplied model, you have the option to estimate slopes and areas
using the current best-fit curve.

16.5 Estimating AUC using average

The main objection to using a deterministic equation to estimate the �*� stems from the fact that, if a badly
fitting model is fitted, biased estimates for the areas will result. For this reason, it is frequently better to
consider the observations H8 , or the average value of the observations if there are replicates, as knots with
coordinates G8 , H8 defining a linear piecewise spline function. This can then be used to calculate the area for
any sub range 0, 1 where � ≤ 0 ≤ 1 ≤ �.

To practise, read average.tf1 into program average and create a plot like figure 16.5. Another use for the

0

2

4

6

8

10

0 5 10 15

Trapezoidal Area Estimation

x-values

y-
va

lu
es

Threshold

Figure 16.5: Trapezoidal method for areas/thresholds

trapezoidal technique is to calculate areas above or below a baseline, or fractions of the G range above and
below a threshold, for example, to record the fraction of a certain time interval that a patients blood pressure
was above a baseline value. Note that, in figure 16.5, the base line was set at H = 3.5, and program average

calculates the points of intersection of the horizontal threshold with the linear spline in order to work out
fractions of the G range above and below the baseline threshold. For further versatility, you can select the end
points of interest, but of course it is not possible to extrapolate beyond the data range to estimate �*� from
zero to infinity.

Part 17

Spline smoothing

17.1 Introduction

It often happens that a mathematical model is not available for a given data set because of one of these reasons.

❏ The data are too sparse or noisy to justify deterministic model fitting.

❏ The fundamental processes involved in generating the data set are unknown.

❏ The mathematical description of the data is too complex to warrant model fitting.

❏ The error structure of the data is unknown, so maximum likelihood cannot be invoked.

❏ The users merely want a smooth representation of the data to display trends, calculate derivatives, or
areas, or to use as a standard curve to predict G given H.

The traditional method to model such situations was to fit a polynomial

5 (G) = 00 + 01G + 02G
2 + · · · + 0=G=,

by weighted least squares, where the degree = was adjusted to obtain optimum fit. However, such a procedure
is seldom adopted nowadays because of the realization that polynomials are too flexible, allowing over-fit, and
because polynomials cannot fit the horizontal asymptotes that are often encountered in experimental data, e.g.
growth curves, or dose response curves. Because of these restrictions, polynomials are only used in situations
where data sets are monotonic and without horizontal asymptotes, and only local modeling is anticipated,
with no expectation of meaningful extrapolation beyond the limits of the data.

Where such model free fitting is required, then simple deterministic models, such as the exponential or logistic
models, can often be useful. However, here the problem of systematic bias can be encountered, where the
fixed curve shape of the simple model can lead to meaningless extrapolation or prediction. To circumvent this
problem, piecewise cubic splines can be used, where a certain number of knot positions are prescribed and,
between the knot positions, cubic polynomials are fitted, one between each knot, with the desirable property of
identical function and derivative value at the knots. Here again it is necessary to impose additional constraints
on the splines and knot placements, otherwise under or over fitting can easily result, particularly when the
splines attempt to fit outliers leading to undulating best fit curves.

SimFIT allows users to fit one of four types of spline curve.

1. User-defined fixed knots

2. Automatically calculated knots

3. In between knots: smoothing factor input

Spline smoothing 271

4. In between knots: smoothing factor by generalized cross validation

Given = data values G, H, B and m knots, then each type of spline curve fitting technique minimizes an objective
function involving the weighted sum of squares,((& given by

,((& =

=∑
8=1

{
H8 − 5 (G8)

B8

}2

where 5 (C) is the spline curve defined piecewise between the < knots, but each type of spline curve has
advantages and limitations, which will be discussed after dealing with the subject of replicates. All G, H values
must be supplied, and the B values should either be all equal to 1 for unweighted fitting, or equal to the standard
deviation of H otherwise (see page 29).

It frequently happens that data sets contain replicates and, to avoid confusion, SimFIT automatically com-
presses data sets with replicates before fitting the splines, but then reports residuals and other goodness of
fit criteria in terms of the full data set. If there are groups of replicates, then the sample standard deviations
within groups of replicates are calculated interactively for weighting, and the B values supplied are used for
single observations. Suppose that there are = observations but # distinct G values G 9 and at each of these there
are : 9 replicates, where all of the replicates have the same B value B 9 at G = G 9 for weighting. Then we would
have

= =

#∑
9=1

: 9

H̄ 9 = (1/: 9)
: 9+;−1∑
8=;

H8

,((&# =

#∑
9=1

{
H̄ 9 − 5 (G 9)
B 9/: 9

}2

where ; is the index of G in the full data set when rearranged into nondecreasing order where a group of
replicates start. So, whether users input all = replicates with B = 1 or the standard deviation of H, or just
mean values with B 9 equal to the standard errors of the means H̄ 9 , the same spline will result. However,
incorrect goodness of fit statistics, such as the runs and signs tests or half normal residuals plots, will result if
means are supplied instead of all replicates.

17.2 User-defined fixed knots

Here the user must specify the number of interior knots and their spacing in such a way that genuine dips,
spikes or asymptotes in the data can be modeled by clustering knots appropriately. Four knots are added
automatically to correspond to the smallest G value, and four more are also added to equal the largest G value.
If the data are monotonic and have no such spike features, then equal spacing can be resorted to, so users
only need to specify the actual number of interior knots. The programs calcurve and csafit offer users both
of these techniques, as knot values can be provided after the termination of the data values in the data file,
while program spline provides the best interface for interactive spline fitting. Fixed knot splines have the
advantage that the effect of the number of knots on the best fit curve is fully intuitive; too few knots lead to
under-fit, while too many knots cause over-fit. Figure 17.1 illustrates the effect of changing the number of
equally spaced knots when fitting the data in compare.tf1 by this technique. The vertical bars at the knot
positions were generated by replacing the default symbols (dots) by narrow (size 0.05) solid bar-chart type
bars. It is clear that the the fit with one interior knot is quite sufficient to account for the shape of the data,
while using four gives a better fit at the expense of excessive undulation. To overcome this limitation of fixed
knots SimFIT provides the facility to provide knots that can be placed in specified patterns and, to illustrate
this, figure 17.2 illustrates several aspects of the fit to e02baf.tf1. The left hand figure shows the result when
spline knots were input from the spline file e02baf.tf2, while the right hand figure shows how program

272 SimFIT reference manual

0

1

0 1 2 3 4 5

X

Y

One Interior Knot

0

1

0 1 2 3 4 5

X

Y

Four Interior Knots

Figure 17.1: Splines: equally spaced interior knots

0

2

4

6

8

10

0 2 4 6 8 10 12

X

Y

User Defined Interior Knots

0.0

2.5

5.0

7.5

10.0

0.00 1.00 2.00 3.00

X

Y

Calculating X Given Y

Knot 1

Knot 2

Figure 17.2: Splines: user spaced interior knots

spline can be used to predict - given values of . . Users simply specify a range of - within the range set by
the data, and a value of . , whereupon the intersection of the dashed horizontal line at the the specified value
of . is calculated numerically, and projected down to the - value predicted by the vertical dashed line. Note
that, after fitting e02baf.tf1 using knots defined in e02baf.tf2, the best fit spline curve was saved to the
file spline.tf1 which can then always be input again into program spline to use as a deterministic equation
between the limits set by the data in e02baf.tf1.

17.3 Automatically calculated knots

Here the knots are generated automatically and the spline is calculated to minimize

[=

<−5∑
8=5

X2
8 ,

where X8 is the discontinuity jump in the third derivative of the spline at the interior knot 8, subject to the
constraint

0 ≤ ,((&# ≤ �

where � is user-specified. If � is too large there will be under-fit and best fit curve will be unsatisfactory,
but if � is too small there will be over-fit. For example, setting � = 0 will lead to an interpolating spline

Spline smoothing 273

passing through every point, while choosing a large � value will produce a best-fit cubic polynomial with
[= 0 and no internal knots. In weighted least squares fitting,((& will often be approximately a chi-square
variable with degrees of freedom equal to the number of experimental points minus the number of parameters
fitted, so choosing a value for � ≈ # will often be a good place to start. The programs compare and spline

provide extensive options for fitting splines of this type. Figure 17.3, for example, illustrates the effect of

-2

0

2

4

6

8

0 2 4 6 8

X

Y

F = 1.0

-2

0

2

4

6

8

0 2 4 6 8

X

Y

F = 0.5

-2

0

2

4

6

8

0 2 4 6 8

X

Y

F = 0.1

Figure 17.3: Splines: automatically spaced interior knots

fitting e02bef.tf1 using smoothing factors of 1.0, 0.5, and 0.1.

Table 17.1 presents typical results from the fitting illustrated in figure 17.3.

From spline fit with 1 automatic knots, WSSQ = 1.0

From spline fit with 5 automatic knots, WSSQ = 0.5

From spline fit with 8 automatic knots, WSSQ = 0.1

Spline knots and coefficients from fitting the file:

C:\simfit5\temp\e02bef.tf1

Xvalue spline 1st.deriv. 2nd.deriv. 3rd.deriv.

2.0 2.125 1.462 2.896 12.43

4.0 4.474 0.5562 1.905 5.211

6.0 5.224 1.058 0.2932 1.912

A B Area s=Arclength Integral|K|ds (In degrees)

0.0 8.0 30.92 12.8 4.569 261.8

2.0 6.0 16.87 5.574 3.715 212.9

3.0 5.0 8.97 2.235 2.316 132.7

Table 17.1: Spline calculations

17.4 In between knots: d input

Here there is one knot between each distinct G value and the spline 5 (G) is calculated as that which minimizes

,((&# + d
∫ ∞

−∞
(5 ′′(G))2 3G.

274 SimFIT reference manual

As with the automatically generated knots, a large value of the smoothing parameter d gives under-fit while
d = 0 generates an interpolating spline, so assigning d controls the overall fit and smoothness. As splines are
linear in parameters then a matrix � can be found such that

Ĥ = �H̄

and the degrees of freedom a can be defined in terms of the leverages ℎ88 in the usual way as

a = Trace(� − �)

=

#∑
8=1

(1 − ℎ88) .

This leads to two ways to specify the spline coefficients which depend on d being fixed by the user or estimated
in some way.

The spline can be fixed by specifying the value of d. To use this option, the value of d is input interactively,
and the resulting fit inspected graphically until it is acceptable. This way users have complete control over
the amount of smoothing required.

17.5 In between knots: d by generalized cross validation

Alternatively, d can be estimated by minimizing the generalized cross validation ��+ , where

��+ = #

(∑#
8=1 A

2
8

(∑#
8=1 (1 − ℎ88))2

)
.

As this leads to a unique estimate for d, users have no control if the spline leads to either over-smoothing or
over-fitting.

17.6 Using splines

As splines are defined by knots and coefficients rather than equations, special techniques are required to re-use
best fit spline functions. SimFIT provides procedures to save spline parameters to a file so that they can be
re-used to restore previously fitted spline functions. This is particularly useful when a best-fit spline is to be
re-used as reference function or standard curve, as in calibration.

Input a spline file such as spline.tf1 into program spline to appreciate how to re-use a best fit spline stored
from spline, calcurve, or compare, to estimate derivatives, areas, curvatures and arc lengths.

SimFIT spline files of length : ≥ 12, such as spline.tf1, have (: + 4)/2 knots, then (: − 4)/2 coefficients
as follows.

• There must be at least 8 nondecreasing knots

• The first 4 of these knots must all be equal to the lowest G value

• The next (: − 12)/2 must be the non-decreasing interior knots

• The next 4 of these knots must all be equal to the highest G value

• Then there must be (: − 4)/2 spline coefficients 28

Spline smoothing 275

With =̄ spline intervals (i.e. one greater than the number of interior knots),_1, _2, _3, _4 are knots corresponding
to the lowest G value, _5, _6, . . . , _=̄+3 are interior knots, while _=̄+4, _=̄+5, _=̄+6, _=̄+7 correspond to the largest
G value. Then the best-fit spline 5 (G) is

5 (G) =
=̄+3∑
8=1

28�8 (G) .

where the 28 are the spline coefficients, and the �8 (G) are normalized B-splines of degree 3 defined on the
knots _8 , _8+1, . . . , _8+4. When the knots and coefficients are defined in this way, the function H = 5 (G) can
be used as a model-free best fit curve to obtain point estimates for the derivatives H′, H′′, H′′′, as well as the
area �, arc length !, or total absolute curvature over a range U ≤ G ≤ V, defined as

� =

∫ V

U

H 3G

! =

∫ V

U

√
1 + H′2 3G

 =

∫ !

0

|H′′ |
(1 + H′2) 3

2

3;

=

∫ V

U

|H′′ |
1 + H′2

3G

which are valuable parameters to use when comparing data sets. For instance, the arc length B provides a
valuable measure of the length of the fitted curve, while the total absolute curvature indicates the total angle
turned by the tangent to the curve and indicates the amount of oscillatory behavior.

17.7 Advice on which type of spline to use

The following recommendations indicate which SimFIT programs to use for spline smoothing. However, as
splines can easily lead to over-smoothing or over-fitting, best-fit curves should always be inspected before
being accepted.

❏ User-defined fixed knots.
calcurve provides a comprehensive interface for calibration as users can alter knot density and position
in addition to data transformation to generate a satisfactory standard curve.

❏ Automatically calculated knots.
compare uses this type of spline fitting to create smoothed representations of two data sets in order to
compare the two samples for similarities and differences.

❏ In between knots: smoothing factor input.
spline provides this option which is probably the easiest way to create an acceptable smoothed approx-
imation to a given noisy data set.

❏ In between knots: smoothing factor by generalized cross validation.
spline can use this technique for calibration, data smoothing, and estimation of derivatives, areas, and
curvatures. It has the advantage of being fully automatic, as the knots are fixed and the smoothing
factor is estimated and not under user control, but can be prone to over-smoothing or over-fitting.

Part 18

Statistical calculations

18.1 Introduction

In data analysis it is frequently necessary to compare theoretical with observed distributions, or perform
calculations rather than tests, as discussed in this section.

18.2 Statistical power and sample size

Experiments often generate random samples from a population so that parameters estimated from the samples
can be use to test hypotheses about the population parameters. So it is natural to investigate the relationship
between sample size and the absolute precision of the estimates, given the expectation � (-) and variance
f2 (-) of the random variable. For a single observation, i.e., = = 1, the Chebyshev inequality

% (|- − � (-) | < n) ≥ 1 − f2 (-)
n2

with n > 0, indicates that, for an unspecified distribution,

% (|- − � (-) | < 4.5f(-)) ≥ 0.95,

and % (|- − � (-) | < 10f(-)) ≥ 0.99,

but, for an assumed normal distribution,

% (|- − � (-) | < 1.96f(-)) ≥ 0.95,

and % (|- − � (-) | < 2.58f(-)) ≥ 0.99.

However, provided that � (-) ≠ 0, it is more useful to formulate the Chebyshev inequality in terms of the
relative precision, that is, for X > 0

%

(����- − � (-)
� (-)

���� < X
)
≥ 1 − 1

X2

f2 (-)
�2 (-)

.

Now, for an unspecified distribution,

%

(����- − � (-)
� (-)

���� < 4.5
f(-)
|� (-) |

)
≥ 0.95,

and %

(���� - − � (-)
� (-)

���� < 10
f(-)
|� (-) |

)
≥ 0.99,

Statistical calculations 277

but, for an assumed normal distribution,

%

(����- − � (-)
� (-)

���� < 1.96
f(-)
|� (-) |

)
≥ 0.95,

and %

(����- − � (-)
� (-)

���� < 2.58
f(-)
|� (-) |

)
≥ 0.99.

So, for high precision, the coefficient of variation 2E%

2E% = 100
f(-)
|� (-) |

must be as small as possible, while the signal-to-noise ratio (# (-)

(# (-) = |� (-) |
f(-)

must be as large as possible. For instance, for the single measurement to be within 10% of the mean 95% of
the time requires (# ≥ 45 for an arbitrary distribution, or (# ≥ 20 for a normal distribution. A particularly
valuable application of these results concerns the way that the signal-to-noise ratio of sample means depends
on the sample size =. From

-̄ =
1
=

=∑
8=1

G8 ,

+0A (-̄) = 1
=2

=∑
8=1

+0A (-)

=
1
=
f2 (-),

it follows that, for arbitrary distributions, the signal-to-noise ratio of the sample mean (# (-̄) is given by
(# (-̄) =

√
=(# (-), that is

(# (-̄) =
√
=
� (-)
f(-) .

This result, known as the law of
√
=, implies that the signal-to-noise ratio of the sample mean as an estimate

of the population mean increases as
√
=, so that the the relative error in estimating the mean decreases like

1/
√
=.

If 5 (G) is the density function for a random variable - , then the null and alternative hypotheses can sometimes
be expressed as

�0 : 5 (G) = 50(G)
�1 : 5 (G) = 51(G)

while the error sizes, given a critical region �, are

U = %�0
(reject �0) (i.e., the Type I error)

=

∫
�

50 (G) 3G

V = %�1
(accept �0) (i.e., the Type II error)

= 1 −
∫
�

51 (G) 3G.

Usually U is referred to as the significance level, V is the operating characteristic, while 1 − V is the power,
frequently expressed as a percentage, i.e., 100(1 − V)%, and these will both alter as the critical region is

278 SimFIT reference manual

0.00

0.75

1.50

2.25

-2.00 -1.00 0.00 1.00 2.00

Distribution of the mean as a function of sample size

x̄

pd
f

n = 2

n = 4

n = 8

n = 16

n = 32

0.00

0.20

0.40

0.60

0.80

1.00

-1.00 0.00 1.00 2.00

Significance Level and Power

x̄

pd
f

αβ

H0 H1

C = 0.4

Figure 18.1: Significance level and power

changed. Figure 18.1 illustrates the concepts of signal-to-noise ratio, significance level, and power. The
family of curves on the left are the probability density functions for the distribution of the sample mean Ḡ from
a normal distribution with mean ` = 0 and variance f2 = 1. The curves on the right illustrate the significance
level U, and operating characteristic V for the null and alternative hypotheses

�0 : ` = 0, f2
= 4

�1 : ` = 1, f2
= 4

for a test using the sample mean from a sample of size = = 25 from a normal distribution, with a critical point
� = 0.4. The significance level is the area under the curve for �0 to the right of the critical point, while the
operating characteristic is the area under the curve for �1 to the left of the critical point. Clearly, increasing
the critical value � will decrease U and increase V, while increasing the sample size = will decrease both U
and V.

Often it is wished to predict power as a function of sample size, which can sometimes be done if distributions
50 (G) and 51(G) are assumed, necessary parameters are provided, the critical level is specified, and the test
procedure is defined. Essentially, given an implicit expression in : unknowns, this option solves for one given
the other : − 1, using iterative techniques. For instance, you might set U and V, then calculate the sample size
= required, or you could input U and = and estimate the power. Note that 1-tail tests can sometimes be selected
instead of 2-tail tests (e.g., by replacing /U/2 by /U in the appropriate formula) and also be very careful to
make the correct choice for supplying proportions, half-widths, absolute differences, theoretical parameters
or sample estimates, etc. A word of warning is required on the subject of calculating = required for a given
power. The values of = will usually prove to be very large, probably much larger than can be used. So, for
pilot studies and typical probing investigations, the sample sizes should be chosen according to cost, time,
availability of materials, past experience, and so on. Sample size calculations are only called for when Type
II errors may have serious consequences, as in clinical trials, so that large samples are justified. Of course,
the temptation to choose 1-tail instead of 2-tail tests, or use variance estimates that are too small, in order to
decrease the = values should be avoided.

18.2.1 Power calculations for 1 binomial sample

The calculations are based on the binomial test (page 152), the binomial distribution (page 417), and the normal
approximation to it for large samples and ? not close to 0 or 1, using the normal distribution (page 420). If
the theoretical binomial parameters ?0 and @0 = 1 − ?0 are not too close to 0 or 1 and it is wished to estimate

Statistical calculations 279

this with an error of at most X, then the sample size required is

= =

/2
U/2?0@0

X2
,

where %(/ > /U/2) = U/2,
or Φ(/U/2) = 1 − U/2,

which, for many purposes, can be approximated by = ≈ 1/X2. The power in a binomial or sign test can be
approximated, again if the sample estimates ?1 and @1 = 1 − ?1 are not too close to 0 or 1, by

1 − V = %

(
/ <

?1 − ?0√
?0@0/=

− /U/2
√
?1@1

?0@0

)
+ %

(
/ >

?1 − ?0√
?0@0/=

+ /U/2
√
?1@1

?0@0

)
.

18.2.2 Power calculations for 2 binomial samples

For two sample proportions ?1 and ?2 that are similar and not too close to 0 or 1, the sample size = and power
1 − V associated with a binomial test for �0 : ?01 = ?02 can be estimated using one of numerous methods
based upon normal approximations. For example

= =
(?1@1 + ?2@2) (/U/2 + /V)2

(?1 − ?2)2
,

/V =

√
=(?1 − ?2)2

?1@1 + ?2@2

− /U/2,

V = %(/ ≥ /V),
1 − V = Φ(/V) .

Power for the Fisher exact test (page 143) with sample size = used to estimate both ?1 and ?2, as for the
binomial test, can be calculated using

1 − V = 1 −
2=∑
A=0

∑
�A

(
=

G

) (
=

A − G

)
,

where A = total successes,

G = number of successes in the group,

and �A = the critical region.

This can be inverted by SimFIT to estimate =, but unfortunately the sample sizes required may be too large
to implement by the normal procedure of enumerating probabilities for all 2 by 2 contingency tables with
consistent marginals.

18.2.3 Power calculations for 1 normal sample

The calculations are based upon the confidence limit formula for the population mean ` from a sample of size
=, using the sample mean Ḡ, sample variance B2 and the C distribution (page 422), as follows

%

(
Ḡ − CU/2,=−1

B
√
=
≤ ` ≤ Ḡ + CU/2,=−1

B
√
=

)
= 1 − U,

where Ḡ =
=∑
8=1

G8/=,

B2 =

=∑
8=1

(G8 − Ḡ)2/(= − 1),

%(C ≤ CU/2,a) = 1 − U/2,
and a = = − 1.

280 SimFIT reference manual

You input the sample variance, which should be calculated using a sample size comparable to those predicted
above. Power calculations can be done using the half width ℎ = CU/2,=−1B/

√
=, or using the absolute difference

X between the population mean and the null hypothesis mean as argument. The following options are available:

❑ To calculate the sample size necessary to estimate the true mean within a half width ℎ

= =

B2C2
U/2,=−1

ℎ2
;

❑ To calculate the sample size necessary for an absolute difference X

= =
B2

X2
(CU/2,=−1 + CV,=−1)2; or

❑ To estimate the power

CV,=−1 =
X√
B2/=

− CU/2,=−1 .

It should be noted that the sample size occurs in the degrees of freedom for the C distribution, necessitating an
iterative solution to estimate =.

18.2.4 Power calculations for 2 normal samples

These calculations are based upon the same type of C test approach (page 136) as just described for 1 normal
sample, except that the pooled variance B2? should be input as the estimate for the common variance f2, i.e.,

B2? =

=G∑
8=1

(G8 − Ḡ)2 +
=H∑
9=1

(H 9 − H̄)2

=G + =H − 2

where - has sample size =G and . has sample size =H . The following options are available:

❍ To calculate the sample size necessary to estimate the difference between the two population means
within a half width ℎ

= =

2B2?C
2
U/2,2=−2

ℎ2
;

❍ To calculate the sample size necessary to detect an absolute difference X between population means

= =
2B2?
X2

(CU/2,2=−2 + CV,2=−2)2; or

❍ To estimate the power

CV,2=−2 =
X√

2B2?/=
− CU/2,2=−2 .

The C test has maximum power when =G = =H but, if the two sample sizes are unequal, calculations based on
the the harmonic mean =ℎ should be used, i.e.,

=ℎ =
2=G=H
=G + =H

,

so that =H =
=ℎ=G

2=G − =ℎ
.

Statistical calculations 281

18.2.5 Power calculations for k normal samples

The calculations are based on the 1-way analysis of variance technique (page 161). Note that the SimFIT power
as a function of sample size procedure also allows you to plot power as a function of sample size (page 282),
which is particularly useful with ANOVA designs where the number of columns : can be of interest, in
addition to the number per sample =. The power calculation involves the � and non-central � distributions
(page 423) and you calculate the required = values by using graphical estimation to obtain starting estimates
for the iteration. If you choose a = value that is sufficient to make the power as a function on = plot cross the
critical power, the program then calculates the power for sample sizes adjacent to the intersection, which is of
use when studying : and = for ANOVA.

282 SimFIT reference manual

18.2.5.1 Plotting power as a function of sample size

It is important in the design of experiments to be able to estimate the sample size needed to detect a significant
effect. For such calculations you must specify all the parameters of interest except one, then calculate
the unknown parameter using numerical techniques. For example, the problem of deciding whether one
or more samples differ significantly is a problem in the Analysis of Variance, as long as the samples are
all normally distributed and with the same variance. You specify the known variance, f2, the minimum
detectable difference between means, Δ , the number of groups, :, the significance level, U, and the sample
size per group, =. Then, using nonlinear equations involving the � and noncentral � distributions, the power,
100(1 − V) can be calculated. It can be very confusing trying to understand the relationship between all
of these parameters so, in order to obtain an impression of how these factors alter the power, a graphical
technique is very useful, as in figure 18.2.

0

20

40

60

80

100

0 20 40 60 80

ANOVA (k = no. groups, n = no. per group)

Sample Size (n)

P
ow

er
 (

%
)

k
=

2
k

=
4

k
=

8
k

=
16

k =
 32

2 = 1 (variance)
 = 1 (difference)

Figure 18.2: Power as a function of sample size

simstat was used to create this graph. The variance, significance level, minimum detectable difference and
number of groups were fixed, then power was plotted as a function of sample size. The ASCII text coordinate
files from several such plots were collected together into a library file to compose the joint plot using simplot.
Note that, if a power plot reaches the current power level of interest, the critical power level is plotted (80%
in the above plot) and the = values either side of the intersection point are displayed.

Statistical calculations 283

18.2.6 Power calculations for 1 and 2 variances

The calculations depend on the fact that, for a sample of size = from a normal distribution with true variance
f2

0
, the function j2 defined as

j2
=

(= − 1)B2

f2
0

is distributed as a chi-square variable (page 423) with = − 1 degrees of freedom. Also, given variance
estimates B2G and B2H obtained with sample sizes =G and =H from the same normal distribution, the variance
ratio � (page 136) defined as

� = max

(
B2G

B2H
,
B2H

B2G

)

is distributed as an � variable (page 423) with either =G , =H or =H , =G degrees of freedom. If possible =G
should equal =H , of course. The 1-tailed options available are:

❑ �0 : f2 ≤ f2
0

against �1 : f2 > f2
0

1 − V = %(j2 ≥ j2
U,=−1f

2
0 /B2);

❑ �0 : f2 ≥ f2
0

against �1 : f2 < f2
0

1 − V = %(j2 ≤ j2
1−U,=−1f

2
0 /B2); or

❑ Rearranging the samples, if necessary, so that B2G > B
2
H then

�0 : f2
G = f

2
H against �1 : f2

G ≠ f
2
H

/V =

√
2<(=H − 2)
< + 1

log

(
B2G

B2H

)
− /U

where < =
=G − 1
=H − 1

.

18.2.7 Power calculations for 1 and 2 correlations

The correlation coefficient A (page 190) calculated from a normally distributed sample of size = has a standard
error

BA =

√
1 − A2

= − 2
and is an estimator of the population correlation d. A test for zero correlation, i.e., �0 : d = 0, can be based
on the statistics

C =
A

BA
,

or � =
1 + |A |
1 − |A | ,

where C has a C distribution with = − 2 degrees of freedom, and � has an � distribution with = − 2 and = − 2
degrees of freedom. The Fisher I transform and standard error BI , defined as

I = tanh−1 A,

=
1
2

log

(
1 + A
1 − A

)
,

BI =

√
1

= − 3
,

284 SimFIT reference manual

are also used to test �0 : d = d0, by calculating the unit normal deviate

/ =
I − Z0

BI

where Z0 = tanh−1 d0. The power is calculated using the critical value

A2 =

√√√
C2
U/2,=−2

C2
U/2,=−2

+ = − 2

which leads to the transform I2 = tanh−1 A2 and

/V = (I − I2)
√
= − 3

then the sample size required to reject �0 : d = 0, when actually d is nonzero, can be calculated using

= =

(
/V + /U/2

Z0

)2

+ 3.

For two samples, - of size =G and . of size =H , where it is desired to test �0 : dG = dH , the appropriate /
statistic is

/ =
IG − IH
BGH

where BGH =

√
1

=G − 3
+ 1
=H − 3

and the power and sample size are calculated from

/V =
|IG − IH |
BGH

− /U/2,

and = = 2

(
/U/2 + /V
IG − IH

)2

+ 3.

18.2.8 Power calculations for a chi-square test

The calculations are based on the chi-square test (page 143) for either a contingency table, or sets of observed
and expected frequencies. However, irrespective of whether the test is to be performed on a contingency
table or on samples of observed and expected frequencies, the null hypotheses can be stated in terms of :
probabilities as
�0 : the probabilities are ?0 (8) , for 8 = 1, 2, . . . , :,
�1 : the probabilities are ?1 (8) , for 8 = 1, 2, . . . , :.
The power can then be estimated using the non-central chi-square distribution with non-centrality parameter
_ and a degrees of freedom given by

_ = =&,

where & =

:∑
8=1

(?0(8) − ?1 (8))2

?0(8)
,

= = total sample size,

and a = : − 1 − no. of parameters estimated.

You can either input the & values directly, or read in vectors of observed and expected frequencies. If you do
input frequencies 58 ≥ 0 they will be transformed internally into probabilities, i.e., the frequencies only have
to be positive integers as they are normalized to sum unity using

?8 = 58
/ :∑
8=1

58 .

Statistical calculations 285

In the case of contingency table data with A rows and 2 columns, the probabilities are calculated from the
marginals ?8 9 = ?(8)?(9) in the usual way, so you must input : = A2, and the number of parameters estimated
as A + 2 − 2, so that a = (A − 1) (2 − 1).

18.3 Parameter confidence limits

You choose the distribution required and the significance level of interest, then input the estimates and
sample sizes required. Note that the confidence intervals may be asymmetric for those distributions (Poisson,
binomial) where exact methods are used, not calculations based on the normal approximation.

18.3.1 Confidence limits for a Poisson parameter

Given a sample G1, G2, . . . , G= of = non-negative integers from a Poisson distribution with parameter _
(page 419), the parameter estimate _̂, i.e., the sample mean, and confidence limits _1, _2 are calculated as
follows

 =

=∑
8=1

G8 ,

_̂ = /=,

_1 =
1
2=
j2

2 ,U/2,

_2 =
1
2=
j2

2 +2,1−U/2,

so that exp(−=_1)
∞∑
G=

(=_1) G
G!

=
U

2
,

exp(−=_2)
 ∑
G=0

(=_2) G
G!

=
U

2
,

and %(_1 ≤ _ ≤ _2) = 1 − U,

using the lower tail critical points of the chi-square distribution (page 423). The following very approximate
rule-of-thumb can be used to get a quick idea of the range of a Poisson mean _ given a single count G and
exploiting the fact that the Poisson variance equals the mean

%(G − 2
√
G ≤ _ ≤ G + 2

√
G) ≈ 0.95.

18.3.2 Confidence limits for a binomial parameter

For : successes in = trials, the binomial parameter estimate (page 417) ?̂ is :/= and three methods are used
to calculate confidence limits ?1 and ?2 so that

=∑
G=:

(
=

G

)
?G1 (1 − ?1)=−G = U/2,

and
:∑
G=0

(
=

G

)
?G2 (1 − ?2)=−G = U/2.

❍ If max(:, =− :) < 106, the lower tail probabilities of the beta distribution are used (page 424) as follows

?1 = V:,=−:+1,U/2 ,

and ?2 = V:+1,=−:,1−U/2 .

286 SimFIT reference manual

❍ If max(:, = − :) ≥ 106 and min(:, = − :) ≤ 1000, the Poisson approximation (page 419) with _ = =?

and the chi-square distribution (page 423) are used, leading to

?1 =
1
2=
j2

2:,U/2,

and ?2 =
1
2=
j2

2:+2,1−U/2 .

❍ If max(:, = − :) > 106 and min(:, = − :) > 1000, the normal approximation (page 420) with mean =?
and variance =?(1 − ?) is used, along with the lower tail normal deviates /1−U/2 and /U/2, to obtain
approximate confidence limits by solving

: − =?1√
=?1(1 − ?1)

= /1−U/2,

and
: − =?2√
=?2(1 − ?2)

= /U/2.

The following very approximate rule-of-thumb can be used to get a quick idea of the range of a binomial mean
=? given G and exploiting the fact that the binomial variance variance equals =?(1 − ?)

%(G − 2
√
G ≤ =? ≤ G + 2

√
G) ≈ 0.95.

18.3.3 Confidence limits for a normal mean and variance

If the sample mean is Ḡ, and the sample variance is B2, with a sample of size = from a normal distribution
(page 420) having mean ` and variance f2, the confidence limits are defined by

%(Ḡ − CU/2,=−1B/
√
= ≤ ` ≤ Ḡ + CU/2,=−1B/

√
=) = 1 − U,

and %((= − 1)B2/j2
U/2,=−1 ≤ f2 ≤ (= − 1)B2/j1−U/2,=−1) = 1 − U

where the upper tail probabilities of the C (page 422) and chi-square (page 423) distribution are used.

18.3.4 Confidence limits for a correlation coefficient

If a Pearson product-moment correlation coefficient A (page 190) is calculated from two samples of size = that
are jointly distributed as a bivariate normal distribution (page 421), the confidence limits for the population
parameter d are given by

%

(
A − A2
1 − AA2

≤ d ≤ A + A2
1 + AA2

)
= 1 − U,

where A2 =

√√√
C2
U/2,=−2

C2
U/2,=−2

+ = − 2
.

18.3.5 Confidence limits for trinomial parameters

If, in a trinomial distribution (page 418), the probability of category 8 is ?8 for 8 = 1, 2, 3, then the probability
% of observing =8 in category 8 in a sample of size # = =1 + =2 + =3 from a homogeneous population is given
by

% =
#!

=1!=2!=3!
?
=1

1
?
=2

2
?
=3

3

Statistical calculations 287

and the maximum likelihood estimates, of which only two are independent, are

?̂1 = =1/#,
?̂2 = =2/#,

and ?̂3 = 1 − ?̂1 − ?̂2.

The bivariate estimator is approximately normally distributed, when # is large, so that[
?̂1

?̂2

]
∼ "#2

([
?1

?2

]
,

[
?1(1 − ?1)/# −?1?2/#
−?1?2/# ?2(1 − ?2)/#

])

where "#2 signifies the bivariate normal distribution (page 421). Consequently

((?̂1 − ?1), (?̂2 − ?2))
[
?1 (1 − ?1)/# −?1?2/#
−?1?2/# ?2(1 − ?2)/#

]−1 (
?̂1 − ?1

?̂2 − ?2

)
∼ j2

2

and hence, with probability 95%,

(?̂1 − ?1)2

?1 (1 − ?1)
+ (?̂2 − ?2)2

?2(1 − ?2)
+ 2(?̂1 − ?1) (?̂2 − ?2)

(1 − ?1) (1 − ?2)
≤ (1 − ?1 − ?2)
(1 − ?1) (1 − ?2)

j2
2;0.05 .

Such inequalities define regions in the (?1, ?2) parameter space which can be examined for statistically
significant differences between ?8 (9) in samples from populations subjected to treatment 9 . Where regions
are clearly disjoint, parameters have been significantly affected by the treatments, as illustrated next.

18.3.5.1 Plotting trinomial parameter joint confidence regions

A useful rule of thumb to see if parameter estimates differ significantly is to check their approximate central
95% confidence regions. If the regions are disjoint it indicates that the parameters differ significantly and, in
fact, parameters can differ significantly even with limited overlap. If two or more parameters are estimated, it
is valuable to inspect the joint confidence regions defined by the estimated covariance matrix and appropriate
chi-square critical value. Consider, for example, figure 18.3 generated by the contour plotting function of
binomial. Data triples G, H, I can be any partitions, such as number of male, female or dead hatchlings from
a batch of eggs where it is hoped to determine a shift from equi-probable sexes. The contours are defined by

((?̂G − ?G), (?̂H − ?H))
[
?G (1 − ?G)/# −?G ?H/#
−?G ?H/# ?H (1 − ?H)/#

]−1 (
?̂G − ?G
?̂H − ?H

)
= j2

2:0.05

where # = G + H + I, ?̂G = G/# and ?̂H = H/# as discussed on page 286. When # = 20 the triples 9,9,2
and 7,11,2 cannot be distinguished, but when # = 200 the orbits are becoming elliptical and converging
to asymptotic values. By the time # = 600 the triples 210,330,60 and 270,270,60 can be seen to differ
significantly.

18.4 Robust analysis of one sample

Robust techniques are required when samples are contaminated by the presence of outliers, that is, observations
that are not typical of the underlying distribution. Such observations can be caused by experimental accidents,
such as pipetting enzyme aliquots twice into an assay instead of once, or by data recording mistakes, such
as entering a value with a misplaced decimal point into a data table, but they can also occur because of
additional stochastic components such as contaminated petri dishes or sample tubes. Proponents of robust
techniques argue that extreme observations should always be down-weighted, as observations in the tails
of distributions can seriously bias parameter estimates; detractors argue that it is scientifically dishonest
to discard experimental observations, unless the experimentalists have independent grounds for suspecting
particular observations. Table 18.1 illustrates the analysis of robust.tf1. These data are for normal.tf1
but with five outliers, analyzed first by the exhaustive analysis of a vector procedure (page 122), then by the
robust parameter estimates procedure. It should be noted that the Shapiro-Wilks test rejects normality and the
robust estimators give much better parameter estimates in this case. If the sample vector is G1, G2, . . . , G= the
following calculations are done.

288 SimFIT reference manual

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75

Trinomial Parameter 95% Confidence Regions

px

p y

7,11,2

70,110,20

210,330,60

9,9,2
90,90,20

270,270,60

Figure 18.3: Trinomial parameter joint confidence contours

❑ Using the whole sample and the inverse normal function Φ−1(.), the median " , median absolute
deviation � and a robust estimate of the standard deviation (are calculated as

" = median(G8)
� = median(|G8 − " |)
(= �/Φ−1(0.75) .

❑ The percentage of the sample chosen by users to be eliminated from each of the tails is 100U%, then
the trimmed mean)" , and Winsorized mean," , together with variance estimates +) and +, , are

Statistical calculations 289

Procedure 1: Exhaustive analysis of vector

Data: 50 N(0,1) random numbers with 5 outliers

Sample mean = 0.5124

Sample standard deviation = 1.853: CV% = 361.736%

ShapiroWilks W statistic = 0.85

Significance level for W = 0.0000 Reject normality at 1% sig.level

Procedure 2: Robust 1sample analysis

Total sample size = 50

Median value = 0.20189

Median absolute deviation = 1.0311

Robust standard deviation = 1.5288

Trimmed mean (TM) = 0.22267

Variance estimate for TM = 0.019178

Winsorized mean (WM) = 0.2326

Variance estimate for WM = 0.019176

Number of discarded values = 10

Number of included values = 40

Percentage of sample used = 80.00% (for TM and WM)

HodgesLehmann estimate (HL) = 0.25856

Table 18.1: Robust analysis of one sample

calculated as follows, using : = [U=] as the integer part of U=.

)" =
1

= − 2:

=−:∑
8=:+1

G8

," =
1
=

{
=−:∑
8=:+1

G8 + :G:+1 + :G=−:

}

+) =
1
=2

{
=−:∑
8=:+1

(G8 −)")2 + : (G:+1 −)")2 + : (G=−: −)")2

}

+, =
1
=2

{
=−:∑
8=:+1

(G8 −,")2 + : (G:+1 −,")2 + : (G=−: −,")2

}
.

❑ If the assumed sample density is symmetrical, the Hodges-Lehman location estimator �! can be used
to estimate the center of symmetry. This is

�! = median
{ G8 + G 9

2
, 1 ≤ 8 ≤ 9 ≤ =

}
,

and it is calculated along with 95% confidence limit. This would be useful if the sample was a vector
of differences between two samples - and . for a Wilcoxon signed rank test (page 142) that - is
distributed � (G) and . is distributed � (G − \).

18.5 Robust analysis of two samples

Table 18.2 illustrates the analysis of ttest.tf4 and ttest.tf5 used earlier for a Mann-Whitney U test
(page 140). The procedure is based on the assumption that - of size =G is distributed as � (G) and . of size
=H as � (G − \), so an estimate \̂ for the difference in location is calculated as

\̂ = median(H 9 − G8 , 8 = 1, 2, . . . , =G , 9 = 1, 2, . . . , =H) .

290 SimFIT reference manual

Xsample size = 12

Ysample size = 7

Difference in location = 18.501

Lower confidence limit = 40.0

Upper confidence limit = 2.997

Percentage confidence limit = 95.30%

Lower Mannwhitney Uvalue = 19.0

Upper MannWhitney Uvalue = 66.0

Table 18.2: Robust analysis of two samples

100U% confidence limits*! and*� are then estimated by inverting the Mann-Whitney U statistic so that

%(* ≤ *!) ≤ U/2
%(* ≤ *! + 1) > U/2
%(* ≥ *�) ≤ U/2

%(* ≥ *� − 1) > U/2.

18.6 Indices of diversity

It is often required to estimate the entropy or degree of randomness in the distribution of observations into
categories. For instance, in ecology several indices of diversity are used, as illustrated in table 18.3 for two

Data: 5,5,5,5

Number of groups = 4

Total sample size = 20

Pielou Jprime evenness = 1.0 [complement = 0.0]

Brillouin J evenness = 1.0 [complement = 0.0]

Shannon Hprime = 0.6021(log10) 1.386(ln) 2.0(log2)

Brillouin H = 0.5035(log10) 1.159(ln) 1.672(log2)

Simpson lambda = 0.25 [complement = 0.75]

Simpson lambdaprime = 0.2105 [complement = 0.7895]

Data: 1,1,1,17

Number of groups = 4

Total sample size = 20

Pielou Jprime evenness = 0.4238 [complement = 0.5762]

Brillouin J evenness = 0.3809 [complement = 0.6191]

Shannon Hprime = 0.2551(log10) 0.5875(ln) 0.8476(log2)

Brillouin H = 0.1918(log10) 0.4415(ln) 0.637(log2)

Simpson lambda = 0.3 [complement = 0.27]

Simpson lambdaprime = 0.7158 [complement = 0.2842]

Table 18.3: Indices of diversity

extreme cases. Given positive integer frequencies 58 > 0 in : > 1 groups with = observations in total, then
proportions ?8 = 58/= can be defined, leading to the Shannon � ′, Brillouin �, and Simpson _ and _′ indices,

Statistical calculations 291

and the evennness parameters � and � ′ defined as follows.

Shannon diversity � ′
= −

:∑
8=1

?8 log ?8

= [= log = −
:∑
8=1

58 log 58]/=

Pielou evenness � ′ = � ′/log :

Brilloin diversity � = [log =! − log
:∏
8=1

58!]/=

Brilloin evenness � = =�/[log =! − (: − 3) log 2! − 3 log(2 + 1)!]

Simpson lambda _ =

:∑
8=1

?2
8

Simpson lambda prime _′ =
:∑
8=1

58 (58 − 1)/[=(= − 1)]

where 2 = [=/:] and 3 = = − 2:. Note that � and � ′ are given using logarithms to bases ten, e, and two,
while the forms � and � ′ have been normalized by dividing by the corresponding maximum diversity and so
are independent of the base. The complements 1 − �, 1 − � ′, 1 − _, and 1 − _′ are also tabulated within the
square brackets. In table 18.3 we see that evenness is maximized when all categories are equally occupied, so
that 58 = 1/: and � ′ = log :, and is minimized when one category dominates.

18.7 Standard and non-central distributions

SimFIT uses discrete (page 417) and continuous (page 419) distributions for modelling and hypothesis tests,
and the idea behind this procedure is to provide the option to plot and obtain percentage points for the standard
statistical distributions to replace table look up. However, you can also obtain values for the distribution
functions, given the arguments, for the non-central C, beta, chi-square or � distributions (page 425), or you
can plot graphs, which are very useful for advanced studies in the calculation of power as a function of sample
size. Figure 18.4 illustrates the chi-square distribution with 10 degrees of freedom for noncentrality parameter
_ at values of 0, 5, 10, 15, and 20.

18.8 Generating random numbers, permutations and Latin squares

In the design of experiments it is frequently necessary to generate sequences of pseudo-random numbers, or
random permutations. For instance, assigning patients randomly to groups requires that a consecutive list of
integers, names or letters be scrambled, while any ANOVA based on Latin squares should employ randomly
generated Latin squares. SimFIT will generate sequences of random numbers and permutations for these
purposes. For example, all possible 4 × 4 Latin squares can be generated by random permutation of the rows
and columns of the four basic designs shown in Table 18.4. Higher order designs that are sufficiently random
for most purposes can be generated by random permutations of the rows and columns of a default =×= matrix

A B C D A B C D A B C D A B C D
B A D C B C D A B D A C B A D C
C D B A C D A B C A D B C D A B
D C A B D A B C D C B A D C B A

Table 18.4: Latin squares: 4 by 4 random designs

292 SimFIT reference manual

0.00

0.50

1.00

0 10 20 30 40 50

Noncentral chi-square Distribution

χ2

D
is

tr
ib

ut
io

n
F

un
ct

io
n

λ = 0

λ = 5

λ = 10
λ = 15

λ = 20

Figure 18.4: Noncentral chi-square distribution

A B C D E F G
B C D E F G A
C D E F G A B
D E F G A B C
E F G A B C D
F G A B C D E
G A B C D E F

Table 18.5: Latin squares: higher order random designs

with sequentially shifted entries of the type shown in Table 18.5, for a possible 7× 7 starting matrix, although
this will not generate all possible examples for = > 4. Note that program rannum provides many more options
for generating random numbers.

18.8.1 Plotting random walks

Many experimentalists record movements of bacteria or individual cells in an attempt to quantify the effects
of attractants, etc. so it is useful to compare experimental data with simulated data before conclusions about
persistence or altered motility are reached. Program rannum can generate such random walks starting from
arbitrary initial coordinates and using specified distributions. The probability density functions for the axes
can be chosen independently and different techniques can be used to visualize the walk depending on the
number of dimensions. Figure 18.5 shows a classical unrestricted walk on an integer grid, that is, the steps
can be +1 with probability ? and −1 with probability @ = 1− ?. It also shows 2- and 3-dimensional walks for
standard normal distributions.

Statistical calculations 293

-3

0

3

6

9

0 10 20 30 40 50

1-Dimensional Random Walk

Number of Steps

Po
si

tio
n

-4

0

4

8

-7 -4 0 3

2-Dimensional Random Walk

x

y

3-Dimensional Random Walk

XY

Z

1

-11

11

-1
-11

1

Figure 18.5: Random walks

18.9 Kernel density estimation

This technique is used to create a numerical approximation to the density function given a random sample of
observations for which there is no known density. Figure 18.6 illustrates the results when this was done with
data simulated from a normal distribution with ` = 0 and f2 = 1, using 5 bins for the histogram in the top
row of figures, but using 10 bins for the histogram in the bottom row. In this example changing the number
of bins : alters the density estimate since, given a sample of = observations G1, G2, . . . , G= with � ≤ G8 ≤ �,

294 SimFIT reference manual

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

-4 -2 0 2 4

5 Bins

0.00

0.20

0.40

0.60

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

-4 -2 0 2 4

10 Bins

Figure 18.6: Kernel density estimation

the Gaussian kernel density estimate 5̂ (G) is defined as

5̂ (G) = 1
=ℎ

=∑
8=1

(G − G8

ℎ

)

where (C) = 1
√

2c
exp(−C2/2)

and in this case ℎ = (� − �)/(: − 2) .

Clearly, a window width ℎ similar to the bin width, as in the top row, can generate an unrealistic over-smoothed
density estimate, while using narrower many bins, as in the second row, can lead to over-fitting.

Details are as follows.

❏ The calculation involves four steps.

1. From the = data points G8 choose a lower limit 0, an upper limit 1, and < equally spaced points C8
where

0 = � − 3ℎ ≤ C8 ≤ � + 3ℎ = 1,

and < is power of 2. The value of < can be altered interactively from the default value of 128 if
necessary for better representation of multi-modal profiles. Data are discretized by binning the G8
at points C8 to generate weights b; .

2. Compute FFT of the weights, b; to give .;.

3. Compute b; = .; exp (ℎ2B2
;
/2) where B; = 2c;/(1 − 0)

4. Find the inverse FFT of b; to give 5̂ (G).

❏ The histograms shown on the left use : bins to contain the sample, and the height of each bin is the
fraction of sample values in the bin. The value of : can be changed interactively, and the dotted curves
are the density estimates for the < values of C. The program generates additional empty bins for the FFT
outside the range set by the data to allow for wrap round. However, the total area under the histogram
is one, and the density estimate integrates to one between −∞ and ∞.

Statistical calculations 295

❏ In addition to the definition of the smoothing parameter ℎ depending on the number of bins chosen for
display in figure 18.6 the default setting, which is

ℎ = 1.06f̂=−1/5,

uses the sample standard deviation and sample size, as recommended for a normal distribution. Users
can also set arbitrary smoothing parameters and, with these two options, the histograms plotted simply
illustrate the fit of the kernel density estimate to the data and do not alter the smoothing parameter ℎ.

❏ The sample cumulative distributions shown on the right have a vertical step of 1/= at each sample value,
and so they increase stepwise from zero to one. The density estimates are integrated numerically to
generate the theoretical cdf functions, which are shown as dashed curves. They will attain an asymptote
of one if the number of points < is sufficiently large to allow accurate integration, say ≥ 100.

❏ The density estimates are unique given the data, ℎ and <, but they will only be meaningful if the
sample size is fairly large, say ≥ 50 and preferably much more. Further, the histogram bins will only
be representative of the data if they have a reasonable content, say =/: ≥ 10.

❏ The histogram, sample distribution, pdf estimate and cdf estimate can be saved to file by selecting the
[Advanced] option then creating ASCII text coordinate files.

18.10 Fitting probability distributions

Often a sample G of = observations G8 is available and it is wished to display a graph just to summarize the
sample, or with a best-fit distribution overlayed. Suppose the sample is in nondecreasing order, as in

G1 ≤ G2 ≤ G3 ≤ · · · ≤ G=,

then there are two ways to do this.

❍ A histogram

Limits � ≤ G1 and � ≥ G= are chosen and with the number of bins : < =, then the sample is used to
generate frequencies for each of the bins. That is, the distance between � and � is divided into : equal
intervals, and the number of observations in each interval gives : frequencies 5 9 , where

:∑
9=1

5 9 = =, and

Area = =(� − �)/:.

Clearly the histogram shape will depend upon :, �, and �. As an extremely approximate idea of
the reliability of the bins as a representation of a pdf, error bars equal to twice the square root of the
frequencies can be added. To fit a known pdf to the frequencies, the limits � and � must include the
whole sample, and sometimes the frequencies are divided by the area to normalize the area to 1 and
avoid having to fit a pdf pre-multiplied by a scaling factor.

❍ A cumulative distribution

The sample is used to create a curve increasing by steps of 1/= at each observation. Such a curve
is unique, which is better than a histogram as it does not require the selection of end points, and the
function must starts at zero and rise to 1. However cdf s are usually simple sigmoid curves which do
not display the properties of the underlying distribution as well as histograms.

For instance, Figure 18.7 shows a discrete probability distributions histogram plotted using vertical lines.
Also figure 18.8 illustrates that a good compromise to demonstrate goodness of fit is to plot the scaled pdf

along with the best fit cdf, as with the beta distribution in this case.

296 SimFIT reference manual

18.11 Fitting a mixture of two normal distributions

Fitting the standard distributions to samples is very easy and is done automatically by SimFIT when performing
the Kolmogorov-Smirnov (page 132), Normal distribution (page 133), Poisson (page 134), and similar tests.
However it is sometimes suspected that a sample of observations comes from a mixture of distributions.
For instance a sample of observations of height from a population would be a mixture of two distributions:
females and males. Now the problem of resolving a distribution into constituent distributions with no a priori
knowledge of the separate distributions is extremely difficult and controversial, so the SimFIT technique of
fitting sample histograms and cumulative distributions is only one of the various methods that can be used. It
does have the advantage of being applicable to any mixture of distributions provided the model equation can
be defined. To illustrate this SimFIT technique, the analysis of a mixture of two Gaussian distributions will
be considered.

In the case of two Normal distributions the model for the pdf is

U

f1

√
2c

exp

(
−1

2

{
G − `1

f1

}2
)
+ 1 − U
f2

√
2c

exp

(
−1

2

{
G − `2

f2

}2
)
,

while that for the cdf is

U

f1

√
2c

∫ G

−∞
exp

(
−1

2

{
C − `1

f1

C

}2
)
3C + 1 − U

f2

√
2c

∫ G

−∞
exp

(
−1

2

{
C − `2

f2

}2
)
3C.

These models, which are both in the SimFIT library of statistical models, require the estimation of five
parameters: the two means `1 and `2, the two standard deviations f1 and f2, and an extra parameter U.
Obviously the model must be constrained so that f1 and f2 are positive, and the partitioning constant limits
must be chosen so that 0 ≤ U ≤ 1.

Figure 18.9 shows the fit of these two models to the test files normalpdf.tf3 and normalcdf.tf3 which
were derived by adding normal.tf1 to normal.tf2 using editmt to create normal.tf3 with a mixture of 50
random numbers from # (0, 1) with 50 random numbers from # (5, 1). The file normalpdf.tf3 was created

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0 10 20 30 40 50

Binomial Probability Plot for N = 50, p = 0.6

x

Pr
(X

 =
 x

)

Figure 18.7: Binomial probability distributions

Statistical calculations 297

0.0

10.0

20.0

0.00 0.25 0.50 0.75 1.00
0.00

0.20

0.40

0.60

0.80

1.00

Using QNFIT to fit Beta Function pdfs and cdfs

Random Number Values

H
is

to
gr

am
 a

nd
 p

df
 f

it
Step C

urve and cdf fit

Figure 18.8: Beta probability distributions

0.00

0.05

0.10

0.15

0.20

0.25

-3.0 0.0 3.0 6.0 9.0

Data = normalpdf.tf3, Model = sum of 2 Gaussians

Sample Values

H
is

to
gr

am
 a

nd
 p

df
s

0.0

0.2

0.4

0.6

0.8

1.0

-3.0 0.0 3.0 6.0 9.0

Data = normalcdf.tf3, Model = sum of 2 Gaussians

Sample Values

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

ns

f(x)

g(x)

f(x) + g(x)

Figure 18.9: Fitting a mixture of two disjoint normal distributions

from normal.tf3 using the exhaustive analysis of a vector technique (page 122) followed by requesting a
pdf file normalized to area 1, while requesting a cdf file generated normalcdf.tf3. After curve fitting using
qnfit (page 79) the option for graphical deconvolution (page 38) was selected to show the data, best-fit model
and contributing sub-models. Outline bars were chosen for the pdf data, and a cdf type stair step curve was
selected for the sample cumulative. This example was chosen to illustrate an extreme case where the two
distributions are disjoint and, not surprisingly, the parameters were determined accurately. In fact, users would
have probably split such a sample into two distinct data sets for univariate analysis. However, it is important
to realize that such fitting is likely to be very disappointing if the distributions have an appreciable overlap.

Figure 18.10 shows the fit in a less favorable situation.

The data set consisted of a mixture of 50 random numbers from a normal distribution with ` = 0, f = 1 with
50 random numbers from a normal distribution with ` = 2.5, f = 1, and the analysis proceeded as with the

298 SimFIT reference manual

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-3.0 -1.0 1.0 3.0 5.0

Mixture of N(0,1) plus N(2.5,1)

Sample Values

H
is

to
gr

am
 a

nd
 p

df
s

0.0

0.2

0.4

0.6

0.8

1.0

-3.0 -1.0 1.0 3.0 5.0

Mixture of N(0,1) plus N(2.5,1)

Sample Values

C
um

ul
at

iv
e

di
st

rib
ut

io
ns

Figure 18.10: Fitting a mixture of two overlapping normal distributions

previous data. It is perfectly clear that the best-fit pdf and cdf shown as dotted curves in figure 18.10 give
an excellent fit to the data, but the component distributions shown as solid curves bear no resemblance to the
actual distributions generating the data set.

The parameters estimated by the fitting procedure can be identified by this scheme

Parameter Symbol Actual Value pdf estimate cdf estimate
?1 `1 0.0 -0.75 -0.88
?2 f1 1.0 0.27 0.22
?3 U 0.5 0.15 0.11
?4 `2 2.5 1.46 1.36
?5 f2 1.0 1.42 1.49

while table 18.6 shows the SimFIT summary of results table.

Bestfit pdf

Number LowerLimit UpperLimit Value Std. Err. ..95% Conf. Lim.. p

1 2.0 2.0 0.7.5315 0.05757 0.8758 0.6304 0.0000

2 0.05 3.0 0.2732 0.05379 0.1585 0.3879 0.0001

3 0.0 1.0 0.14731 0.3744 0.0675 0.2271 0.0013

4 0.5 4.5 1.4612 0.135 1.173 1.749 0.0000

5 0.05 3.0 1.4243 0.1232 1.162 1.687 0.0000

Bestfit cdf

Number LowerLimit UpperLimit Value Std. Err. ..95% Conf. Lim.. p

1 2.0 2.0 0.88103 0.02025 0.9212 0.8408 0.0000

2 0.05 3.0 0.21874 0.04357 0.1322 0.3052 0.0000

3 0.0 1.0 0.10937 0.01173 0.08608 0.1327 0.0000

4 0.5 4.5 1.3566 0.02935 1.298 1.415 0.0000

5 0.05 3.0 1.4883 0.02569 1.437 1.539 0.0000

Table 18.6: Fitting a mixture of two overlapping normal distributions

The conclusion is just commonsense and inescapable: it is only possible to obtain meaningful estimates for
the parameters of mixed distributions when the sample sizes are very large and the distributions are well

Statistical calculations 299

separated.

18.12 Fitting flow cytometry histograms

Sometimes there is a large sample of observations that are only available after being sorted into bins and,
despite the fact that no standard distribution fits the data, it is nevertheless important to perform some sort of
analysis. For instance, in flow cytometry it may be required to compare the expression of cell surface antigens
in the same cell line before and after treatment, or to compare two related cell lines. This can be done using
the SimFIT program csafit as described next.

Suppose that there are = bins between limits � and � for both profiles, and the frequencies for cell line -
are Φ- (8) (normalized to area 1) while those of cell line . are Φ. (8) (normalized to area 1) so that from the
= bins we would have estimates for the distribution of - and . . The density functions for - and . could
be unrelated of course, but a common situation would be where the gene expression . would be that of -
subjected to a possible shift U due to a relative increase in the amount of gene expression, plus a possible
absolute increase V, say due to an extra copy of the gene as in trisomy. Then we would have the relationship

. = U- + V in distribution,

for random variables - and . leading to the following identity between density functions 5- and 5.

5. (H) =
(W
U

)
5-

(
H − V
U

)

where the normalizing factor is
1
W
=

(
1
U

) ∫ 1

0

5-

(
D − V
U

)
3D.

Rearranging if necessary to assume U > 1 then, to account for truncation, we would have the limits

0 = U� + V if U� + V > �
= � otherwise

1 = U� + V if U� + V < �
= � otherwise.

Figure 18.11 illustrates the analysis of data in test file csafit.tf3 while table 18.7 shows the best fit
parameters estimated by csafit.

Bestfit parameters from CSAFIT

alpha = 1.15 (Dimensionless)

beta = 0.0518 (Internal coordinates)

stretch = 14.95 %

translation = 5.18 %

Table 18.7: Fitting a flow cytometry histogram

The way that csafit works is that the two histograms are first read in and normalized to area 1, and a least
squares smoothing cubic splines constrained to have area 1 is fitted to the Φ8 normalized - frequencies, and
goodness of fit is performed. Then parameters U and V are estimated by nonlinear optimization to the Ψ8

normalized. frequencies obtained by translation and stretching of the spline fitted to the - data, and goodness
of fit is performed. The program provides options for selecting the spline nodes interactively or from the data
file, for choosing to vary either U alone, V alone, or U and V together, and for choosing starting estimates

300 SimFIT reference manual

0

100

200

300

400

500

0 50 100 150 200 250

Using CSAFIT for Flow Cytometry Data Smoothing

Channel Number

N
um

be
r

of
 C

el
ls

Figure 18.11: Flow cytometry

interactively should that be required. As csafit is an advanced program, there is a program called makcsa

that should be used to simulate data with random error and fit using csafit.

This approach of attempting to explain the shift of one distribution from another by a combination of relative
stretching together with an absolute translation can be used in many other situations other than flow cytometry
but it remains to mention a complication. Often data are collected over a very large range of values so that
bins are in a geometric rather than an arithmetic progression and this necessitates further consideration. If
the transformed variables are now log - and log. , where the logarithms in flow cytometers would usually be
to base 10, then the densities in transformed space would then be

5log. (log H) =
(
W10log H

k(H)

)
5log- (logk(H))

where k(H) = 10log H − V
U

,

and the normalizing integral will now be

1
W
=

∫ 1∗

0∗

(
10logD

k(D)

)
5log - (logk(D)) 3 (log D)

with limits

0∗ = log(U� + V) if log(U� + V > log �

= log � otherwise

1∗ = log(U� + V) if log(U� + V) < log �

= log � otherwise

where it is assumed that the bin limits are now log � and log �.

Statistical calculations 301

Program csafit can deal with this situation but it has been found better to just vary U and fix V = 0 in the
linear model when using logarithmically spaced bins, as this is equivalent is equivalent to fitting U = 1 and V
varied in the transformed space and changing the interpretation of parameter estimates since

if . = U-

log. = log - + X
where X = logU.

That is, the model log. = log - + X would be fitted to the transformed histograms, but the estimate for the
additive parameter X would be interpreted in terms of U as a stretch in the natural coordinates from the point
of view of mechanistic interpretation.

18.13 Optimal design for model discrimination

The SimFIT program eoqsol provides algorithms designed to answer a frequently asked question.

Given two rival models, then what is the best separation of data points to employ in order to
maximize the power for the process of deciding on statistical grounds which model to accept ?

Consider fitting a deficient model 61(G,Φ) to = data points generated by a correct model 62(G,Θ), using weights
F(G) > 0 and density function 5 (G) to define the spacing of support points between limits 0 ≤ G ≤ 1. Then
this question can be explored by considering several procedures which require techniques for optimization,
quadrature, and extracting the zeros of nonlinear equations.

❍ The average weighted model error squared (= (Θ) can be defined as

(= (Θ) = min
Φ

1
=

=∑
8=1

F(G8) [62(G8 ,Θ) − 61(G8 ,Φ)]2

=
1
=

=∑
8=1

F(G8) [62(G8 ,Θ) − 61(G8 , Φ̂)]2.

This can be regarded as an idealized analogue of the weighted sum of squares from curve fitting divided
by the degrees of freedom,((&/#�$�, so that a large value would indicate a greater possibility of
eliminating the deficient model, say by a � test.

❍ &(Θ), the limit of (=(Θ) as = → ∞ is

&(Θ) = lim
=→∞

(= (Θ)

= min
Φ

∫ 1
0
F(G) [62(G,Θ) − 61(G,Φ)]2 5 (G) 3G∫ 1

0
5 (G) 3G

.

This represents the final asymptotic value of,((&/#�$� as the number of support points increases
without limit.

❍ The relative error '(=) defined as

'(=) =
����(= (Θ) − &(Θ)

&(Θ)

���� , &(Θ) > 0.

is a measure of the number of experimental points that would be needed for (=(Θ) to converge to&(\),
and which would therefore be sufficient for optimum model discrimination.

302 SimFIT reference manual

❍ The spacing of support points needed for such investigations must satisfy

G1 = 0

1
= − 1

=

∫ G8+1

G8
5 (C) 3C∫ 1

0
5 (C) 3C

, 8 = 1, 2, . . . , = − 1

G= = 1,

which indicates how the spacing is dictated by the density function 5 (G).

❍ For each choice of Θ, two numbers ` and a have to be selected so that

62(0,Θ) = `
62(1,Θ) = a.

For instance, if 0 ≤ 62(G,Θ) ≤ 1, then ` = 0.1 and a = 0.9 might be a reasonable possibility.

To illustrate the use of eoqsol we shall consider the case with normalized models

61(G) =
qG

1 + qG

62(G) =
\1G

1 + G + (1 − \1)\2G

1 + \2G
,

that is, fitting a single binding site to a mixture of two sites.

Figure 18.12 shows the best possible fit of a single binding site by varying q to such a two site model with
\1 = 0.5 and \2 = 10 under two circumstances:

• Uniform: data spacing in an arithmetic progression using

5 (G) = 1, and

• Geometric: data spacing in a geometric progression using

5 (G) = 1
G
.

In both cases the weighting function was taken as F(G) = 1, i.e. constant variance, while the range of
independent variable (0 = 0.022, 1 = 4.6) was calculated for each choice of \1 and \2 to cover 80% of the
maximum possible variation in 62 for G ≥ 0 by solving

62(0) = 0.1, and

62(1) = 0.9.

The solid curve in figure 18.12 is the curve for the true model 62(G, (0.5, 10)), the dashed curve is for the
best-fit deficient model 61(G, 2.45),& = 0.0008 with a uniform distribution of points, while the dotted curve
is for the best-fit deficient model 61(G, 3.16), & = 0.002 for a geometric distribution of points, which indicates
that a geometric distribution of points is better for model discrimination than a uniform distribution in this
particular example.

Figure 18.13 shows another of the eoqsol procedures: studying the change in & as a function of just one \
varied. The value of all the \ parameters are fixed and a so-called reference & is calculated. Then one of
the parameters is varied systematically and the way that& changes as this parameter is varied is then plotted.

Statistical calculations 303

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0

Best fit 1 site to 2 H/L affinity sites

x

y

2 H/L sites

1 Site (Uniform)

1 Site (Geometric)

Figure 18.12: Fitting 1 site to 2 H/L sites: best fit model

From this data it is clear that, with \1 fixed at \1 = 0.5 and \2 varied, again the geometric distribution is to be
preferred for model discrimination, and that a value of say \2 ≥ 10 is required to provide sufficient power for
model discrimination.

Figure 18.14 shows another of the eoqsol functions: studying the change in '(=) as a function of just one \
varied. The value of all the \ parameters are fixed and a so-called reference & is calculated. Then one of the
parameters is varied and the way that '(=) changes as this parameter is varied is then plotted. From this data

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

log10(Q) as a function of log10(ϑ2)

log10(ϑ2)

lo
g 1

0(
Q

)

Uniform

Geometric

Figure 18.13: Fitting 1 site to 2 H/L sites: behaviour of Q

304 SimFIT reference manual

-3

-2

-1

0

0 1 2

log10(R) as a function of log10(n)

log10(n)

lo
g 1

0(
R

)

Uniform

Geometric

Figure 18.14: Fitting 1 site to 2 H/L sites: behaviour of R

it is clear that once more the geometric distribution is to be preferred for model discrimination, and that at
value of say = ≥ 10 is required to provide sufficient power for model discrimination.

Statistical calculations 305

18.14 False discovery rates FDR(BH)

Multiple testing is when several statistical tests are performed on the same data so it is necessary to control
false results. One procedure is the Bonferroni correction where, for< tests and ? values, results are considered
significant at level U if ? ≤ U/<, rather than ? ≤ U for single tests.

If at least one of the ? values satisfies the Bonferroni restriction, the FDR(BH) false discovery rate technique
(Benjamini and Hochberg J.R.satist.Soc. B (1995) 57,1, 289–300, and Benjamini et al Behavioural Brain
Research 125 (2001) 279–284) is available to see if there other ? values, not necessarily satisfying the
Bonferroni restriction, that could also be regarded as possibly significant.

18.14.1 Example 1: FDR(BH) for a vector of ? values

From the main SimFIT menu choose [Statistics] then [Statistical calculations] and then [False discovery rates
from a vector p(i)] and scrutinize the default test file fdr_bh.tf1 provided. After selecting to calculate the
false discovery rates, view the table of results for all the data arranged into order of rank which is displayed
next. Here < is the number of tests and 8 is the rank of the sample in terms of the ordered ? values.

False discovery rates for a vector of p(i) values: 1
Title: Data for BH False Discovery rate calculation
Sample size = 17
Number rejected = 0
Number analysed = 17
Significance level, U = 0.05

? < ∗ ?/8 U ∗ 8/<
Rank Sample p-value p-adjusted BH-level Result

1 12 0.000001 0.000017 0.002941 1

2 1 0.000013 0.000110 0.005882 1

3 3 0.000065 0.000368 0.008824 1

4 6 0.000630 0.002678 0.011765 1

5 5 0.000800 0.002720 0.014706 1

6 16 0.001700 0.004817 0.017647 1

7 2 0.003200 0.007771 0.020588 1

8 7 0.006500 0.013813 0.023529 1

9 11 0.014800 0.027956 0.026471 1

10 13 0.049000 0.083300 0.029412 0

11 14 0.094000 0.145273 0.032353 0

12 17 0.110000 0.155833 0.035294 0

13 9 0.150000 0.196154 0.038235 0

14 8 0.240000 0.291429 0.041176 0

15 15 0.450000 0.510000 0.044118 0

16 10 0.560000 0.595000 0.047059 0

17 4 0.870000 0.870000 0.050000 0

There are other options to view the results in sample order or to just show significant results, but the above
table is the easiest to understand and follows the example given by Benjamini et al on this same data set.

In order to understand the FDR(BH) technique we shall explain the meanings of the above columns and, in
particular, the interpretation of the colors and meaning of the 1’s and 0’s in the last column.

306 SimFIT reference manual

1. Column 1

This is the rank 8 of the sample with respect to the ? values. That is, the rows of the table are arranged
so that the samples in row 8 are arranged in order of increasing ? values.

2. Column 2

This registers the actual number of the sample in the original order.

3. Column 3

Here are the ? values corresponding to the rank recorded in column 1 for the sample identified in
column 2.

4. Column 4

If this is table line for rank 8 then this is the ? value adjusted by the rank and the sample size <. In
other words, the adjusted ? value is <?/8. Note that this column only depends on ?, 8 and <, and the
last adjusted ? value is always the same as the uncorrected ? value since 8 = <.

5. Column 5

Here are listed the BH-levels, i.e., the BH threshold values U8/<. Note that these only depend on U, 8
and <, and they have the following sequence. The value at row 1 is the Bonferroni corrected level for
significance testing, and the value at line < is the significance level U, while between these extremes
the values slowly increase as a function of the rank.

6. Column 6

This column has a 1 if the sample is in the FDR(BH) set and a 0 otherwise

18.14.2 The systematic FDR(BH) procedure

The technique starts at row < and advances up the table until the first rank is encountered, say :, where the
? value is less than or equal to the BH threshold. We then conclude that all samples from line 1 up to line :
must be considered as possibly significant. So the set of possibly significant samples contains those where

? ≤ U8/<,
or equivalently <?/8 ≤ U.

So now the importance of the color change will be clear and the interpretation of the table is obvious.

All samples numbered in column 2 up to level : with a 1 in column 6 are colored blue, which makes
identification of the set of possibly significant samples easy to recognize.

The table can also be rearranged into sample order and can be displayed in such a way as to only identify the
set of possibly significant samples. Also, for very large samples it is possible to scroll through the table to
select sections or even to write the whole table to file.

18.14.3 Example 2: FDR(BH) for a matrix of ? values

Some procedures result in matrices of ? values, and this requires a more complicated approach because we
have to keep track of the row and column indices. As a typical example, select the option for false discovery
rate for a matrix and read in the default test file matrix_p.tf1 which is as follows

0.00023 0.00060 0.40906 0.41318

0.00050 0.00005 0.32055 0.23282

0.00560 0.01362 0.43751 0.06327

This results from the directed correlation procedure in the multivariate statistics options using the default test
files matrix_a.tf1 for the � matrix which has dimensions 30 by 3, and matrix_b.tf1 for the � matrix
which has dimensions 30 by 4.

Statistical calculations 307

Proceeding with the false discovery option we obtain the following table in rank order.

False discovery rates for a matrix of p(i,j) values: 1

Title: Data from directed correlation

Number of columns = 4

Number of rows = 3

Number out of range = 0

Significance level, U = 0.05

�(8) �(9) ?-value ?-adjusted BH-level Result

2 2 0.000053 0.000632 0.004167 1

1 1 0.000231 0.001387 0.008333 1

2 1 0.000500 0.002000 0.012500 1

1 2 0.000598 0.001793 0.016667 1

3 1 0.005602 0.013446 0.020833 1

3 2 0.013624 0.027247 0.025000 1

3 4 0.063269 0.108461 0.029167 0

2 4 0.232822 0.349234 0.033333 0

2 3 0.320548 0.427398 0.037500 0

1 3 0.409063 0.490875 0.041667 0

1 4 0.413176 0.450738 0.045833 0

3 3 0.437508 0.437508 0.050000 0

As before the set of possibly significant samples is easy to identify by the 1 in the last column or blue color,
but columns 1 and 2 need some explanation.

In this example column 1 indicates what the row indices of ? values are, because the matrix of ? values had
3 rows which originated from the 3 columns of the � matrix in the directed correlation. The second column
identifies column indices for the 4 columns corresponding to the 4 columns of the � matrix. This situation
is valid only for this particular matrix, and results from the convention dictating the way that the matrix of ?
values was constructed.

Part 19

Numerical analysis

19.1 Introduction

In data analysis it is frequently necessary to perform calculations rather than tests, e.g., calculating the
determinant, eigenvalues, or singular values of a matrix to check for singularity.

19.2 Zeros of a polynomial of degree n - 1

Every real polynomial 5 (G) of degree = − 1 with = coefficients �8 can be represented in either coefficient or
factored form, that is

5 (G) = �1G
=−1 + �2G

=−2 + · · · + �=−1G + �=,
= �1 (G − U1) (G − U2) . . . (G − U=−1),

where U8 for 8 = 1, 2, . . . , = − 1 are the = − 1 zeros, i.e., roots of the equation 5 (G) = 0, and these may be
non-real and repeated. In data analysis it is frequently useful to calculate the = − 1 zeros U8 of a polynomial
given the = coefficients �8 , and this SimFIT polynomial solving procedure performs the necessary iterative
calculations. However, note that such calculations are notoriously difficult for repeated zeros and high degree
polynomials. Table 19.1 illustrates a calculation for the roots of the fourth degree polynomial

Zeros of f(x) = A(1)x^(n1) + A(2)x^(n2) + ... + A(n)

Real Part Imaginary Part

A(1) = 1.0 0.0 1.0i

A(2) = 0.0 0.0 1.0i

A(3) = 0.0 1.0

A(4) = 0.0 1.0

A(5) = 1.0 (constant term)

Table 19.1: Zeros of a polynomial

5 (G) = G4 − 1

= (G − 8) (G + 8) (G − 1) (G + 1)

which are 8, −8, 1, and −1. Be careful to note when using this procedure that the sequential elements of the
input vector must be the polynomial coefficients in order of decreasing degree. Zeros of nonlinear functions
of one or several variables are sometimes required, and these can be estimated using usermod.

Numerical analysis 309

19.3 Determinants, inverses, eigenvalues, and eigenvectors

Table 19.2 illustrates an analysis of data in the test file matrix.tf1 to calculate parameters such as the de-

Value of the determinant = 4.4834E+04

Values for the current square matrix are as follows:

1.2 4.5 6.1 7.2 8.0

3.0 5.6 3.7 9.1 12.5

17.1 23.4 5.5 9.2 3.3

7.15 5.87 9.94 8.82 10.8

12.4 4.30 7.7 8.95 1.6

Values for the current inverse are as follows:

0.24111 0.062912 0.00044392 0.10123 0.029774

0.085853 0.044069 0.052548 0.019963 0.0586

0.11818 0.17354 0.005537 0.11957 0.03076

0.22291 0.067828 0.019731 0.25804 0.13802

0.17786 0.086634 0.0076447 0.13711 0.072265

Eigenvalues: Real Part Imaginary Part

38.861 0.0

8.3436 0.0

2.7508 7.2564

2.7508 7.2564

2.2960 0.0

Eigenvector columns (real parts only)

0.31942 0.34409 0.13613 0.13613 0.35398

0.37703 0.071958 0.050496 0.050496 0.062282

0.60200 0.78212 0.80288 0.80288 0.13074

0.48976 0.44619 0.26270 0.26270 0.78507

0.39185 0.25617 0.21156 0.21156 0.48722

Eigenvector columns (imaginary parts only)

0.0 0.0 0.075605 0.075605 0.0

0.0 0.0 0.39888 0.39888 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.19106 0.19106 0.0

0.0 0.0 0.13856 0.13856 0.0

Table 19.2: Matrix example 1: Determinant, inverse, eigenvalues, eigenvectors

terminant, inverse, eigenvalues, and eigenvectors, that are frequently needed when studying design matrices.
Note that the columns of eigenvectors correspond in sequence to the eigenvalues, but with non-real eigen-
values the corresponding adjacent columns correspond to real and imaginary parts of the complex conjugate
eigenvectors. Thus, in the case of eigenvalue 1, i.e. 38.861, column 1 is the eigenvector, while for eigenvalue
2, i.e. −2.7508 + 7.25648, eigenvector 2 has column 2 as real part and column 3 as imaginary part. Similarly,
for eigenvalue 3, i.e. −2.7508 − 7.25648, eigenvector 3 has column 2 as real part and minus column 3 as
imaginary part. Note that with SimFIT matrix calculations the matrices will usually be written just once to
the results file for relatively small matrices if the option to display is selected, but options are also provided
to save matrices to file.

19.4 Singular value decomposition

Table 19.3 shows results from a singular value decomposition of data in f08kff.tf1. Analysis of your
own design matrix should be carried out in this way if there are singularity problems due to badly designed
experiments, e.g., with independent variables equal to 0 or 1 for binary variables such as female and male. If

310 SimFIT reference manual

Current matrix:

0.57 1.28 0.39 0.25

1.93 1.08 0.31 2.14

2.3 0.24 0.4 0.35

1.93 0.64 0.66 0.08

0.15 0.3 0.15 2.13

0.02 1.03 1.43 0.5

Index Sigma Fraction Cumulative Sigma^2 Fraction Cumulative rank = 4

1 3.99872 0.4 0.4 15.9898 0.5334 0.5334

2 3.00052 0.3002 0.7002 9.0031 0.3003 0.8337

3 1.99671 0.1998 0.9 3.98686 0.133 0.9666

4 0.999941 0.1 1.0 .999882 0.0334 1.0

Right singular vectors by row (Vtranspose)

0.825146 0.279359 0.204799 0.446263

0.453045 0.212129 0.262209 0.825226

0.282853 0.796096 0.495159 0.202593

0.184064 0.493145 0.802572 0.280726

Left singular vectors by column (U)

0.0202714 0.279395 0.469005 0.769176

0.728415 0.346414 0.0169416 0.0382903

0.439270 0.495457 0.286798 0.0822225

0.467847 0.325841 0.153556 0.163626

0.220035 0.642775 0.112455 0.357248

0.0935234 0.192680 0.813184 0.495724

Table 19.3: Matrix example 2: Singular value decomposition

your design matrix has < rows and = columns, < > =, there should be = nonzero singular values. Otherwise
only linear combinations of parameters will be estimable. Actually, many statistical techniques, such as
multilinear regression, or principal components analysis, are applications of singular value decompositions.
Now, given any < by = matrix �, the SVD procedure calculates a singular value decomposition in the form

� = *Σ+) ,

where* is an < by < orthonormal matrix of left singular vectors, + is an = by = orthonormal matrix of right
singular vectors, and Σ is an < by = diagonal matrix, Σ = diag(f1, . . . , f=) with f8 ≥ 0. However, note
that SimFIT can display the matrices *, Σ, or +) , or write them to file, but superfluous rows and columns
of zeros are suppressed in the output. Another point to note is that, whereas the singular values are uniquely
determined, the left and right singular vectors are only pairwise determined up to sign, i.e., corresponding
pairs can be multiplied by -1.

19.5 Pseudo inverse and rank of a matrix

Table 19.4 displays the results from calculating the pseudo inverse and rank of the matrix contained in test
file g02blf.tf1.

Note that, for any < by = matrix � with < ≥ =, the pseudo inverse �+ can be obtained from the singular value
decomposition as

�+
= +Σ−1*) ,

where, if A is the rank of �, then Σ−1 is the diagonal matrix where the first A diagonal elements are the inverse
of the non-zero singular values, and the remaining diagonal elements are zero. The rank is estimated as the
number of singular values that are greater than or equal to a tolerance factor)$! multiplied by the largest
singular value.

Numerical analysis 311

Pseudo inverse with TOL = 0.0000001, rank = 4

0.01780713 0.01182626 0.0471568 0.05663634 0.003674122 0.03840807

0.02156477 0.04341726 0.02944571 0.02913215 0.01378104 0.03425613

0.05202857 0.08126532 0.01392615 0.04744183 0.01664658 0.05759353

0.02368605 0.03571685 0.01380834 0.03047762 0.03566550 0.05713431

0.007195698 0.001395747 0.007672032 0.005041525 0.003485692 0.007312341

Table 19.4: Matrix example 3: Pseudo inverse and rank

19.6 LU factorization of a matrix, norms and condition numbers

Table 19.5 illustrates the !* factorization of the matrix � in matrix.tf1, displayed previously in table 19.2,

Matrix 1norm = 43.67 Condition number = 36.94

Matrix Inorm = 58.5 Condition number = 26.184

Lower triangular/trapezoidal L where A = PLU

1.0

0.72515 1.0

0.070175 0.22559 1.0

0.17544 0.11799 0.48433 1.0

0.41813 0.30897 0.99116 0.63186 1.0

Upper triangular/trapezoidal U where A = PLU

17.11 23.4 5.5 9.2 3.3

1.2668 3.7117 2.2787 0.79298

6.5514 7.0684 7.5895

4.3314 8.1516

7.2934

Row pivot indices equivalent to P where A = PLU

3

5

3

5

5

Table 19.5: Matrix example 4: LU factorization and condition number

along with the vector of row pivot indices corresponding to the pivot matrix % in the factorization � = %!*.
As the !* representation is of interest in the solution of linear equations, this procedure also calculates the
matrix norms and condition numbers needed to assess the sensitivity of the solutions to perturbations when
the matrix is square. Given a vector norm ‖.‖, a matrix �, and the set of vectors G where ‖G‖ = 1, the matrix
norm subordinate to the vector norm is

‖�‖ = max
‖G ‖=1

‖�G‖.

For a < by = matrix �, the three most important norms are

‖�‖1 = max
1≤ 9≤=

(
<∑
8=1

|08 9 |)

‖�‖2 = (_max |�) �|)
1
2

‖�‖∞ = max
1≤8≤<

(
=∑
9=1

|08 9 |),

312 SimFIT reference manual

so that the 1-norm is the maximum absolute column sum, the 2-norm is the square root of the largest eigenvalue
of �) �, and the infinity norm is the maximum absolute row sum. The condition numbers estimated are

^1 (�) = ‖�‖1‖�−1‖1

^∞ (�) = ‖�‖∞‖�−1‖∞
= ^1 (�))

which satisfy ^1 ≥ 1, and ^∞ ≥ 1 and they are included in the tabulated output unless � is in singular, when
they are infinite. For a perturbation X1 to the right hand side of a linear system with < = = we have

�G = 1

�(G + XG) = 1 + X1
‖XG‖
‖G‖ ≤ ^(�) ‖X1‖‖1‖ ,

while a perturbation X� to the matrix � leads to

(� + X�) (G + XG) = 1
‖XG‖

‖G + XG‖ ≤ ^(�) ‖X�‖‖�‖ ,

and, for complete generality,

(� + X�) (G + XG) = 1 + X1
‖XG‖
‖G‖ ≤ ^(�)

1 − ^(�) ‖X�‖/‖�‖

(
‖X�‖
‖�‖ + ‖X1‖

‖1‖

)

provided ^(�) ‖X�‖/‖�‖ < 1. These inequalities estimate bounds for the relative error in computed solutions
of linear equations, so that a small condition number indicates a well-conditioned problem, a large condition
number indicates an ill-conditioned problem, while an infinite condition number indicates a singular matrix
and no solution. To a rough approximation; if the condition number is 10: and computation involves =-digit
precision, then the computed solution will have about (= − :)-digit precision.

19.7 QR factorization of a matrix

Table 19.6 illustrates the &' factorization of data in matrix.tf2. This involves factorizing a = by < matrix
as in

� = &' when = = <

= &1&2

(
'

0

)
when = > <

= &('1'2) when = < <

where & is a = by = orthogonal matrix and ' is either upper triangular or upper trapezoidal. You can display
or write to file the matrices &, &1, ', or '1.

19.8 Cholesky factorization of a positive-definite symmetric matrix

Table 19.7 shows how factorization of data in matrix.tf3 into a lower and upper triangular matrix can be
achieved. Note that factorization as in

� = ') '

will only succeed when the matrix � supplied is symmetric and positive-definite, as when � is a covariance
matrix. In all other cases, error messages will be issued.

Numerical analysis 313

The orthogonal matrix Q1

0.10195 0.25041 0.07498 0.73028 0.55734

0.39929 0.21649 0.72954 0.29596 0.27394

0.53861 0.26380 0.32945 0.14892 0.18269

0.31008 0.30018 0.15220 0.42044 0.65038

0.28205 0.52829 0.075783 0.27828 0.69913

0.30669 0.31512 0.55196 0.032818 0.14906

0.51992 0.59358 0.14157 0.31879 0.25637

The upper triangular/trapezoidal matrix R

11.771 18.44 13.989 10.803 15.319

6.8692 0.12917 4.551 4.2543

5.8895 0.34487 0.0057542

8.6062 1.1373

2.5191

Table 19.6: Matrix example 5: QR factorization

Current positivedefinite symmetric matrix

4.16 3.12 0.56 0.1

3.12 5.03 0.83 1.09

0.56 0.83 0.76 0.34

0.1 1.09 0.34 1.18

Lower triangular R where A = (R^T)R

2.0396

1.5297 1.6401

0.27456 0.24998 0.78875

0.049029 0.61886 0.64427 0.61606

Upper triangular R^T where A = (R^T)R

2.0396 1.5297 0.27456 0.049029

1.6401 0.24998 0.61886

0.78875 0.64427

0.61606

Table 19.7: Matrix example 6: Cholesky factorization

19.9 Matrix multiplication

Given two matrices � and �, it is frequently necessary to form the product, or the product of the transposes,
as an < by = matrix �, where < ≥ 1 and = ≥ 1. The options are

� = ��, where � is < × :, and � is : × =,
� = �) �, where � is : × <, and � is : × =,
� = ��) , where � is < × :, and � is = × :,
� = �) �) , where � is : × <, and � is = × :,

as long as : ≥ 1 and the dimensions of � and � are appropriate to form the product, as indicated. For
instance, using the singular value decomposition routine just described, followed by multiplying the*, Σ, and

314 SimFIT reference manual

+) matrices for the simple 4 by 3 matrix indicated shows that

©
«

1 0 0
0 1 0
0 0 1
1 0 1

ª®®®¬
=

©
«

−1/
√

6 0 1/
√

2
0 1 0

−1/
√

6 0 −1/
√

2
−2/

√
6 0 0

ª®®®¬
©«
√

3 0 0
0 1 0
0 0 1

ª®
¬
©«
−1/

√
2 0 −1/

√
2

0 1 0
1/
√

2 0 −1/
√

2

ª®
¬
.

19.10 Evaluation of quadratic forms

Table 19.8 illustrates a special type of matrix multiplication that is frequently required, namely

Title of matrix A:

4 by 4 positivedefinite symmetric matrix

Title of vector x:

Vector with 4 components 1, 2, 3, 4

(x^T)*A*x = 55.72

Title of matrix A:

4 by 4 positivedefinite symmetric matrix

Title of vector x:

Vector with 4 components 1, 2, 3, 4

(x^T)*(A^{1})*x = 20.635

Table 19.8: Matrix example 7: Evaluation of quadratic forms

&1 = G) �G

&2 = G) �−1G

for a square = by = matrix � and a vector G of length =. In this case the data analyzed are in the test files
matrix.tf3 and vector.tf3. The form&1 can always be calculated but the form&2 requires that the matrix
� is positive-definite and symmetric, which is the case when � is a covariance matrix and a Mahalanobis
distance is required.

19.11 Solving �G = 1 (full rank)

Table 19.9 shows the computed solution for

�G = 1

G = �−11

where � is the square matrix of table 19.2 and 1 is the vector 1, 2, 3, 4. When the = by < matrix � is not
square or is singular, a < by = pseudo inverse �+ can be defined in terms of the &' factorization or singular
value decomposition as

�+
= '−1&)1 if � has full column rank

= +Ω*) if � is rank deficient,

where diagonal elements of Ω are reciprocals of the singular values.

19.12 Solving �G = 1 (!1, !2, !∞norms)
Table 19.10 illustrates the solutions of the overdetermined linear system �G = 1 where � is the 7 by 5 matrix
of table 19.3 1 is the vector (1, 2, 3, 4, 5, 6, 7,), i.e. the test files matrix.tf2 and vector.tf2.

Numerical analysis 315

Solution to Ax = b where the square matrix A is:

Matrix of dimension 5 by 5 (i.e. matrix.tf1}

and the vector b is:

Vector with 5 components 1, 2, 3, 4, 5 (i.e. vector.tf1}

rhs vector (b) Solution (x)

1.0 0.43985

2.0 0.2175

3.0 0.07896

4.0 0.042704

5.0 0.15959

Table 19.9: Solving �G = 1: square where �−1 exists

L1norm solution to Ax = b

1.9514

0.42111

0.56336

0.043038

0.67286

L1norm objective function = 4.9252

L2norm solution to Ax = b

1.2955

0.77603

0.33657

0.082384

0.98542

The rank of A (from SVD) = 5

L2norm objective function = 10.962

L_infinity norm solution to Ax = b

1.053

0.74896

0.27683

0.26139

0.97905

L_infinity norm objective function = 1.5227

Table 19.10: Solving �G = 1: overdetermined in 1, 2 and ∞ norms

The solutions illustrated list the parameters that minimize the residual vector A = �G − 1 corresponding to the
three usual vector norms as follows.

• The 1-norm ‖A‖1

This finds a possible solution such that the sum of the absolute values of the residuals is minimized. The
solution is achieved by iteration from starting estimates provided, which can be all -1, all 0 (the usual
first choice), all 1, all user-supplied, or chosen randomly from a uniform distribution on [-100,100].
It may be necessary to scale the input data and experiment with starting estimates to locate a global
best-fit minimum with difficult cases.

• The 2-norm ‖A‖2

This finds the unique least squares solution that minimizes the Euclidean distance, i.e. the sum of

316 SimFIT reference manual

squares of residuals.

• The ∞-norm ‖A‖∞
This finds the solution that minimizes the largest absolute residual.

19.13 The symmetric eigenvalue problem

Table 19.11 illustrates the solution for a symmetric eigenvalue problem, that is, finding the eigenvectors and
eigenvalues for the system

�G = _�G,

where � and � are symmetric matrices of the same dimensions and, in addition, � is positive definite.

Matrix A:

0.24 03.9 0.42 0.16

0.39 01.1 0.79 0.63

0.42 07.9 0.25 0.48

0.16 06.3 0.48 0.03

Matrix B:

4.16 3.12 0.56 0.1

3.12 5.03 0.83 1.09

0.56 0.83 0.76 0.34

0.1 1.09 0.34 1.18

Eigenvalues...Case: Ax = lambda*Bx

2.2254

0.45476

0.10008

1.1270

Eigenvectors by column...Case Ax = lambda*Bx

0.069006 0.30795 0.44694 0.55279

0.5.7401 0.53286 0.037084 0.67661

1.5428 0.34964 0.050477 0.92759

1.4004 0.62111 0.47425 0.25095

Table 19.11: The symmetric eigenvalue problem

In the case of table 19.11, the data for � were contained in test file matrix.tf4, while � is the matrix in
matrix.tf3. It should be noted that the alternative problems ��G = _G and ��G = _G can also be solved
and, in each case, the eigenvectors are available as the columns of a matrix - that is normalized so that

-) �- = � , for �G = _�G, and ��G = _G,

-) �−1- = � , for ��G = _G.

19.14 User-defined models

Many numerical procedures require users to provide model equations, and this is done in SimFIT by supplying
model files. In order to assist users to develop their own models a special program, usermod, is distributed
as part of the SimFIT package. This provides the following procedures.

Numerical analysis 317

❏ After a model has been selected it is checked for consistency. If all is well the appropriate parts of the
program will now be able to use that particular model. If the model has an error it will be specified and
you can use your editor to attempt a repair. Note that, after any editing, the model file must be read in
again for checking.

❏ After a model has been accepted you can check, that is, supply the arguments and observe the stack
operations which are displayed in color-code as the model is evaluated.

❏ For single functions of one variable you can plot, find zeros or integrate.

❏ For single functions of two variables you can plot, or integrate.

❏ For several functions of one variable you can plot selected functions.

❏ For = functions of < variables you can find simultaneous zeros if = = <, integrate for any = and <, or
optimize if < = = − 1.

❏ Default settings are provided for parameters, limits, tolerances and starting estimates, and these can be
edited interactively as required. Note that parameters ?(8) used by the models will be those set from
the main program, and the same is true for absolute error tolerance 4?B01B, relative error tolerance
4?BA4;, and the integration limits 1;8<(8) and C;8<(8).

❏ A default template is provided which users can edit to create their own models.

19.15 Locating a zero of one function of one variable

Users must supply a relative error accuracy factor 4?BA4;, two values � and �, and a constant � such that, for
6(G) = 5 (G) − �, then 6(�)6(�) < 0. If the values supplied are such that 6(�)6(�) > 0, the program will
attempt to enlarge the interval in order to bracket a zero, but it will not change the sign of � or �. Users must
do this if necessary by editing the starting estimates � and �. The program returns the root as - if successful,
where - and . have been located such that

|- − . | ≤ 2.0 × 4?BA4; × |/ |

and |6(/) | is the smallest known function value, as described for NAG routine C05AZF.

As an example, input the special function model file usermods.tf1 which defines one equation in one
variable, namely the cumulative normal distribution function (page 420) for which the model is as follows.

%

Model: f(x) = phi(x) i.e. the normal cdf

%

1 equation

1 variable

0 parameters

%

x

phi(x)

f(1)

%

Input 5 (G) = 0.975 so the routine is required to estimate G such that

0.975 =
1

√
2c

∫ G

−∞
exp

(
− C

2

2

)
3C

and, after setting some reasonable starting estimates, e.g., the defaults (-1,1), the following message will be
printed

318 SimFIT reference manual

Success : Root = 1.96000E+00 (EPSREL = 1.00000E03)

giving the root estimated by the SimFIT implementation of C05AZF.

19.16 Locating zeros of = functions of = variables

The model file must define a system of = equations in = variables and the program will attempt to locate
G1, G2, . . . , G= such that

58 (G1, G2, . . . , G=) = 0, for 8 = 1, 2, . . . , =.

Users must supply good starting estimates by editing the default H1, H2, . . . , H=, or installing a new H vector
from a file, and the accuracy can be controlled by varying 4?BA4;, since the program attempts to ensure that

|G − Ĝ | ≤ 4?BA4; × |Ĝ |,

where Ĝ is the true solution, as described for NAG routine C05NBF. Failure to converge will lead to nonzero
IFAIL values, requiring new starting estimates.

As an example, input the test file c05nbf_e.mod which defines 9 equations in 9 variables, and after setting
H(8) = 0 for 8 = 1, 2, . . . , 9 select to locate zeros of = equations in = variables. The following table will result

From C05NBF: IFAIL = 0, FNORM = 7.448E10, XTOL = 0.001

x(1) = 0.570653 ... fvec(1) = 0.00000252679

x(2) = 0.681625 ... fvec(2) = 0.0000156881

x(3) = 0.701732 ... fvec(3) = 0.00000028357

x(4) = 0.704215 ... fvec(4) = 0.0000130839

x(5) = 0.701367 ... fvec(5) = 0.000987684

x(6) = 0.691865 ... fvec(6) = 0.00000655571

x(7) = 0.665794 ... fvec(7) = 0.0000130536

x(8) = 0.596034 ... fvec(8) = 0.00000117770

x(9) = 0.416411 ... fvec(9) = 0.00000295110

showing the solution vector and vector of function values for the tridiagonal system

(3 − 2G1)G1 − 2G2 = −1

−G8−1 + (3 − 2G8)G8 − 2G8+1 = −1, 8 = 2, 3, . . . , 8

−G8 + (3 − 2G9)G9 = −1

estimated by the SimFIT implementation of C05NBF. The model file is as follows.

Numerical analysis 319

%

Example: 9 functions of 9 variables as in NAG C05NBF

set y(1) to y(9) = 1 for good starting estimates

.............

f(1)=(32x(1))x(1)2x(2)+1, ..., f9=x(8)+(32x(9))x(9)+1

The fortran loop is defined in the NAG documentation as:

do k = 1, n

fvec(k) = (three two*x(k))*x(k) + one

if (k.gt.1) fvec(k) = fvec(k) x(k1)

if (k.lt.n) fvec(k) = fvec(k) two*x(k+1)

enddo

Usage as follows

Select simulation then open program usermod

Select n functions of m variables then read in this file

specifying 9 functions of 9 variables

Select to find a zero of n functions of n variables

Set all y(i) = 1 then solve f(x) = 0

NAG reports .5707,.6816,.7017, .7042,.7014,

.6919,.6658,.5960,.41640

.............

%

9 equations

9 variables

0 parameters

%

begin{expression}

f(1) = (3 2y(1))y(1) + 1 2y(2)

f(2) = (3 2y(2))y(2) + 1 y(1) 2y(3)

f(3) = (3 2y(3))y(3) + 1 y(2) 2y(4)

f(4) = (3 2y(4))y(4) + 1 y(3) 2y(5)

f(5) = (3 2y(5))y(5) + 1 y(4) 2y(6)

f(6) = (3 2y(6))y(6) + 1 y(5) 2y(7)

f(7) = (3 2y(7))y(7) + 1 y(6) 2y(8)

f(8) = (3 2y(8))y(8) + 1 y(7) 2y(9)

f(9) = (3 2y(9))y(9) + 1 y(8)

end{expression}

%

19.17 Integrating one function of one variable

The program accepts a user defined model for a single function of one variable and returns two estimates �1
and �2 for the integral

� =

∫ �

�

5 (G) 3G,

where � and � are supplied interactively. The value of �1 is calculated by Simpson’s rule and is rather
approximate, while that of �2 is calculated by adaptive quadrature. For smooth functions over a limited range
these should agree fairly closely, but large differences suggest a difficult integral, e.g., with spikes, requiring
more careful investigation. The values of 4?BA4; and 4?B01B control the accuracy of adaptive quadrature

320 SimFIT reference manual

such that, usually

|� − �2 | ≤ C>;
C>; = max(|4?B01B|, |4?BA4; | × |� |)

|� − �2 | ≤ ��(�''

��(�'' ≤ C>;,

as described for NAG routine D01AJF.

As an example, input the file usermod1.tf5 which defines the function

5 (G) = ?1 exp(?2G)

which is expressed as a model as follows.

%

Model: f(x) = p(1)*exp[p(2)*x]

%

1 equation

1 variable

2 parameters

%

p(2)

x

multiply

exponential

p(1)

multiply

f(1)

%

Setting ?1 = ?2 = 1 and requesting integration, gives

Numerical quadrature over the range: 0.0, 1.0

Number of Simpson divisions = 200

Area by the Simpson rule = 1.71828

IFAIL (from D01AJF) = 0

EPSABS = 0.000001

EPSREL = 0.001

ABSERR = 3.81535E15

Area by adaptive integration = 1.71828

for the areas by Simpson’s rule and the SimFIT implementation of D01AJF.

19.18 Integrating = functions of < variables

The program accepts a user defined model for = functions of < variables and estimates the = integrals

�8 =

∫ �1

�1

∫ �2

�2

. . .

∫ �<

�<

58 (G1, G2, . . . , G<) 3G< . . . 3G2 3G1

Numerical analysis 321

for 8 = 1, 2, . . . , =, where the limits are taken from the arrays �8 = 1;8<(8) and �8 = C;8<(8). The procedure
only returns IFAIL = 0 when

max
8

(��(�() (8)) ≤ max(|4?B01B|, |4?BA4; | × max
8

|��#�() (8) |),

where ��(�() (8) is the estimated absolute error in ��#�() (8), the final estimate for integral 8, as described
for NAG routine D01EAF.

As an example, input the test file d01fcf_e.mod which defines the the model used to evaluate the integral

� =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

4D1D
2
3

exp(2D1D3)
(1 + D2 + D4)2

3D4 3D3 3D2 3D1

as follows.

%

NAG: D01FCF example of one function of four variables

Note: this model can also be used to test D01EAF

f(y) = {4y(1)y(3)^2[exp(2y(1)y(3))]}/{1 + y(2) + y(4)}^2

Usage as follows

Select simulation then open program usermod

Read in this model

Set tolerances and limits (suggest all limits 0,1)

Select integrate n functions of m variables

NAG reports 0.5754 for epsrel=.0001

%

1 equation

4 variables

0 parameters

%

begin{expression}

f(1) = 4y(1)y(3)^2[exp(2y(1)y(3))]/[1.0 + y(2) + y(4)]^2

end{expression}

%

On requesting integration of = functions of < variables over the range (0, 1), the table

IFAIL (from D01EAF) = 0

EPSABS = 1.00000E06

EPSREL = 1.00000E03

Number BLIM TLIM

1 0.0 1.0

2 0.0 1.0

3 0.0 1.0

4 0.0 1.0

Number INTEGRAL ABSEST

1 0.575333 0.000107821

will be printed, showing the results from the SimFIT implementation of D01EAF.

322 SimFIT reference manual

19.19 Bound-constrained quasi-Newton optimization

The user supplied model must define = + 1 functions of = variables as follows

5 (1) = � (G1, G2, . . . , G=)
5 (2) = m�/mG1

5 (3) = m�/mG2

. . .

5 (= + 1) = m�/mG=

as the partial derivatives are required in addition to the function value. The limited memory quasi-Newton
optimization procedure also requires several other parameters, as now listed.

❏ "��((is the number of limited memory corrections to the Hessian that are stored. The value of 5 is
recommended but, for difficult problems, this can be varied in the range 4 to 17.

❏ ���)' should be about 1.0e+12 for low precision, 1.0e+07 for medium precision, and 1.0e+01 for
high precision. Convergence is controlled by ���)' and %�)$! and will be accepted if

|�: − �:+1 |/max(|�: |, |�:+1 |, 1) ≤ ���)' ∗ �%("��

at iteration : + 1, where �%("�� is machine precision, or if

max
8

(Projected Gradient(8)) ≤ %�)$!.

❏ Starting estimates and bounds on the variables can be set by editing the defaults or by installing from a
data file.

❏ The parameter �%'�#) allows intermediate output every �%'�#) iterations, and the final gradient
vector can also be printed if required.

❏ The program opens two files at the start of each optimization session, w_usermod.err stores interme-
diate output every �%'�#) iterations plus any error messages, while iterate.dat stores all iteration
details, as for qnfit and deqsol, when they use the LBFGSB suite for optimization. Note that, when
�%'�#) > 100 full output, including intermediate coordinates, is written to w_usermod.err at each
iteration.

As an example, input the model file optimum_e.mod, defining Rosenbruck’s two dimensional test function

5 (G, H) = 100(H − G2)2 + (1 − G)2

which has a unique minimum at G = 1, H = 1 and is represented as follows.

Numerical analysis 323

%

Rosenbrock’s 2dimensional function for optimisation

f(1) = 100(y x^2)^2 + (1 x)^2

f(2) = g(1)

= d(f(1))/dx

= 400x(y x^2) 2(1 x)

f(3) = g(2)

= d(f(1))/dy

= 200(y x^2)

%

3 equations

2 variables

0 parameters

%

begin{expression}

A = y x^2

B = 1 x

f(1) = 100*A^2 + B^2

f(2) = 400A*x 2B

f(3) = 200A

end{expression}

%

The iteration, starting at G = 0, H = 0 with �%'�#) = 5 proceeds as follows

Iterate F(x) |prj.grd.| Task

1 0.69219 5.0534 NEW_X

6 0.21146 3.1782 NEW_X

11 0.017938 0.3592 NEW_X

16 0.00017768 0.044729 NEW_X

20 5.5951E13 0.0000072120 CONVERGENCE:

NORM OF PROJECTED GRADIENT <= PGTOL

x(1) = 1.0, dF(x)/dx(1) = 0.00000721198

x(2) = 1.0, dF(x)/dx(2) = 0.00000287189

The parameter)�(informs users of the action required after each intermediate iteration, then finally it
records the reason for termination of the optimization.

19.20 Plotting contours for Rosenbrock optimization trajectory

The coordinates for the optimization trajectory, shown plotted as a thick segmented line in figure 19.1, were
taken from the file w_usermod.err, which was constructed from a separate run with �%'�#) = 101 then
added as an extra file to overlay the contours.

Care is sometimes needed to create satisfactory contour diagrams, and it helps both to understand the
mathematical properties of the function 5 (G, H) being plotted, and also to appreciate how SimFIT creates a
default contour diagram from the function values supplied. The algorithm for creating contours first performsa
scan of the function values for the minimum and maximum values, then it divides the interval into an arithmetic
progression, plots the contours, breaks the contours randomly to add keys, and prints a table of contour values
corresponding to the keys. As an example, consider figure 19.1 which plots contours for the previously
discussed Rosenbrock’s function in the vicinity of the unique minimum at (1,1). For smooth contours, 100
divisions were used on each axis, and user-defined proportionately increasing contour spacing was used to
capture the shape of the function around the minimum. If the default arithmetic or geometric progressions

324 SimFIT reference manual

Contours for Rosenbrock Optimization Trajectory

X

Y

-1.500

1.500

1.500-1.500

Key Contour
 1 1.425
 2 2.838
 3 5.663
 4 11.313
 5 22.613
 6 45.212
 7 90.412
 8 1.808×102

 9 3.616×102

 10 7.232×102

1

2

2

3

3

4

4

5

5
6

6

7

7

8

8

9 9

10 10

Figure 19.1: Contour diagram for Rosenbrock optimization trajectory

are inadequate, as in this case, users can select contour spacing by supplying a vector of proportions, which
causes contours to be placed at those proportions of the interval between the minimum and maximum function
values. The number of contours can be varied, and the keys and table of contour values can be suppressed.

Part 20

Graph plotting techniques

20.1 Graphical objects and plotting styles

20.1.1 Symbols

Plotting Symbols Size and Line Thickness

Bar Fill Styles Bar Width and Thickness

Figure 20.1: Symbols, fill styles, sizes and widths.

326 SimFIT reference manual

Figure 20.1 shows how individual sizes and line thicknesses of plotting symbols can be varied independently.
Also, bars can be used as plotting symbols, with the convention that the bars extend from a baseline up to the
G, H coordinate of the current point. Such bars can have widths, fill-styles and line thicknesses varied.

20.1.2 Lines: standard types

There are four standard SimFIT line types, normal, dashed, dotted and dot-dashed, and error bars can terminate
with or without end caps if required, as shown in figure 20.2. Special effects can be created using stair step
lines, which can be used to plot cdfs for statistical distributions, or survival curves from survivor functions,
and vector type lines, which can be used to plot orbits of differential equations. Note that steps can be first H
then G, or first G then H, while vector arrows can point in the direction of increasing or decreasing C, and lines
can have variable thickness.

Line Types Error Bars

Steps and Vectors

Line Thickness

Figure 20.2: Lines: standard types

Program simplot reads in default options for the sequence of line types, symbol types, colors, barchart styles,
piechart styles and labels which will then correspond to the sequence of data files. Changes can be made
interactively and stored as graphics configuration templates if required. However, to make permanent changes
to the defaults, you configure the defaults from the main SimFIT configuration option, or from program
simplot.

Graphical objects and plotting styles 327

20.1.3 Lines: extending to boundaries

Figure 20.3 illustrates the alternative techniques available in SimFIT when the data to be plotted are clipped
to boundaries so as to eliminate points that are identified by symbols and also joined by lines.

-20

-10

0

10

20

0 20 40 60 80 100

-5

0

5

0 20 40 60 80 100

-5

0

5

0 20 40 60 80 100

Figure 20.3: Lines: extending to boundaries

The first graph shows what happens when the test file zigzag.tf1 was plotted with dots for symbols and
lines connecting the points, but with all the data within the boundaries. The second graph illustrates how
the lines can be extended to the clipping boundary to indicate the direction in which the next undisplayed
symbol is located, while the third figure shows what happens when the facility to extend lines to boundaries
is suppressed.

Note that these plots were first generated as .ps files using the flat-shape plotting option, then a PostScript
G stretch factor of 2 (page 210) was selected, followed by the use of GSview to transform to .eps and so
recalculate the BoundingBox parameters.

328 SimFIT reference manual

20.1.4 Text

Figure 20.4 shows how fonts can be used in any size or rotation and with many nonstandard accents, e.g., \̂.

Fonts
Times-Roman
Times-Italic
Times-Bold
Times-BoldItalic
Helvetica
Helvetica-Oblique
Helvetica-Bold
Helvetica-BoldOblique
Courier
Courier-Oblique
Courier-Bold

Courier-BoldOblique
Symbol
αβχδεφγηιϕκλµνοπθρστυϖωξψζ

Size and Rotation Angle

size =
 1, angle =

 -90

size = 1.2, angle = -45

size = 1.4, angle = 0
siz

e =
 1.

6,
an

gle
 =

 45

si
ze

 =
 1

.8
, a

ng
le

 =
 9

0
si

ze
 =

 2
, a

ng
le

 =
 1

10

Maths and Accents
⊥ ℜ ∞ £ ℵ ⊕ ♠ ♥ ♣
× ± ◊ ≈ • ÷
√ ƒ ∂ ∇ ∫ ∏ ∑ → ← ↑
↓ ↔ ≤ ≡ ≥ ≠ °
ΑΒΓ∆ΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤϒΦΧΨΩ∂∈
αβγδεζηϑικλµνξοπρσ τυϕχψωθφ
⊗ ^ ∪ ⊃ ⊂ ∃ ∋
π = X̄ = (1/ñ)∑X(i)
T = 21°C
[Ca++] = 1.2×10-9M
∂φ/∂t = ∇ 2φ
Γ(α) = ∫tα-1e-tdt
 α1x + α2x2

1 + β1x + β2x2

IsoLatin1Encoding Vector
 0 1 2 3 4 5 6 7

220-227: ı ` ´ ˆ ˜ ¯ ˘ ˙
230-237: ¨ ˚ ¸ ˝ ˛ ˇ
240-247: ¡ ¢ £ ¤ ¥ ¦ §
250-257: ¨ © ª « ¬ - ® ¯
260-267: ° ± ² ³ ´ µ ¶ ·
270-277: ¸ ¹ º » ¼ ½ ¾ ¿
300-307: À Á Â Ã Ä Å Æ Ç

310-317: È É Ê Ë Ì Í Î Ï
320-327: Ð Ñ Ò Ó Ô Õ Ö ×
330-337: Ø Ù Ú Û Ü Ý Þ ß

340-347: à á â ã ä å æ ç
350-357: è é ê ë ì í î ï

360-367: ð ñ ò ó ô õ ö ÷

370-377: ø ù ú û ü ý þ ÿ

Figure 20.4: Text, maths and accents.

Special effects can be created using graphics fonts such as ZapfDingbats, or user-supplied dedicated special
effect functions, as described elsewhere (page 366). Scientific symbols and simple mathematical equations
can be generated, but the best way to get complicated equations, chemical formulas, photographs or other
bitmaps into SimFIT graphs is to use PSfrag or editps.

Figure 20.4 demonstrates several possibilities for displaying mathematical formulae directly in SimFIT graphs,
and it also lists the octal codes for some commonly required characters from the IsoLatin1 encoding. Actually,
octal codes can be typed in directly (e.g., \361 instead of ñ), but note that text strings in SimFIT plots can
be edited at two levels: at the simple level only standard characters can be typed in, but at the advanced
level nonstandard symbols and maths characters can be selected from a font table. Note that, while accents
can be added individually to any standard character, they will not be placed so accurately as when using the
corresponding hard-wired characters e.g., from the IsoLatin1 encoding.

Graphical objects and plotting styles 329

20.1.5 Fonts, character sizes and line thicknesses

The fonts, letter sizes, and line thicknesses used in SimFIT graphics are those chosen from the PostScript menu,
so, whenever a font or line thickness is changed, the new details are written to the PostScript configuration file
w_ps.cfg. If the size or thickness selected is not too extreme, it will then be stored as the default to be used
next time. However, it should be noted that, when the default sizes are changed, the titles, legends, labels,
etc. may not be positioned correctly. You can, of course, always make a title, legend, or label fit correctly
by moving it about, but, if this is necessary, you may find that the defaults are restored next time you use
SimFIT graphics. If you insist on using an extremely small or extremely large font size or line thickness and
SimFIT keeps restoring the defaults, then you can overcome this by editing the PostScript configuration file
w_ps.cfg and making it read-only. Users who know PostScript will prefer to use the advanced PostScript
option, whereby the users own header file can be automatically added to the PostScript file after the SimFIT
dictionary has been defined, in order to re-define the fonts, line thicknesses or introduce new definitions, logos
plotting symbols, etc.

20.1.6 Arrows

Figure 20.5 shows that arrows can be of three types: line, hollow or solid and these can be of any size.

Arrow Types

Line Arrow

Outline Arrow

Solid Arrow

Transparent Box

Opaque Box

Arrows and Boxes

K = 1

Figure 20.5: Arrows and boxes

However use can be made of headless arrows to create special effects. From this point of view a headless line
arrow is simply a line which can be solid, dashed, dotted or dash-dotted. These are useful for adding arbitrary
lines. A headless outline arrow is essentially a box which can be of two types: transparent or opaque. Note
that the order of priority in plotting is

Extra Text > Graphical Objects > Data plotted, titles and legends

and this allows boxes to be used to simply obliterate plotted data or to surround extra text allowing the
background to show through. Transparent boxes, are useful for surrounding information panels, opaque boxes
are required for chemical formulae or mathematical equations, while background colored solid boxes can be
used to blank out features as shown in figure 20.5. To surround a text string by a rectangular box for emphasis,
position the string, generate a transparent rectangular box, then drag the opposing corners to the required
coordinates.

330 SimFIT reference manual

20.1.7 Basic plotting styles

SimFIT offers a large choice of options to present data and results from model fitting and, to illustrate the
basic plotting styles, an example from fitting the three epidemic differential equations using deqsol will be
presented.

Perhaps the usual style for scientific graphics is to simply display the data and axes with tick marks pointing
inwards and no additional features (see the Standard Axes plot of figure 20.6). However, the tick marks

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Standard Axes

t

y(
i)

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Offset Axes

t

y(
i)

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Offset and Box

t

y(
i)

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Grid Lines

t

y(
i)

Figure 20.6: Basic plotting styles

pointing inwards coupled with overlaying the data and fitted curve on top of the - axis suggests that offset
axes with tick marks pointing outwards (as in the Offset Axes plot of figure 20.6) could be an improvement.
Again, some regard a box round the data plotted (as in the Offset and Box plot of figure 20.6) to be visually
pleasing, while often grid lines (as in the Grid Lines example of figure 20.6) help to establish coordinates,
especially in calibration curves.

SimFIT allows you to choose such default plotting styles from the configuration control which can then be
edited at any subsequent stage for temporary changes. However, note that the default style set using the
configuration control will always be re-instated each time a new plotting sequence is initiated.

Also, note that alternative notation is often recommended for labeling axes. It could be argued that, in a purely
mathematical presentation, using C for time as in figure 20.6 is perfectly acceptable. However, if units need to
be given, some would use labeling such as Time (Days) while purists could argue that this is ambiguous and
that the numerical notation should be dimensionless so they might prefer a label such as Time/Days.

Graphical objects and plotting styles 331

20.1.8 Example of plotting without data: Venn diagram

It is possible to use program simplot as a generalized diagram drawing program without any data points, as
illustrated in figure 20.7.

A

A∩B̄

A∩B

B∩Ā

B

Venn Diagram for the Addition Rule

P{A∪ B} = P{A} + P{B} - P{A∩B}

Figure 20.7: Venn diagrams

The procedure used to create such graphs using any of the SimFIT graphical objects will be clear from the
details now given for this particular Venn diagram.

❍ Program simplot was opened using an arbitrary dummy graphics coordinate file.

❍ The [Data] option was selected and it was made sure that the dummy data would not be plotted as lines
or symbols, by suppressing the lines and symbols for this dummy data set.

❍ This transformed program simplot into an arbitrary diagram creation mode and the display became
completely blank, with no title, legends, or axes.

❍ The circles were chosen (as objects) to be outline circle symbols, the box was selected (as an arrow-
line-box) to be a horizontal transparent box, the text strings were composed (as text objects), and finally
the arrow was chosen (as an arrow-line-box) to be a solid script arrow.

❍ The diagram was then completed by editing the text strings (in the expert mode) to introduce the
mathematical symbols.

332 SimFIT reference manual

20.1.9 Polygons

Program simplot allows filled polygons as an optional linetype. So this means that any set of = coordinates
(G8 , H8) can be joined up sequentially to form a polygon, which can be empty if a normal line is selected, or
filled with a chosen color if the filled polygon option is selected. If the last (G=, H=) coordinate pair is not
the same as the first (G1, H1), the polygon will be closed automatically. This technique allows the creation of
arbitrary plotting objects of any shape, as will be evident from the sawtooth plot and stars in figure 20.8.

0

5

10

15

0 5 10 15 20

Plotting Polygons

x

y

Figure 20.8: Polygons

The sawtooth graph above was generated from a set of (G, H) points in the usual way, by suppressing the
plotting symbol but then requesting a filled polygon linetype, colored light gray. The open star was generated
from coordinates that formed a closed set, but then suppressing the plotting symbol and requesting a normal,
i.e. solid linetype. The filled star was created from a similar set, but selecting a filled polygon linetype, colored
black.

If you create a set of ASCII text plotting coordinates files containing arbitrary polygons, such as logos or
special plotting symbols, these can be added to any graph. However, since the files will simply be sets of
coordinates, the position and aspect ratio of the resulting objects plotted on your graph will be determined
by the ranges you have chosen for the G and H axes, and the aspect ratio chosen for the plot. Clearly, objects
created in this way cannot be dragged and dropped or re-scaled interactively. The general rule is that the axes,
title, plot legends, and displayed data exist in a space that is determined by the range of data selected for the
coordinate axes. However, extra text, symbols, arrows, information panels, etc. occupy a fixed space that does
not depend on the magnitude of data plotted. So, selecting an interactive data transformation will alter the
position of data dependent structures, but will not move any extra text, lines, or symbols.

Sizes and shapes 333

20.2 Sizes and shapes

20.2.1 Alternative axes and labels

It is useful to move axes to make plots more meaningful, and it is sometimes necessary to hide labels, as
with the plot of H = G3 in figure 20.9, where the second G and third H label are suppressed. The figure also
illustrates moving an axis in barcharts with bars above and below a baseline.

-1.00

-0.50

0.50

1.00

-1.00 0.00 0.50 1.00

x

y
y = x3

-5.00

-2.50

0.00

2.50

5.00

D
ay 0

D
ay 1

D
ay 2

D
ay 3

D
ay 4

D
ay 5

D
ay 6

D
ay 7

D
ay 8

D
ay 9

Time in Days

V
al

ue
 R

ec
or

de
d

Figure 20.9: Axes and labels

20.2.2 Transformed data

Data should not be transformed before analysis as this distorts the error structure, but there is much to be said
for viewing data with error bars and best fit curves in alternative spaces, and program simplot transforms
automatically as in figure 20.10.

334 SimFIT reference manual

0.00

1.00

2.00

0.0 10.0 20.0 30.0 40.0 50.0

Original x,y Coordinates

x

y

0.00

2.00

4.00

6.00

0.0 10.0 20.0 30.0 40.0 50.0

Dixon Plot

x

1/
y

0.00

1.00

2.00

0.00 1.00 2.00 3.00 4.00 5.00

Single Reciprocal Plot

1/x

y

0.00

1.00

2.00

0.00 0.20 0.40 0.60 0.80 1.00

Eadie-Hofstee Plot

y/x

y

0.0

10.0

20.0

30.0

0.0 10.0 20.0 30.0 40.0 50.0

Hanes Plot

x

x/
y

0.00

1.00

2.00

10-1 1 10 102

x-Semilog Plot

log x

y

10-2

10-1

1

10

10-1 1 10 102

Hill Plot

log x

lo
g[

y/
(A

-y
)]

A = 1.8

10-1

1

10

10-1 1 10 102

Log-Log Plot

log x

lo
g

y

2.00

4.00

6.00

-1.00 0.00 1.00 2.00 3.00 4.00 5.00

Lineweaver-Burk Plot

1/x

1/
y

1:1 fit (extraploated)

2:2 fit

0.00

0.20

0.40

0.60

0.80

1.00

0.00 1.00 2.00

Scatchard Plot

y

y/
x 1:1 fit (extraploated)

2:2 fit

Figure 20.10: Plotting transformed data

Sizes and shapes 335

20.2.3 Alternative sizes, shapes and clipping

Plots can have horizontal, square or vertical format as in figure 20.11, and user-defined clipping schemes can
be used. After clipping, SimFIT adds a standard BoundingBox so all plots with the same clipping scheme will
have the same absolute size but, when GSview transforms ps into eps, it clips individual files to the boundary
of white space and the desirable property of equal dimensions will be lost.

-1.00

-0.50

0.00

0.50

1.00

-1.00 -0.50 0.00 0.50 1.00

x

y

Horizontal Format

x2 + y2 = 1

-1.00

-0.50

0.00

0.50

1.00

-1.00 -0.50 0.00 0.50 1.00

x

y

Square Format

x2 + y2 = 1

-1.00

-0.50

0.00

0.50

1.00

-1.00 -0.50 0.00 0.50 1.00

x

y

Vertical Format

x2 + y2 = 1

Figure 20.11: Sizes, shapes and clipping.

20.2.4 Rotated and re-scaled graphs

PostScript files can be read into editps which has options for re-sizing, re-scaling, editing, rotating, making
collages, etc. (see page 364. In figure 20.12 the box and whisker plot was turned on its side to generate a
side-on barchart. To do this sort of thing you should learn how to browse a SimFIT PostScript file in the
SimFIT viewer to read BoundingBox coordinates, in PostScript units of 72 to one inch, and calculate how
much to translate, scale, rotate, etc. PostScript users should be warned that the special structure of SimFIT

January

February

M
arch

A
pril

M
ay

Pe
rc

en
ta

ge
 I

m
pr

ov
em

en
t

0%
10

0%

In
 O

ve
ra

ll
O

ut
pu

t

January

February

March

April

May

Percentage Improvement

0% 100%

In Overall Output

Figure 20.12: Rotating and re-scaling

PostScript files that allows extensive retrospective editing using editps, or more easily if you know how using
a simple text editor like notepad, is lost if you read such graphs into a graphics editor program like Adobe
Illustrator. Such programs start off by redrawing vector graphics files into their own conventions which are
only machine readable.

336 SimFIT reference manual

20.2.5 Changed aspect ratios and shear transformations

The barchart in figure 20.13 below was scaled to make the X-axis longer than the Y-axis and vice-versa, but
note how this type of differential scaling changes the aspect ratio as illustrated. Since rotation and scaling do
not commute, the effect created depends on the order of concatenation of the transformation matrices. For
instance, scaling then rotation cause shearing which can be used to generate 3-dimensional perspective effects
as in the last sub-figure (see page 364).

0.00

2.00

4.00

6.00

Bar Chart Overlaps, Groups and Stacks
V

al
ue

s

Overlap

Group

Stack

0.00

2.00

4.00

6.00

Bar Chart Overlaps, Groups and Stacks

Va
lue

s

Overlap

Group
Stack

0.00

2.00

4.00

6.00

Bar Chart Overlaps, Groups and Stacks

V
a
lu

e
s

O
verlap

G
roup

Stack

0.
00

2.
00

4.
00

6.
00

B
ar

 C
h
ar

t
O

ve
rl

ap
s,
 G

ro
u
p
s
an

d
 S

ta
ck

s

Valu
es

Overlap

Group

Stack

0.00

2.00

4.00

6.00

Bar C
hart O

verl
aps, G

roups a
nd Stacks

Valu
es

Overlap

Group

Stack

Figure 20.13: Aspect ratios and shearing effects

Sizes and shapes 337

20.2.6 Reduced or enlarged graphs

Response Against Time

R
es

p
o

n
se

-5.00

-2.50

0.00

2.50

5.00

D
ay 0

D
ay 1

D
ay 2

D
ay 3

D
ay 4

D
ay 5

D
ay 6

D
ay 7

D
ay 8

D
ay 9

Response Against Time

R
es

p
o

n
se

-5.00

-2.50

0.00

2.50

5.00

D
ay 0

D
ay 1

D
ay 2

D
ay 3

D
ay 4

D
ay 5

D
ay 6

D
ay 7

D
ay 8

D
ay 9

Response Against Time

R
es

p
o

n
se

-5.00

-2.50

0.00

2.50

5.00

D
ay 0

D
ay 1

D
ay 2

D
ay 3

D
ay 4

D
ay 5

D
ay 6

D
ay 7

D
ay 8

D
ay 9

Response Against Time

R
es

p
o

n
se

-5.00

-2.50

0.00

2.50

5.00
D

ay 0

D
ay 1

D
ay 2

D
ay 3

D
ay 4

D
ay 5

D
ay 6

D
ay 7

D
ay 8

D
ay 9

Response Against Time

R
es

p
o

n
se

-5.00

-2.50

0.00

2.50

5.00

D
ay 0

D
ay 1

D
ay 2

D
ay 3

D
ay 4

D
ay 5

D
ay 6

D
ay 7

D
ay 8

D
ay 9

Figure 20.14: Resizing fonts

It is always valuable to be able to edit a graph retrospectively, to change line or symbol types, eliminate
unwanted data, suppress error bars, change the title, and so on. SimFIT PostScript files are designed for just
this sort of thing, and a typical example would be altering line widths and font sizes as a figure is re-sized (see
page 364). In figure 20.14 the upper sub-figures are derived from the large figure by reduction, so the text
becomes progressively more difficult to read as the figures scale down. In the lower sub-figures, however, line
thicknesses and font sizes have been increased as the figure is reduced, maintaining legibility. Such editing
can be done interactively, but SimFIT PostScript files are designed to make such retrospective editing easy as
described in the w_readme.* files and now summarized.

• Line thickness: Changing 11.00 setlinewidth to 22 setlinewidth doubles, while, e.g. 5.5 setlinewidth
halves all line thicknesses, etc. Relative thicknesses are set by simplot.

• Fonts: Times-Roman, Times-Bold, Helvetica, Helvetica-Bold (set by simplot), or, in fact, any of the
fonts installed on your printer.

• Texts: ti(title), xl(G legend), yl(H legend), tc(centered for G axis numbers), tl(left to right), tr(right to
left), td(rotated down), ty(centered for H axis numbers).

• Lines: pl(polyline), li(line), da(dashed line), do(dotted line), dd(dashed dotted).

• Symbols: ce(i.e. circle-empty), ch(circle-half- filled), cf(circle-filled), and similarly for triangles(te, th,
tf), squares(se, sh, sf) and diamonds(de, dh, df). Coordinates and sizes are next to the abbreviations to
move, enlarge, etc.

If files do not print after editing you have probably added text to a string without padding out the key. Find
the fault using program GSview then try again.

338 SimFIT reference manual

20.2.7 Split axes

Sometimes split axes can show data in a more illuminating manner as in figure 20.15. The options are to
delete the zero time point and use a log scale to compress the sparse asymptotic section, or to cut out the
uninformative part of the best fit curve between 10 and 30 days.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 10 20 30
Time (Days)

Fr
ac

tio
n

of
 F

in
al

 S
iz

e

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 2 4 6 8 10
Time (Days)

Fr
ac

tio
n

of
 F

in
al

 S
iz

e

30

Figure 20.15: Split axes

Windows users can do such things with enhanced metafiles (*.emf), but there is a particularly powerful way
for PostScript users to split SimFIT graphs in this way. When the SimFIT PostScript file is being created there
is a menu selectable shape option that allows users to chop out, re-scale, and clip arbitrary pieces of graphs,
but in such a way that the absolute position, aspect ratio, and size of text strings does not change. In this way
a master graph can be decomposed into any number of appropriately scaled slave sub-graphs. Then editps

can be used to compose a graph consisting of the sub-graphs rearranged, repositioned, and resized in any
configuration (see page 364). Figure 20.15 was created in this way after first adding the extra lines shown at
the splitting point.

Sizes and shapes 339

20.2.8 Stepping over intermediate data points

Sometimes it is advantageous to step over intermediate data points and, for clarity, only plot points at intervals
through the data set. For instance, there may be a large number of machine generated data points, far more
than is required to define a curve by the usual technique of joining joining up successive points by straight
lines. Plotting all the points in such cases would slow down the graphics display and, more importantly, could
lead to very large PostScript output files. Again, there would be times when a continuous curve is required to
illustrate a function defined by a reasonable number of closely spaced data points, but symbols at all points
would obscure the curve, or might only be required for labeling purposes. Figure 20.16 illustrates a case in
point.

-1

0

1

2

3

4

5

0 2 4 6 8 10

Damped Oscillations
Omitting NSTEP Intermediate Data Symbols

t

f(
t)

 =
 e

xp
(-

t/2
)s

in
(5

t)

NSTEP = 0

NSTEP = 5

NSTEP = 20

Figure 20.16: Stepping over intermediate points

Here even small symbols, like dots in the bottom figure where no points are omitted, would obscure the plot
and the middle plot with intermediate groups of five suppressed, could also be regarded as too crowded, while
the upper plot has sufficient symbols even with twenty points stepped over to identify the plot, say in an
information panel.

Of course such graphs can easily be created by pre-processing the data files before submitting for plotting.
However, SimFIT has a special facility to do this interactively. The technique required to create plots like
figure 20.16 is to submit two files with identical data, one to be plotted as a line joining up data to create the
impression of a continuous curve, the other to be plotted as symbols. Then, from the [Data] menu when the
plot is displayed, a parameter #()�% can be defined, where #()�% is the number of intermediate points
in each group to be stepped over. Observe that, when using this technique, the first and last data points are
always plotted to avoid misunderstanding.

340 SimFIT reference manual

20.3 Equations

20.3.1 Maths

You can add equations to graphs directly, but this will be a compromise, as specialized type setting techniques
are required to display maths correctly. The LATEX system is pre-eminent in the field of maths type-setting
and the PSfrag system, as revised by David Carlisle and others, provides a simple way to add equations to
SimFIT graphs. For figure 20.17, makdat generated a Normal cdf with ` = 0 and f = 1, then simplot created
cdf.eps with the key phi(x), which was then used by this stand-alone code to generate the figure, where the
equation substitutes for the key. LATEX PostScript users should be aware that SimFIT PostScript file format has
been specially designed to be consistent with the PSfrag package but, if you want to then use GhostScript to
create graphics file, say .png from .eps, the next section should be consulted.

\documentclass[dvips,12pt]{article}

\usepackage{graphicx}

\usepackage{psfrag}

\pagestyle{empty}

\begin{document}

\large

\psfrag{phi(x)}{$\displaystyle

\frac{1}{\sigma \sqrt{2\pi}}

\int_{\infty}^x \exp\left\{

\frac{1}{2} \left(\frac{t\mu}{\sigma} \right)^2 \right\}\,dt$}

\mbox{\includegraphics[width=6.0in]{cdf.eps}}

\end{document}

0.50

1.00

-2.00 -1.00 0.00 1.00 2.00 3.00

x

Cumulative Normal
Distribution Function

The

1

σ
p

2π

Z x

�∞
exp

(

�

1
2

�

t�µ
σ

�2
)

dt

Figure 20.17: Plotting mathematical equations

Equations 341

20.3.2 Chemical Formulæ

LATEX code, as below, is intended for document preparation and adds white space to the final .ps file. The
easiest way round this complication is to add an outline box to the plot, as in figure ??. Then, after the .png
file has been created, it can be input into, e.g., GIMP, for auto clipping to remove extraneous white space,
followed by deletion of the outline box if required.

\documentclass[dvips,12pt]{article}

\usepackage{graphicx}

\usepackage{psfrag}

\usepackage{carom}

\pagestyle{empty}

\begin{document}

\psfrag{formula}

{\begin{picture}(3000,600)(0,0)

\thicklines

\put(0,0){\bzdrv{1==CH$_{2}$NH$_{2}$;4==CH$_{2}$N(Me)$_{2}$}}

\put(700,450){\vector(1,0){400}}

\put(820,550){[O]}

\put(1000,0){\bzdrv{1==CHO;4==CH$_{2}$N(Me)$_{2}$}}

\put(1650,400){+}

\put(1750,400){NH$_{3}$}

\put(2000,450){\vector(1,0){400}}

\put(2120,550){[O]}

\put(2300,0){\bzdrv{1==CO$_{2}$H;4==CH$_{2}$N(Me)$_{2}$}}

\end{picture}}

\mbox{\includegraphics{chemistry.eps}}

\end{document}

0

1

2

0 1 2 3 4 5

Oxidation of p-Dimethylaminomethylbenzylamine

Time (min)

C
on

ce
nt

ra
tio

n
(m

M
)

❜
❜

✧
✧

❜
❜

✧
✧

❜❜

✧✧

CH2NH2

CH2N(Me)2

✲
[O] ❜

❜

✧
✧

❜
❜

✧
✧

❜❜

✧✧

CHO

CH2N(Me)2

+NH3
✲

[O] ❜
❜

✧
✧

❜
❜

✧
✧

❜❜

✧✧

CO2H

CH2N(Me)2

Figure 20.18: Plotting chemical structures

342 SimFIT reference manual

20.3.3 Composite graphs

The technique used to combine sub-graphs into a composite graph is easy (see page 364). First use your
drawing or painting program to save the figures of interest in the form of eps files. Then the SimFIT graphs
and any component eps files are read into editps to move them and scale them until the desired effect is
achieved. In figure 20.19, data were generated using deqsol, error was added using adderr, the simulated
experimental data were fitted using deqsol, the plot was made using simplot, the chemical formulae and
mathematical equations were generated using LATEX and the final graph was composed using editps.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 1.00 2.00 3.00 4.00 5.00

t (min)

x(
t)

, y
(t

),
 z

(t
)

x(t)

y(t)

z(t)

A kinetic study of the oxidation of p-Dimethylaminomethylbenzylamine

"

"

b

b

b

b

"

"b

b

"

"

CH2NH2

CH2N(Me)2

-

[O] "

"

b

b

b

b

"

"b

b

"

"

CHO

CH2N(Me)2

+ NH3
-

[O] "

"

b

b

b

b

"

"b

b

"

"

CO2H

CH2N(Me)2

d
dt

0

@

x
y
z

1

A

=

0

@

�k
+1 k

�1 0
k
+1 (�k

�1�k
+2) k

�2

0 k
+2 �k

�2

1

A

0

@

x
y
z

1

A

;

0

@

x0

y0

z0

1

A

=

0

@

1
0
0

1

A

Figure 20.19: Chemical formulas

Pie charts and bar charts 343

SIMFIT

Style 1

Style 2

Style 3

Style 4

Style 5

Style 6

Style 7

Style 8

Style 9

Style 10

Pie Chart Fill Styles

Pie key 1

Pie key 2

Pie key 3

Pie key 4

Pie key 5

Pie key 6

Pie key 7

Pie key 8

Pie key 9

Pie key 10

SIMFIT

-2.50

0.00

2.50

5.00

7.50
January

February

M
arch

April

M
ay

Perspective Effects In Bar Charts

R
an

ge
s,

 Q
ua

rt
ile

s,
 M

ed
ia

ns

Figure 20.20: Perspective in barcharts, box and whisker plots and piecharts

20.4 Bar charts and pie charts

20.4.1 Perspective effects

Perspective can be useful in presentation graphics but it must be realized that, when pie chart segments are
moved centrifugally, spaces adjacent to large segments open more than those adjacent to small sections. This
creates an impression of asymmetry to the casual observer, but it is geometrically correct. Again, diminished
curvature compared to the perimeter as segments move out becomes more noticeable where adjacent segments
have greatly differing sizes so, to minimize this effect, displacements can be adjusted individually. A PostScript
special (page 381) has been used to display the logo in figure 20.20.

344 SimFIT reference manual

20.4.2 Advanced barcharts

SimFIT can plot barcharts directly from data matrices, using the exhaustive analysis of a matrix procedure
in simstat, but there is also an advanced barchart file format which gives users complete control over every
individual bar, etc. as now summarized and illustrated in figure 20.21.

• Individual bars can have arbitrary position, width, fill style and color.

• Bars can be overlapped, grouped, formed into hanging groups or stacked vertically.

• Error bars can be capped or straight, and above or below symbols.

• Extra features such as curves, arrows, panel identifiers or extra text can be added.

Bar Chart Features

Overlapping Group

Normal Group

Stack

Hanging Group

Box/Whisker

55%

0%

-35%

Figure 20.21: Advanced bar chart features

Of course the price that must be paid for such versatility is that the file format is rather complicated and the
best way to understand it is to consult the w_readme files for details, browse the test files barchart.tf?, then
read them into simplot to observe the effect produced before trying to make your own files. Labels can be
added automatically, appended to the data file, edited interactively, or input as simple text files.

Pie charts and bar charts 345

20.4.3 Three dimensional barcharts

The SimFIT surface plotting function can be used to plot three dimensional bars as, for example, using the
test file barcht3d.tf1 to generate figure 20.22. Blank rows and shading can also be added to enhance the
three dimensional effect.

Three Dimensional Bar Chart

June
May

April
March

February
January

Year 1
Year 2

Year 3
Year 4

Year 5

0%

100%

50%

Three Dimensional Bar Chart

June
May

April
March

February
January

Year 1

Year 2

0%

100%

50%

Figure 20.22: Three dimensional barcharts

Such plots can be created from = by< matrix files, or special vector files, e.g. with = values for G and < values
for H a =< + 6 vector is required with =, then <, then the range of G and range of H, say (0, 1) and (0, 1) if
arbitrary, followed by values of 5 (G, H) in order of increasing G at consecutive increasing values of H.

346 SimFIT reference manual

20.5 Error bars

20.5.1 Error bars with barcharts

Barcharts can be created interactively from a table of values. For example, figure 20.23 was generated by the
exhaustive analysis of a matrix procedure in simstat from matrix.tf1.

0.

10.

20.

30.

L
abel 1

L
abel 2

L
abel 3

L
abel 4

L
abel 5

Original Axes

x

y

0

5

10

15

20

25

30

35

April May June July August

N
um

be
r

In
fe

ct
ed

Figure 20.23: Error bars 1: barcharts

If the elements are measurements, the bars would be means, while error bars should be calculated as 95%
confidence limits, i.e. assuming a normal distribution. Often one standard error of the mean is used instead
of confidence limits to make the data look better, which is dishonest. If the elements are counts, approximate
error bars should be added to the matrix file in simplot from a separate file, using twice the square root of the
counts, i.e. assuming a Poisson distribution. After creating barcharts from matrices, the temporary advanced
barchart files can be saved.

Error bars 347

20.5.2 Error bars with skyscraper and cylinder plots

Barcharts can be created for tables, I(8, 9) say, where cells are values for plotting as a function of G (rows) and
H (columns). The G, H values are not required, as such plots usually require labels not numbers. Figure 20.24
shows the plot generated by simplot from the test file matrix.tf2.

Values

Month 7
Month 6

Month 5
Month 4

Month 3
Month 2

Month 1

Case 1
Case 2

Case 3
Case 4

Case 5

0

11

Simfit Skyscraper Plot with Error Bars

Values

Month 7
Month 6

Month 5
Month 4

Month 3
Month 2

Month 1

Case 1
Case 2

Case 3
Case 4

Case 5

0

11

Simfit Cylinder Plot with Error Bars

Figure 20.24: Error bars 2: skyscraper and cylinder plots

Errors are added from a file, and are calculated according to the distribution assumed. They could be twice
square roots for Poisson counts, binomial errors for proportions or percentages, or they could be calculated
from sample standard deviations using the C distribution for means. As skyscraper plots with errors are
dominated by vertical lines, error bars are plotted with thickened lines, but a better solution is to plot cylinders
instead of skyscrapers, as illustrated.

348 SimFIT reference manual

20.5.3 Slanting and multiple error bars

Error bar files can be created by program editfl after editing curve fitting files with all replicates, and such
error bars will be symmetrical, representing central confidence limits in the original(G, H) space. But, note
that these error bars can become unsymmetrical or slanting as a result of a transformation, e.g. log(H) or
Scatchard, using program simplot. Program binomial will, on the other hand, always generates noncentral
confidence limits, i.e. unsymmetrical error bars for binomial parameter confidence limits, and Log-Odds plots.

However, sometimes it is necessary to plot asymmetrical error bars, slanting error bars or even multiple error
bars. To understand this, note that the standard error bar test file errorbar.tf1 contains four columns with
the G coordinate for the plotting symbol, then the H-coordinates for the lower bar, middle bar and upper bar.
However, the advanced error bar test file errorbar.tf2 has six columns, so that the (G1, H1), (G2, H2), (G3, H3)
coordinates specified, can create any type of error bar, even multiple error bars, as will be seen in figure 20.25.

0.0

2.0

4.0

6.0

0.0 2.0 4.0 6.0

Slanting and Multiple Error Bars

x

y

Figure 20.25: Error bars 3: slanting and multiple

Note that the normal error bar files created interactively from replicates by editfl, qnfit, simplot, or compare

will only have four columns, like errorbar.tf1, with G, H1, H2, H3, in that order. The six-column files like
errorbar.tf2 required for multiple, slanting, or unsymmetrical error bars must be created as matrix files
with the columns containing G1, G2, G3, H1, H2, H3, in that order.

Error bars 349

20.5.4 Calculating error bars interactively

Figure 20.26 shows the best fit curve estimated by qnfit when fitting a sum of three Gaussians to the test
file gauss3.tf1 using the expert mode. Note that all the data must be used for fitting, not means. editfl

can generate error bar plotting files from such data files with replicates, but error bars can also be calculated
interactively after fitting, as illustrated for 95% confidence limits.

0.000

0.200

0.400

0.600

-4 0 4 8 12 16

Data and Best Fit Curve

x

y

0.000

0.200

0.400

0.600

-4 0 4 8 12 16

Means and Best Fit Curve

x

y

Figure 20.26: Error bars 4: calculated interactively

350 SimFIT reference manual

20.6 Three dimensional plotting

20.6.1 Surfaces and contours

SimFIT uses isometric projection, but surfaces can be viewed from any corner, and data can be shown as a
surface, contours, surface with contours, or 3-D bar chart as in figure 20.27.

Using SIMPLOT to plot Probability Contours

XY

Z

1

0

1

0

0

1

Using SIMPLOT to plot a Wavy Surface

XY

Z

1

0

1

0
0

10

Using SIMPLOT to plot a Fluted Surface

XY

Z

1.000×102

0.000

1.000×102

0.000
0

100

Using SIMPLOT to plot a Surface and Contours

XY

Z

1

-1

1

-1

-1

1
f(x,y) = x2 - y2

Using SIMPLOT to plot a Contour Diagram

X

Y

1.000

0.000

1.0000.000

Key Contour
 1 9.025×10-2

 2 0.181
 3 0.271
 4 0.361
 5 0.451
 6 0.542
 7 0.632
 8 0.722
 9 0.812
 10 0.903

1

1

2

2

2

2

3

3

3

4

4

4

5

5

5

6

7

8
9

10

Three Dimensional Bar Chart

June
May

April
March

February
January

Year 1
Year 2

Year 3
Year 4

Year 5

0%

100%

50%

Figure 20.27: Three dimensional plotting

Three dimensional plotting 351

20.6.2 Three dimensional space curves

Sets of G, H, I coordinates can be plotted in three dimensional space to represent either an arbitrary scatter of
points, a surface, or a connected space curve. Arbitrary points are best plotted as symbols such as circles or
triangles, surfaces are usually represented as a mesh of orthogonal space curves, while single space curves
can be displayed as symbols or may be connected by lines. For instance, space curves of the form

G = G(C), H = H(C), I = I(C)
can be plotted by generating G, H, I data for constant increments of C and joining the points together to create
a smooth curve as in figure 20.28.

x(t), y(t), z(t) curve and projection onto y = - 1

XY

Z

1.000

-1.000

1.000

-1.000
0.000

1.000

Figure 20.28: Space curves and projections

Such space curves can be generated quite easily by preparing data files with three columns of G, H, I data
values, then displaying the data using the space curve option in simplot. However users can also generate
space curves from G(C), H(C), I(C) equations, using the option to plot parametric equations in simplot or
usermod. The test file helix.mod shows you how to do this for a three dimensional helix. Note how the rear
(G, H) axes have been subdued and truncated just short of the origin, to improve the three dimensional effect.
Also, projections onto planes are generated by setting the chosen variable to a constant, or by writing model
files to generate G, H, I data with chosen coordinates equal to the value for the plane.

352 SimFIT reference manual

20.6.3 Projecting space curves onto planes

Sometimes it is useful to project space curves onto planes for purposes of illustration. Figure 20.29 shows a
simulation using usermod with the model file twister.mod. The parametric equations are

G = C cos C, H = C sin C, I = C2

and projections are created by fixing one the variables to a constant value.

Twister Curve with Projections onto Planes

-20

20

-20

20

-10

0

10

-10

0

10

0

400

100

200

300

z(t)

x(t)y(t)

Figure 20.29: Projecting space curves onto planes

Note the following about the model file twister.mod.

• There are 3 curves so there are 9 functions of 1 variable

• The value of G supplied is used as the parameter C

• Functions 5 (1), 5 (4), 5 (7) are the G(C) profiles

• Functions 5 (2), 5 (5), 5 (8) are the H(C) profiles

• Functions 5 (3), 5 (6), 5 (9) are the I(C) profiles

Also observe that the model parameters fix the values of the projection planes just outside the data range, at

?(1) = 20, ?(2) = 20.

Three dimensional plotting 353

20.6.4 Three dimensional scatter diagrams

Often it is necessary to plot sets of G, H, I coordinates in three dimensional space where the coordinates are
arbitrary and are not functions of a parameter C. This is the case when it is wished to illustrate scattering by
using different symbols for subsets of data that form clusters according to some distance criteria. For this type
of plotting, the sets of G, H, I triples, say principal components, are collected together as sets of three column
matrices, preferably referenced by a library file, and a default graph is first created. The usual aim would be
to create a graph looking something like figure 20.30.

Three Dimensional Scatter Plot

1

5

5

1
2

3
4 2

3
4

1

5

2

3

4

X
Y

Z

Type A
Type B

Figure 20.30: Three dimensional scatter plot

In this graph, the front axes have been removed for clarity, a subdued grid has been displayed on the vertical
axes, but not on the base and perpendiculars have been dropped from the plotting symbols to the base of the
plot, in order to assist in the identification of clusters.

Note that plotting symbols, minus signs in this case, have been added to the foot of the perpendiculars to
assist in visualizing the clustering. Also, note that distinct data sets, requiring individual plotting symbols,
are identified by a simple rule; data values in each data file are regarded as representing the same cluster, i.e.
each cluster must be in a separate file.

354 SimFIT reference manual

20.6.5 Two dimensional families of curves

Users may need to plot families of curves indexed by parameters. For instance, diffusion of a substance from
an instantaneous plane source is described by the equation

5 (G) = 1

2
√
c�C

exp

(
−G2

4�C

)

which is, of course, a normal distribution with ` = 0 and f2 = 2�C, where � is the diffusion constant and
C is time, so that 2�C is the mean square distance diffused by molecules in time C. Now it is easy to plot the
concentration 5 (G) predicted by this equation as a function of distance G and time C given a diffusion constant
�, by simulating the equation using makdat, saving the curves to a library file or project archive, then plotting
the collected curves. However, there is a much better way using program usermod which has the important
advantage that families of curves indexed by parameters can be plotted interactively. This is a more powerful
technique which provides numerous advantages and convenient options when simulating systems to observe
the behavior of the profiles as the indexing parameters vary.

Figure 20.31 shows the above equation plotted (in arbitrary units) using the model parameters

?8 = 2�C8 , for 8 = 1, 2, 3, 4

to display the diffusion profiles as a function of time. The plot was created using the model file family2d.mod,
which simply defines four identical equations corresponding to the diffusion equation but with four different
parameters ?8 . Program usermod was then used to read in the model, simulate it for the parameter values
indicated, then plot the curves simultaneously.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

-3 -2 -1 0 1 2 3

Diffusion From a Plane Source

Distance

C
on

ce
nt

ra
tio

n

0.25

0.5

0.75

1.0

Figure 20.31: Two dimensional families of curves

Three dimensional plotting 355

20.6.6 Three dimensional families of curves

Users may need to plot families of curves indexed by parameters in three dimensions. To show how this is
done, the diffusion equation dealt with previously (page 354) is reformulated, using H =

√
2�C, as

I(G, H) = 1

H
√

2c
exp

{
−1

2

(
G

H

)2
}

and is plotted in figure 20.32 for the same parameter values used before, but now as sections through the
surface of a function of two variables.

Diffusion From a Plane Source

3

-3

1.25

0.00
-2

-1
0

1
2

0.25
0.50

0.75
1.00

0.0

1.6

0.4

0.8

1.2

Z

XY

Figure 20.32: Three dimensional families of curves

This is, of course, a case of a family of parametric space curves projected onto the fixed values of H. Now the
model file family3d.mod was used by program usermod to create this figure, using the option to plot = sets
of parametric space curves, but you should observe a number of important facts about this model file before
attempting to plot your own families of space curves.

• There are 4 curves so there are 12 functions of 1 variable

• Functions 5 (1), 5 (4), 5 (7), 5 (10) are the parameter C, i.e. G

• Functions 5 (2), 5 (5), 5 (8), 5 (11) are the H values, i.e.
√

2�C

• Functions 5 (3), 5 (6), 5 (9), 5 (12) are the I values, i.e. the concentration profiles

Finally, it is clear that = space curves require a model file that specifies 3= equations, but you should also
realize that space curves cannot be plotted if there is insufficient variation in any of the independent variables,
e.g. if all H = :, for some fixed parameter :.

356 SimFIT reference manual

20.7 Specialized techniques

20.7.1 Segmented models with cross-over points

Often segmented models are required with cross-over points where the model equation swaps over at one or
more values of the independent variable. In figure 20.33, for instance, data are simulated then fitted using the
model updown.mod, showing how the three way get command get3(.,.,.) can be used to swap over from
one model to another at a fixed critical point.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Up-Down Normal/Normal-Complement Model

x

f(
x)

Cross-Over Point

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Up-Down Normal/Normal-Complement Model

x

f(
x)

Cross-Over Point

Figure 20.33: Models with cross over points

The model defined by updown.mod is

5 (G) = Φ((G − ?1)/?2) for G ≤ 6

= 1 −Φ((G − ?3)/?4) otherwise

where Φ(.) is the cumulative normal distribution, and this is the relevant swap-over code.

x

6

subtract

get3(1,1,2)

f(1)

The get3(1,1,2) command pops the G − 6 off the stack and uses get(1) or get(2) depending on the
magnitude of G, since a get3(i,j,k) command simply pops the top value off the stack and then uses get(i)
if this is negative, get(j) if this is zero (to machine precision), or get(k) otherwise. The cross-over point
can also be fixed using an extra parameter that is then estimated, but this can easily lead to ill-determined
parameters and a rank deficient covariance matrix if the objective function is insensitive to small variations
in the extra parameter.

Specialized techniques 357

20.7.2 Plotting single impulse functions

Plotting single impulse functions, as in figure 20.34, sometimes requires care due to the discontinuities.

0.0

10.0

20.0

-1.00 -0.50 0.00 0.50 1.00

x

f(
x)

Impulse Functions

Heaviside

Kronecker

Impulse

Spike

Gauss

Figure 20.34: Plotting single impulse functions

These graphs were created using program usermod together with the model file impulse.mod, which defines
the five impulse functions of one variable described on page 430, and uses 0 = ?(1) > 0 to fix the location,
and 1 = ?(2) > 0 to set the pulse width where necessary.

• The Heaviside unit function ℎ(G − 0). A pdf or survival curve stepped line type is required in order to
plot the abrupt step at G = 0.

• The Kronecker delta symbol X8 9 . The G-coordinate data were edited interactively in program usermod

in order to plot the vertical signal when 8 = 9 as a distinct spike. After editing there was one G value
at precisely G = 0, where the function value is one, and one at a short distance either side, where the
function values are zero.

• The square impulse function of unit area. Again a stepped line type is necessary to plot the abrupt
increase and decrease of this discontinuous function, and it should be noted that, by decreasing the
pulse width, the Dirac delta function can be simulated.

• The triangular spike function of unit area is straightforward to simulate and plot as long as the three
G-coordinates for the corners of the triangles are present.

• The Gauss function of unit area is easy to plot.

Note that the model file impulse.mod uses scaling factors and additive constants so that all five functions can
be displayed in a convenient vertically stacked format.

358 SimFIT reference manual

20.7.3 Plotting periodic impulse functions

Plotting periodic impulse functions, as in figure 20.35, sometimes requires care due to the discontinuities.

-5

0

5

10

15

20

-5 -3 0 3 5

x

f(
x)

Square Wave

Rectified Triangle

Morse Dot

Saw Tooth

Rectified Sine

Half Sine

Unit Impulse

Periodic Impulse Functions

Figure 20.35: Plotting periodic impulse functions

These graphs were created using program usermod together with the model file periodic.mod, which defines
the seven impulse functions of one variable described on page 430, and uses 0 = ?(1) > 0 to fix the period
and 1 = ?(2) > 0 to set the width where required.

• The square wave function oscillates between plus and minus one, so a pdf or survival curve stepped
line type is required in order to plot the abrupt step at G = _0, for positive integer _.

• The rectified triangular wave plots perfectly as long as the G-coordinate data are edited interactively in
program usermod to include the integer multiples of 0.

• The Morse dot is just the positive part of the square wave, so it also requires a stepped line type.

• The sawtooth function is best plotted by editing the G-coordinate data to include a point immediately
either side of the multiples of 0.

• The rectified sine wave and half-wave merely require sufficient points to create a smooth curve.

• The unit impulse function requires a second parameter to define the width 1, and this is best plotted
using a stepped line type.

Note that the model file periodic.mod uses scaling factors and additive constants so that all seven functions
can be displayed in a convenient vertically stacked format.

Specialized techniques 359

20.7.4 Subsidiary figures as insets

This is easily achieved using editps with the individual PostScript files (see page 364) as shown in figure 20.36.

0

1

2

0 1 2

t

D
at

a
an

d
B

es
t F

it
C

ur
ve

s

1 Exponential

2 Exponentials

-0.75

-0.25

0.25

0 1 2
t

lo
g 1

0
[f(

t)
]

log10 [f(t)] against t

Figure 20.36: Subsidiary figures as insets

20.7.5 Nonlinear growth curves

Figure 20.37 illustrates the use of male and female plotting symbols to distinguish experimental data, which
are also very useful when plotting correlation data for males and females.

0

25

50

75

100

125

0 2 4 6 8 10

Time (weeks)

Pe
rc

en
ta

ge
 o

f
A

ve
ra

ge
 F

in
al

 S
iz

e

MALE

FEMALE

Using GCFIT to fit Growth Curves

Figure 20.37: Growth curves

360 SimFIT reference manual

20.7.6 Immunoassay and dose-response dilution curves

Antibodies are used in bioassays in concentrations known up to arbitrary multiplicative factors, and dose
response curves are constructed by dilution technique, usually 1 in 2, 1 in 3, 1 in 10 or similar. By convention,
plots are labelled in dilutions, or powers of the dilution factor and, with this technique, affinities can only
be determined up to the unknown factor. Figure 20.38 was constructed using makfil in dilution mode with
dilutions 1, 2, 4, 8, 16 and 32 to create a data file with concentrations 1/32, 1/16, 1/8, 1/4, 1/2, 1. hlfit fitted
response as a function of concentration and a dilution curve was plotted.

0%

50%

100%

0.00 0.20 0.40 0.60 0.80 1.00

Doubling Dilution Assay

Proportion of Maximum Concentration

Pe
rc

en
ta

ge
 o

f
M

ax
im

um
 R

es
po

ns
e

0%

50%

100%

1/1 1/2 1/4 1/8 1/16 1/32 1/64

Doubling Dilution Curve

Dilution Factor
Pe

rc
en

ta
ge

 o
f

M
ax

im
um

 R
es

po
ns

e

0%

50%

100%

1 2-1 2-2 2-3 2-4 2-5 2-6

Doubling Dilution Curve

Dilution Factor

Pe
rc

en
ta

ge
 o

f
M

ax
im

um
 R

es
po

ns
e

Figure 20.38: Immunoassay and dose-response dilution curves

The transformation is equivalent to plotting log of reciprocal concentration (in arbitrary units) but this is not
usually appreciated. SIMPLOT can plot log(1/G) to bases 2, 3, 4, 5, 6, 7, 8 and 9 as well as 4 and ten,
allowing users to plot trebling, quadrupling dilutions, etc. To emphasize this, intermediate gradations can be
added and labeling can be in powers of the base, as now shown.

Specialized techniques 361

20.7.7 Information panels

Figure 20.39 illustrates techniques for adding information panels to identify the data plotted. To avoid having
to input text interactively where a sequence of similar data sets are to be plotted, default panel labels should
be set up using the configuration options.

0

5

10

15

20

25

0 2 4 6 8 10

Information Panel at the Side

x

y

λ=0.0,µ=1.0
λ=1.0,µ=1.1
λ=2.0,µ=1.2
λ=3.0,µ=1.3
λ=4.0,µ=1.4
λ=5.0,µ=1.5
λ=6.0,µ=1.6
λ=7.0,µ=1.7

0

5

10

15

20

25

0 2 4 6 8 10

Information Panel Below the Plot

x

y

λ=0.0,µ=1.0 λ=1.0,µ=1.1 λ=2.0,µ=1.2 λ=3.0,µ=1.3
λ=4.0,µ=1.4 λ=5.0,µ=1.5 λ=6.0,µ=1.6 λ=7.0,µ=1.7

0

5

10

15

20

25

0 2 4 6 8 10

Information Panel Inside the Plot

x

y

λ=0.0,µ=1.0
λ=1.0,µ=1.1
λ=2.0,µ=1.2
λ=3.0,µ=1.3
λ=4.0,µ=1.4
λ=5.0,µ=1.5
λ=6.0,µ=1.6
λ=7.0,µ=1.7

Figure 20.39: Information panels

The first figure illustrates the standard way to display a panel at the right hand side. Up to twenty lines and
symbols can be included at the side and it may be more convenient to use a square 1:1 aspect ratio to make
space available. The second graph illustrates the option to display the panel below the graph, but this is limited
to ten items. The third figure illustrates the effect of using a 4:3 aspect ratio but then dragging and dropping
the panel inside the graph. This third example illustrates two further ways to enhance the presentation of
graphs with panels: the font size is reduced, and the panel is surrounded by an opaque rectangle which was
configured to lie between the axes and data, so obliterating the underlying grid lines.

362 SimFIT reference manual

20.8 Parametric curves

Figure 20.28 and figure 20.31 are examples for parametric curves of the form G(C), H(C), while figure 20.29
and figure 20.32 are for G(C), H(C), I(C). Examples for A (\) follow.

20.8.1 A = A (\) parametric plot 1: Eight leaved rose

Figure 20.40, for example, was generated using the SimFIT model file rose.mod from usermod to define an
eight leaved rose in A = A (\) form using the following code.

%

Example: Eight leaved rose

r = A*sin(4*theta): where theta = x, r = f(1) and A = p(1)

%

1 equation

1 variable

1 parameter

%

x

4

multiply

sin

p(1)

multiply

f(1)

%

-1

1

-1 1

Rhodoneae of Abbé Grandi, r = sin(4)

x

y

Figure 20.40: A = A (\) parametric plot 1. Eight leaved Rose

Parametric curves 363

20.8.2 A = A (\) parametric plot 2: Logarithmic spiral with tangent

Figure 20.41 illustrates the logarithmic spiral A (\) = � exp(\ cotU), defined in SimFIT model filecamalot.mod
for � = 1, ?(1) = U, G = \, A = 5 (1) as follows.

1

p(1)

tan

divide

x

multiply

exp

f(1)

-5

0

5

-6 0 6

Logarithmic Spiral and Tangent

x

y

r(θ) Tangent

Figure 20.41: A = A (\) parametric plot 2. Logarithmic Spiral with Tangent

This profile is used in camming devices such as Camalots and Friends to maintain a constant angle U between
the radius vector for the spiral and the tangent to the curve, defined in tangent.mod as

A =
� exp(\0 cotU) [sin \0 − tan(\0 + U) cos \0]

sin \ − tan(\0 + U) cos \
.

Figure 20.41 used U = ?(1) = 1.4, \0 = %(2) = 6 and usermod to generate individual figures over the range
0 ≤ \ = G ≤ 10, then simplot plotted the ASCII text coordinates simultaneously, a technique that can be used
to overlay any number of curves.

Part 21

PostScript procedures

21.1 Encapsulated PostScript files

The best way to use SimFIT graphics is to archive standard sized SimFIT PostScript files in portrait orientation
and then, when required, manipulate them, followed by printing hardcopy, or by transforming into other
formats, such as .png, for pasting into documents. Most simple editing operations can be done using a text
editor as described later, but for more extensive manipulations program editps can be used as now described.

21.1.1 Using editps to manipulate PostScript files

An encapsulated PostScript file (*.eps) is a special type of self-contained one page PostScript file containing
a BoundingBox with dimensions, so that the file can be easily manipulated for re-sizing and inclusion within
documents. All PostScript files created by SimFIT adhere to this convention. Program editps will accept any
such files, but some features will only work with SimFIT .eps files.

21.1.2 Editing SimFIT Postscript files

After a SimFIT file has been loaded into editps it is possible to search for such items as the title, or legends,
etc., and edit as required. However, as described later, it is much easier to do such editing using a simple text
editor. Further, this type of editing is restricted to SimFIT PostScript files.

21.1.3 Rotating, re-sizing, and changing aspect ratios.

Figure 20.12 illustrates the effects of simple rotation, but a word of caution is required concerning re-scaling
of axes combined with rotations. Figure 20.13 illustrates how shearing effects can result when axes are scaled
differentially, and this is combined with rotation, as these operations do not commute.

21.1.4 Creating simple collages

Figure 1.1 illustrates a simple collage created using editps from a set of SimFIT PostScript files assembled
into a library file. If required, tiles, labels, and extra text can be added by program editps to identify the
sub-graphs or add further details. To create such collages it is advisable that all the files supplied should have
the same dimensions and orientation, as this facility can only generate collages with fixed cell dimensions.

21.1.5 Creating freestyle collages

Figure 1.2 and figure 1.3 show how a collage can be assembled using editps in freestyle mode with a set of
graphs that can have arbitrary dimensions and rotations. In addition to being able to move the sub-graphs into
any positions, this procedure also allows differential re-sizing of individual graphs. There is an extremely
important point to remember when creating freestyle collages: it is possible to create PostScript files from

Postscript procedures 365

SimFIT where the background, if white, can be either transparent or opaque. Note that PostScript files with
opaque white backgrounds will obscure any graphs they overlay. Of course, sometimes this is desired, but
sometimes a transparent white background may be preferred.

21.1.5.1 Creating insets

Figure 20.36 illustrates a freestyle collage with a sub-graph inside a parent graph. It is best to enlarge fonts
and increase line thicknesses when a sub-graph is going to be reduced in size in this way, and it is always
important to remember the effects of opaque and transparent backgrounds just discussed. As this is such a
frequently used procedure, the steps required to create figure 20.36 will be described.

First the plots in figure 21.1 were created using exfit with test file exfit.tf4 after fitting 1 exponential then
2 exponentials. Note that the line thickness and font size have been increased in the transformed plot to be
reduced in the inset. Figure 21.2 was then created by editps using the option to create a freestylecollage.

0

1

2

0 1 2

t

D
at

a
an

d
B

es
t F

it
C

ur
ve

s

1 Exponential

2 Exponentials

-0.75

-0.25

0.25

0 1 2
t

lo
g 1

0
[f(

t)
]

log10 [f(t)] against t

Figure 21.1: Insets 1: Exponential fitting and semilog transforms

0

1

2

0 1 2

t

D
at

a
an

d
B

es
t F

it
C

ur
ve

s

1 Exponential

2 Exponentials

-0.75

-0.25

0.25

0 1 2
t

lo
g 1

0
[f(

t)
]

log10 [f(t)] against t

0

1

2

0 1 2

t

D
at

a
an

d
B

es
t F

it
C

ur
ve

s

1 Exponential

2 Exponentials

-0.75

-0.25

0.25

0 1 2
t

lo
g 1

0
[f(

t)
]

log10 [f(t)] against t

Figure 21.2: Insets 2: Opaque and transparent backgrounds in insets

Note how, in the left hand plot the option to plot an opaque background even when white was selected and
the transformed plot obscures the underlying main plot. In the right hand plot the option for a transparent
background was used so that the main plot was not obscured. Both techniques are valuable when creating
insets, and all that is now necessary to create figure 20.36 is to shrink the transformed plot and translate it to

366 SimFIT reference manual

a more convenient location. A further point to note is that SimFIT plots have a border, which is obscuring
more of the left hand main figure in figure 21.2 than seems necessary. When subsidary figures are going to be
used in this way it is often advisable to use the option to clip the plot to trim away extra white space, or else
use GsView to calculate a new BoundingBox in a transparent subsidiary plot by transforming ps into eps.

21.1.5.2 Creating split graphs

Figure 20.15 shows an extreme type of freestyle collage, when it is necessary to split a graph into sections
and recombine them using editps. By using the facility to clip a graph into sections when the graph is first
created, there is no limit to the number of sections that can be re-combined in this way.

21.2 The format of SimFIT PostScript files

One of the unique features of SimFIT PostScript files is that the format is designed to make retrospective
editing easy. A typical example of when this could be useful would be when a graph needs to be changed for
some reason. Typically an experimentalist might have many plots stored as .eps files and want to alter one for
publication or presentation. SimFIT users are strongly recommended to save all their plots as .ps or .eps files,
so that they can be altered in the way to be described. Even if you do not have a PostScript printer it is still best
to save as .ps, then use program GSview to print or transform into another graphics format. Consider these
next two figures, showing how a graph can be transformed by simple editing in a text editor, e.g. NOTEPAD.

0.00

0.50

1.00

1.50

2.00

0 10 20 30 40 50

Binding Curve for the 2 2 isoform at 21 C

Concentration of Free Ligand(µM)

L
ig

an
d

B
ou

nd
 p

er
 M

ol
e

of
 P

ro
te

in

1 Site Model

2 Site Model

0.00

1.00

2.00

0 10 20 30 40 50

Binding for the 4 4 isoform at 25 C

Concentration/µM

L
ig

an
d

/M
o

le
 P

ro
te

in

Model 1

Model 2

Experiment number 3

This type of editing should always be done if you want to use one figure as a reduced size inset figure inside
another, or when making a slide, otherwise the SimFIT default line thickness will be too thin. Note that most
of the editing to be described below can actually be done at the stage of creating the file, or by using program
EDITPS. In this hypothetical example, we shall suppose that the experimentalist had realized that the title
referred to the wrong isoform and temperature, and also wanted to add extra detail, but simplify the graph in
order to make a slide using thicker lines and a bolder font. In the following sections the editing required to
transform the SimFIT example file simfig1.ps will be discussed, following a preliminary warning.

21.2.1 Advice about editing PostScript files

In the first place the technique to be described can only be done with SimFIT PostScript files, because the
format was developed to facilitate the sort of editing that scientists frequently need to perform. Secondly, it
must be realized that PostScript files must conform to a very strict set of rules. If you violate these rules, then
GSview will warn you and indicate the fault. Unfortunately, if you do not understand PostScript, the warning
will be meaningless. So here are some rules that you must keep in mind when editing.

❏ Always keep a backup copy at each successful stage of the editing.

❏ All text after a single percentage sign % to the line end is ignored in PostScript.

Editing SimFIT PostScript files 367

❏ Parentheses must always be balanced as in (figure 1(a)) not as in (figure 1(a).

❏ Fonts must be spelled correctly, e.g. Helvetica-Bold and not helveticabold.

❏ Character strings for displaying must have underneath them a vector index string of EXACTLY the
same length.

❏ When introducing non-keyboard characters each octal code represents one byte.

❏ The meaning of symbols and line types depends on the function, e.g. da means dashed line while do

means dotted line.

A review of the PostScript colours, fonts and conventions is also in the w_readme files. In the next sections
it will be assumed that are running SimFIT and have a renamed copy of simfig1.ps in your text editor (e.g.
notepad), and after each edit you will view the result using program GSview. Any errors reported when you
try to view the edited file will be due to violation of a PostScript convention. The most usual one is to edit a
text string without correctly altering the index below it to have exactly the same number of characters.

21.2.1.1 The percent-hash escape sequence

Later versions of SimFIT create PostScript files that can be edited by a stretch, clip, slide procedure, which
relies on each line containing coordinates being identified by a comment line starting with %#. All text
extending to the right from the first character of this sequence can safely be ignored and is suppressed for
clarity in the following examples.

21.2.1.2 Changing line thickness and plot size

The following text will be observed in the original simfig1.ps file.

72.00 252.00 translate 0.07 0.07 scale 0.00 rotate

11.00 setlinewidth 0 setlinecap 0 setlinejoin [] 0 setdash

2.50 setmiterlimit

The postfix argument for setlinewidth alters the line width globally. In other words, altering this number by
a factor will alter all the linewidths in the figure by this factor, irrespective on any changes in relative line
thicknesses set when the file was created. The translate, scale and rotate are obvious, but perhaps best done
by program EDITPS. Here is the same text edited to increase the line thickness by a factor of two and a half.

72.00 252.00 translate 0.07 0.07 scale 0.00 rotate

27.50 setlinewidth 0 setlinecap 0 setlinejoin [] 0 setdash

2.50 setmiterlimit

21.2.1.3 Changing PostScript fonts

In general the Times-Roman fonts may be preferred for readability in diagrams to be included in books,
while Helvetica may look better in scientific publications. For making slides it is usually preferable to use
Helvetica-Bold. Of course any PostScript fonts can be used, but in the next example we see how to change
the fonts in simfig1.ps to achieve the effect illustrated.

/tifont /TimesBold D%plottitle

/xlfont /TimesRoman D%xlegend

/ylfont /TimesRoman D%ylegend

/zlfont /TimesRoman D%zlegend

/tcfont /TimesRoman D%text centred

/tdfont /TimesRoman D%text down

/tlfont /TimesRoman D%text left to right

/trfont /TimesRoman D%text right to left

/tyfont /TimesRoman D%text right ymid

/tzfont /TimesRoman D%text left ymid

368 SimFIT reference manual

The notation is obvious, the use indicated being clear from the comment text following the percentage sign %

at each definition, denoted by a D. This is the editing needed to bring about the font substitution.

/tifont /HelveticaBold D%plottitle

/xlfont /HelveticaBold D%xlegend

/ylfont /HelveticaBold D%ylegend

/zlfont /HelveticaBold D%zlegend

/tcfont /HelveticaBold D%text centred

/tdfont /HelveticaBold D%text down

/tlfont /HelveticaBold D%text left to right

/trfont /HelveticaBold D%text right to left

/tyfont /HelveticaBold D%text right ymid

/tzfont /HelveticaBold D%text left ymid

Observing the scheme for colours (just before the fonts in the file) and text sizes (following the font definitions)
will make it obvious how to change colours and text sizes.

21.2.1.4 Changing title and legends

Observe the declaration for the title and legends in the original file.

(Binding Curve for the a2b2 isoform at 21@C) 3514 4502 ti

(000000000000000000000061610000000000000060) fx

(Concentration of Free Ligand(lM)) 3514 191 xl

(00000000000000000000000000000300) fx

(Ligand Bound per Mole of Protein) 388 2491 yl

(00000000000000000000000000000000) fx

Note that, for each of the text strings displayed, there is a corresponding index of font substitutions. For
example a zero prints the letter in the original font, a one denotes a subscript, while a six denotes bold maths.
Since the allowed number of index keys is open-ended, the number of potential font substitutions is enormous.
You can have any accent on any letter, for instance. This is the editing required to change the text. However,
note that the positions of the text do not need to be changed, the font display functions work out the correct
position to centre the text string.

(Binding for the a4c4 isoform at 25@C) 3514 4502 ti

(000000000000000061610000000000000060) fx

(Concentration/lM) 3514 191 xl

(0000000000000030) fx

(Ligand/Mole Protein) 388 2491 yl

(0000000000000000000) fx

Note that the \ character is an escape character in PostScript so, if you want to have something like an
unbalanced parenthesis, as in Figure 1 a) you would have to write Figure 1a\). When you create a
PostScript file from SimFIT it will prevent you from writing a text string that violates PostScript conventions
but, when you are editing, you must make sure yourself that the conventions are not violated, e.g. use
c:\\simfit instead of c:\simfit.

21.2.1.5 Deleting graphical objects

It is very easy to delete any text or graphical object by simply inserting a percentage sign % at the start of the
line to be suppressed. In this way an experimental observation can be temporarily suppressed, but it is still in
the file to be restored later if required. Here is the PostScript code for the notation on the left hand vertical,
i.e. H axis in the file simfig1.ps.

Editing SimFIT PostScript files 369

910 1581 958 1581 li

6118 1581 6070 1581 li

(0.50) 862 1581 ty

(0000) fx

910 2491 958 2491 li

6118 2491 6070 2491 li

(1.00) 862 2491 ty

(0000) fx

910 3401 958 3401 li

6118 3401 6070 3401 li

(1.50) 862 3401 ty

(0000) fx

This is the text, after suppressing the tick marks and notation for H = 0.5 and H = 1.5 by inserting a percentage
sign. Note that the index must also be suppressed as well as the text string.

%910 1581 958 1581 li

%6118 1581 6070 1581 li

%(0.50) 862 1581 ty

%(0000) fx

910 2491 958 2491 li

6118 2491 6070 2491 li

(1.00) 862 2491 ty

(0000) fx

%910 3401 958 3401 li

%6118 3401 6070 3401 li

%(1.50) 862 3401 ty

%(0000) fx

21.2.1.6 Changing line and symbol types

This is simply a matter of substituting the desired line or plotting symbol key.

Lines : li (normal) da (dashed) do (dotted) dd (dashed dotted) pl (polyline)

Circles : ce (empty) ch (half) cf(full)

Triangles: te (empty) th (half) tf (full)

Squares : se (empty) sh (half) sf (full)

Diamonds : de (empty) dh (half) df (full)

Signs : ad (add) mi (minus) cr (cross) as (asterisk)

Here is the original text for the dashed line and empty triangles.

5697 3788 120 da

933 1032 72 te

951 1261 72 te

984 1566 73 te

1045 1916 72 te

1155 2346 72 te

1353 2708 73 te

1714 3125 72 te

2367 3597 72 te

3551 3775 72 te

5697 4033 72 te

Here is the text edited for a dotted line and empty circles.

370 SimFIT reference manual

5697 3788 120 do

933 1032 72 ce

951 1261 72 ce

984 1566 73 ce

1045 1916 72 ce

1155 2346 72 ce

1353 2708 73 ce

1714 3125 72 ce

2367 3597 72 ce

3551 3775 72 ce

5697 4033 72 ce

21.2.1.7 Adding extra text

Here is the original extra text section.

/font /TimesRoman D /size 216 D

GS font F size S 4313 2874 M 0 rotate

(1 Site Model)

(000000000000) fx

/font /TimesRoman D /size 216 D

GS font F size S 1597 2035 M 0 rotate

(2 Site Model)

(000000000000) fx

Here is the above text after changing the font.

/font /HelveticaBoldOblique D /size 216 D

GS font F size S 4313 2874 M 0 rotate

(Model 1)

(0000000) fx

/font /HelveticaBoldOblique D /size 216 D

GS font F size S 1597 2035 M 0 rotate

(Model 2)

(0000000) fx

Here is the additional code required to add another label to the plot.

/font /HelveticaBoldOblique D /size 240 D

GS font F size S 2250 1200 M 0 rotate

(Experiment number 3)

(0000000000000000000) fx

21.2.1.8 Changing colors

Colors c0 to c71 in the file header can be edited, but c0 and c15 should be black and white. For instance,
changing

c4

(Survival Analysis) 3195 4467 ti%#title

(00000000000000000) fx

into

c0

(Survival Analysis) 3195 4467 ti%#title

(00000000000000000) fx

would change a red title into a black title.

Editing SimFIT PostScript files 371

21.3 Standard fonts

All PostScript printers have a basic set of 35 fonts and it can be safely assumed that graphics using these fonts
will display in program GSview and print on all except the most primitive PostScript printers. Of course there
may be a wealth of other fonts available. The Times and Helvetica fonts are well known, and the monospaced
Courier family of typewriter fonts are sometimes convenient for tables.

Times-Roman
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Times-Bold
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Times-Italic
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Times-BoldItalic
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Helvetica
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Helvetica-Bold
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Helvetica-Oblique
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Helvetica-BoldOblique
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

372 SimFIT reference manual

21.3.1 Decorative fonts

Sometimes decorative or graphic fonts are required, such as pointing hands or scissors. It is easy to include
such fonts using program simplot, although the characters will be visible only if the plot is inspected using
program GSview.

Symbol
 !∀#∃%&∋()∗+,−./0123456789:;<=>?≅
ΑΒΧ∆ΕΦΓΗΙϑΚΛΜΝΟΠΘΡΣΤΥςΩΞΨΖ[]⊥_
αβχδεφγηιϕκλµνοπθρστυϖωξψζ{|}∼�

ZapfDingbats
 ✁✂✃✄☎✆✇✈✉☛☞✌✍✎✏✐✑✒✓✔✕✖✗✘✙✚✛✜✝✞✟✠
✡✢✣✤✥✦✧★✩✪✫✬✭✮✯✰✱✲✳✴✵✶✷✸✹✺✻✽✾✿❀
❁❂❃❄❅❆❇❈❉❊❋●❍■❏❐❑❒▲▼◆❖◗❘❙❚❛❜❝❞�

ZapfChancery-MediumItalic
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Some extra characters in Times, Helvetica, etc.
æ(361)•(267)†(262)‡(263)¡(241)ƒ(246)œ(372)¿(277)˚(312)§(247)£(243)

Some extra characters in Symbol
∠(320)〈(341)〉(361)≈(273)↔(253)⇔(333)⇐(334)⇒(336)←(254)→(256)|(174)
⊗(304)⊕(305)°(260)÷(270)∈(316)…(274)∅(306)≡(272)ƒ(246)∇(321)≥(263)
∞(245)∫(362)≤(243)×(264)≠(271)∏(325)∂(266)±(261)√(326)∑(345)∪(310)

21.3.2 Plotting characters outside the keyboard set

To use characters outside the keyboard set you have to use the corresponding octal codes. Note that these
codes represent just one byte in PostScript so, in this special case, four string characters need only one key
character. For example, such codes as \277 for an upside down question mark in standard encoding, or
\326 for a square root sign in Symbol, only need one index key. You might wonder why, if Simplot can
put any accent on any character and there are maths and bold maths fonts, you would ever want alternative
encodings, like the ISOLatin1Encoding. This is because the ISOLatin1Encoding allows you to use specially
formed accented letters, which are more accurately proportioned than those generated by program Simplot
by adding the accent as a second over-printing character, e.g. using \361 for n tilde is more professional than
overprinting.
All the characters present in the coding vectors to be shown next can be used by program Simplot, as well as a
special Maths/Greek font and a vast number of accented letters and graphical objects, but several points must
be remembered.

All letters can be displayed using program GSview and then Adobe Acrobat Reader after distilling to pdf.

Although substitutions can be made interactively from Simplot, you can also save a .eps file and edit it in a

text editor. When using an octal code to introduce a non-keyboard character, only use one index key for the

four character code. If you do not have a PostScript printer, save plots as .eps files and print from program

GSview or transform into graphics files to include in documents.

Some useful codes follow, then by examples to clarify the subject. You will find it instructive to view
simfonts.ps in the SimFIT viewer and display it in program GSview.

Editing SimFIT PostScript files 373

21.3.2.1 The StandardEncoding Vector

octal 0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x ! " # $ % & ’

\05x () * + , - . /

\06x 0 1 2 3 4 5 6 7

\07x 8 9 : ; < = > ?

\10x @ A B C D E F G

\11x H I J K L M N O

\12x P Q R S T U V W

\13x X Y Z [\] ^ _

\14x ‘ a b c d e f g

\15x h i j k l m n o

\16x p q r s t u v w

\17x x y z { | } ~

\20x

\21x

\22x

\23x

\24x ¡ ¢ £ ⁄ ¥ ƒ §

\25x ¤ ' “ « ‹ › fi fl

\26x – † ‡ · ¶ •

\27x ‚ „ ” » … ‰ ¿

\30x ` ´ ˆ ˜ ¯ ˘ ˙

\31x ¨ ˚ ¸ ˝ ˛ ˇ

\32x —

\33x

\34x Æ ª

\35x Ł Ø Œ º

\36x æ ı

\37x ł ø œ ß

374 SimFIT reference manual

21.3.2.2 The ISOLatin1Encoding Vector

octal 0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x ! " # $ % & ’

\05x () * + , − . /

\06x 0 1 2 3 4 5 6 7

\07x 8 9 : ; < = > ?

\10x @ A B C D E F G

\11x H I J K L M N O

\12x P Q R S T U V W

\13x X Y Z [\] ^ _

\14x ‘ a b c d e f g

\15x h i j k l m n o

\16x p q r s t u v w

\17x x y z { | } ~

\20x

\21x

\22x ı ` ´ ˆ ˜ ¯ ˘ ˙

\23x ¨ ˚ ¸ ˝ ˛ ˇ

\24x ¡ ¢ £ ¤ ¥ ¦ §

\25x ¨ © ª « ¬ ® ¯

\26x ° ± ² ³ ´ µ ¶ ·

\27x ¸ ¹ º » ¼ ½ ¾ ¿

\30x À Á Â Ã Ä Å Æ Ç

\31x È É Ê Ë Ì Í Î Ï

\32x Ð Ñ Ò Ó Ô Õ Ö ×

\33x Ø Ù Ú Û Ü Ý Þ ß

\34x à á â ã ä å æ ç

\35x è é ê ë ì í î ï

\36x ð ñ ò ó ô õ ö ÷

\37x ø ù ú û ü ý þ ÿ

Editing SimFIT PostScript files 375

21.3.2.3 The SymbolEncoding Vector

octal 0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x ! ∀ # ∃ % & ∋
\05x () ∗ + , − . /
\06x 0 1 2 3 4 5 6 7
\07x 8 9 : ; < = > ?
\10x ≅ Α Β Χ ∆ Ε Φ Γ
\11x Η Ι ϑ Κ Λ Μ Ν Ο
\12x Π Θ Ρ Σ Τ Υ ς Ω
\13x Ξ Ψ Ζ [∴] ⊥ _
\14x α β χ δ ε φ γ
\15x η ι ϕ κ λ µ ν ο
\16x π θ ρ σ τ υ ϖ ω
\17x ξ ψ ζ { | } ∼
\20x

\21x

\22x

\23x

\24x ϒ ′ ≤ ⁄ ∞ ƒ ♣
\25x ♦ ♥ ♠ ↔ ← ↑ → ↓
\26x ° ± ″ ≥ × ∝ ∂ •
\27x ÷ ≠ ≡ ≈ … ↵
\30x ℵ ℑ ℜ ℘ ⊗ ⊕ ∅ ∩
\31x ∪ ⊃ ⊇ ⊄ ⊂ ⊆ ∈ ∉
\32x ∠ ∇ ∏ √ ⋅
\33x ¬ ∧ ∨ ⇔ ⇐ ⇑ ⇒ ⇓
\34x ◊ 〈 ∑
\35x
\36x 〉 ∫ ⌠ ⌡
\37x

376 SimFIT reference manual

21.3.2.4 The ZapfDingbatsEncoding Vector

octal 0 1 2 3 4 5 6 7

\00x � � � � � � � �

\01x � 	
 � � � �

\02x � � � � � � � �

\03x � � � � � � � �

\04x ✁ ✂ ✃ ✄ ☎ ✆ ✇

\05x ✈ ✉ ☛ ☞ ✌ ✍ ✎ ✏

\06x ✐ ✑ ✒ ✓ ✔ ✕ ✖ ✗

\07x ✘ ✙ ✚ ✛ ✜ ✝ ✞ ✟

\10x ✠ ✡ ✢ ✣ ✤ ✥ ✦ ✧

\11x ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯

\12x ✰ ✱ ✲ ✳ ✴ ✵ ✶ ✷

\13x ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✿

\14x ❀ ❁ ❂ ❃ ❄ ❅ ❆ ❇

\15x ❈ ❉ ❊ ❋ ● ❍ ■ ❏

\16x ❐ ❑ ❒ ▲ ▼ ◆ ❖ ◗

\17x ❘ ❙ ❚ ❛ ❜ ❝ ❞ �

\20x ❨ ❩ ❪ ❫ ❬ ❭ ❮ ❯

\21x ❰ ❱ ❲ ❳ ❴ ❵ � �

\22x � � � � � � � �

\23x � � � � � � � �

\24x ❡ ❢ ❣ ❤ ❥ ❦ ❧

\25x ♣ ♦ ♥ ♠ ① ② ③ ④

\26x ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷

\27x ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

\30x ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇

\31x ➈ ➉ ➊ ➋ ➌ ➍ ➎ ➏

\32x ➐ ➑ ➒ ➓ ➔ → ↔ ↕

\33x ➘ ➙ ➚ ➛ ➜ ➝ ➞ ➟

\34x ➠ ➡ ➢ ➣ ➤ ➥ ➦ ➧

\35x ➨ ➩ ➪ ➫ ➬ ➭ ➮ ➯

\36x ✐ ➱ ➲ ➳ ➴ ➵ ➶ ➷

\37x ➸ ➹ ➺ ➻ ➼ ➽ ➾ ÿ

Editing SimFIT PostScript files 377

21.3.3 SimFIT character display codes

0 Standard font
1 Standard font subscript
2 Standard font superscript
3 Maths/Greek
4 Maths/Greek subscript
5 Maths/Greek superscript
6 Bold Maths/Greek
7 ZapfDingbats (PostScript) Wingding (Windows)
8 ISOLatin1Encoding (PostScript), Standard (Windows, almost)
9 Special (PostScript) Wingding2 (Windows)
A Grave accent
B Acute accent
C Circumflex/Hat
D Tilde
E Macron/Bar/Overline
F Dieresis
G Maths/Greek-hat
H Maths/Greek-bar
I Bold maths/Greek-hat
J Bold Maths/Greek-bar

K Symbol font
L Bold Symbol font

You will need non-keyboard characters from the standard font for such characters as a double dagger (‡) or
upside down question mark (¿), e.g. typing \277 in a text string would generate the upside down question
mark (¿) in the PostScript output. If you want to include a single backslash in a text string, use \\, and also
cancel any unpaired parentheses using \(and \). Try it in program SIMPLOT and it will then all make
sense. The ISOLatin1Encoding vector is used for special characters, such as \305 for Angstrom (Å), \361
for n-tilde (ñ), or \367 for the division sign (÷), and, apart from a few omissions, the standard Windows font
is the same as the ISOLatin1Encoding. The Symbol and ZapfDingbats fonts are used for including special
graphical characters like scissors or pointing hands in a text string.

A special font is reserved for PostScript experts who want to add their own character function. Note that, in a
document with many graphs, the prologue can be cut out from all the graphs and sent to the printer just once
at the start of the job. This compresses the PostScript file, saves memory and speeds up the printing. Examine
the manuals source code for this technique.

If you type four character octal codes as character strings for plotting non-keyboard characters, you do

not have to worry about adjusting the character display codes, program SIMPLOT will make the necessary

corrections. The only time you have to be careful about the length of character display code vectors is when

editing in a text editor. If in doubt, just pad the character display code vector with question marks until it is

the same length as the character string.

378 SimFIT reference manual

21.3.4 editps text formatting commands

Program editps uses the SimFIT convention for text formatting characters within included SimFIT .eps files
but, because this is rather cumbersome, a simplified set of formatting commands is available within editps

whenever you want to add text, or even create PostScript files containing text only. The idea of these
formatting commands is to allow you to introduce superscripts, subscripts, accented letters, maths, dashed
lines or plotting symbols into PostScript text files, or into collage titles, captions, or legends, using only ASCII
text controls. To use a formatting command you simply introduce the command into the text enclosed in curly
brackets as in: {raise}, {lower}, {newline}, and so on. If {anything} is a recognized command then it will
be executed when the .eps file is created. Otherwise the literal string argument, i.e. anything, will be printed
with no inter-word space. Note that no {commands} add interword spaces, so this provides a mechanism to
build up long character strings and also control spacing; use {anything} to print anything with no trailing
inter-word space, or use { } to introduce an inter-word space character. To introduce spaces for tabbing, for
instance, just use {newline}{ }start-of-tabbing, with the number of spaces required inside the { }. Note
that the commands are both spelling and case sensitive, so, for instance, {21}{degree}{C} will indicate the
temperature intended, but {21}{degrees}{C} will print as 21degreesC while {21}{Degree}{C} will produce
21DegreeC.

21.3.4.1 Special text formatting commands, e.g. left

{left} . . . use {left} to print a {
{right} . . . use {right} to print a }
{%!command} . . . use {%!command} to issue command as raw PostScript

The construction {%!command} should only be used if you understand PostScript. It provides PostScript
programmers with the power to create special effects. For example {%!1 0 0 setrgbcolor}, will change the
font colour to red, and {%!0 0 1 setrgbcolor} will make it blue, while {%!2 setlinewidth} will double line
thickness. In fact, with this feature, it is possible to add almost any conceivable textual or graphical objects
to an existing .eps file.

21.3.4.2 Coordinate text formatting commands, e.g. raise

{raise} . . . use {raise} to create a superscript or restore after {lower}
{lower} . . . use {lower} to create a subscript or restore after {raise}
{increase} . . . use {increase} to increase font size by 1 point
{decrease}. . . use {decrease} to decrease font size by 1 point
{expand} . . . use {expand} to expand inter-line spacing by 1 point
{contract} . . . use {contract} to contract inter-line spacing by 1 point

21.3.4.3 Currency text formatting commands, e.g. dollar

{dollar} $ {sterling} £ {yen} Y

21.3.4.4 Maths text formatting commands, e.g. divide

{divide} ÷ {multiply} × {plusminus} ±

21.3.4.5 Scientific units text formatting commands, e.g. Angstrom

{Angstrom} Å {degree} ◦ {micron} `

21.3.4.6 Font text formatting commands, e.g. roman

{roman} {bold} {italic} {helvetica}
{helveticabold} {helveticaoblique} {symbol} {zapfchancery}
{zapfdingbats} {isolatin1}

editps PostScript formatting commands 379

Note that you can use octal codes to get extra-keyboard characters, and the character selected will depend
on whether the StandardEncoding or IOSLatin1Encoding is current. For instance, \ 361 will locate an
{ae} character if the StandardEncoding Encoding Vector is current, but it will locate a {ñ} character if the
ISOLatin1Encoding Encoding Vector is current, i.e. the command {isolatin1} has been used previously. The
command {isolatin1} will install the ISOLatin1Encoding Vector as the current Encoding Vector until it is
cancelled by any font command, such as {roman}, or by any shortcut command such as {ntilde} or {alpha}.
For this reason, {isolatin1} should only be used for characters where shortcuts like {ntilde} are not available.

21.3.4.7 Poor man’s bold text formatting command, e.g. pmb?

The command {pmb?} will use the same technique of overprinting as used by the Knuth TEX macro to render
the argument, that is ? in this case, in bold face font, where ? can be a letter or an octal code. This is most useful
when printing a boldface character from a font that only exists in standard typeface. For example, {pmbb}
will print a boldface letter b in the current font then restore the current font, while {symbol}{pmbb}{roman}
will print a boldface beta then restore roman font. Again, {pmb\ 243} will print a boldface pound sign.

21.3.4.8 Punctuation text formatting commands, e.g. dagger

{dagger} † {daggerdbl} ‡ {paragraph} ¶ {subsection} §
{questiondown} ¿

21.3.4.9 Letters and accents text formatting commands, e.g. Aacute

{Aacute} Á {agrave} à {aacute} á {acircumflex} â
{atilde} ã {adieresis} ä {aring} å {ae} æ
{ccedilla} ç {egrave} è {eacute} é {ecircumflex} ê
{edieresis} ë {igrave} ì {iacute} í {icircumflex} î
{idieresis} ï {ntilde} ñ {ograve} ò {oacute} ó
{ocircumflex} ô {otilde} õ {odieresis} ö {ugrave} ù
{uacute} ú {ucircumflex} û {udieresis} ü

All the other special letters can be printed using {isolatin1} (say just once at the start of the text) then using
the octal codes, for instance {isolatin1}{\ 303} will print an upper case ntilde.

21.3.4.10 Greek text formatting commands, e.g. alpha

{alpha} U {beta} V {chi} j {delta} X
{epsilon} n {phi} q {gamma} W {eta} [
{kappa} ^ {lambda} _ {mu} ` {nu} a
{pi} c {theta} \ {rho} d {sigma} f
{tau} g {omega} l {psi} k

All the other characters in the Symbol font can be printed by installing Symbol font, supplying the octal code,
then restoring the font, as in {symbol}{\ 245}{roman} which will print infinity, then restore Times Roman
font.

21.3.4.11 Line and Symbol text formatting commands, e.g. ce

{li} = line
{da} = dashed line
{do} = dotted line
{dd} = dashed dotted line
{ce}, {ch}, {cf} = circle (empty, half filled, filled)
{te}, {th}, {tf} = triangle (empty, half filled, filled)
{se}, {sh}, {sf} = square (empty, half filled, filled)

380 SimFIT reference manual

{de}, {dh}, {df} = diamond (empty, half filled, filled)

These line and symbol formatting commands can be used to add information panels to legends, titles, etc. to
identify plotting symbols.

21.3.4.12 Examples of text formatting commands

{TGF}{beta}{lower}{1}{raise} is involved
TGFV1 is involved

y = {x}{raise}{2}{lower} + 2
H = G2 + 2

The temperature was {21}{degree}{C}
The temperature was 21◦C

{pi}{r}{raise}{decrease}{2}{increase}{lower} is the area of a circle
cA2 is the area of a circle

The {alpha}{lower}{2}{raise}{beta}{lower}{2}{raise} isoform
The U2V2 isoform

{[Ca}{raise}{decrease}{++}{increase}{lower}{]} = {2}{mu}{M}
[�0++] = 2`"

PostScript specials 381

21.4 PostScript specials

SimFIT PostScript files are designed to faciltate editing, and one important type of editing is to be able to
specify text files, known as specials, that can modify the graph in an almost unlimited number of ways. This
technique will now be described but, if you want to do it and you are not a PostScript programmer, do not
even think about it; get somebody who has the necessary skill to do what you want. An example showing
how to display a logo will be seen on page 343 and further details follow.

21.4.1 What specials can do

First of all, here are some examples of things you may wish to do with SimFIT PostScript files that would
require specials.

❏ Replace the 35 standard fonts by special user-defined fonts.

❏ Add a logo to plots, e.g. a departmental heading for slides.

❏ Redefine the plotting symbols, line types, colours, fill styles, etc.

❏ Add new features, e.g. outline or shadowed fonts, or clipping to non-rectangular shapes.

When SimFIT PostScript files are created, a header subsection, called a prologue, is placed at the head of
the file which contains all the definitions required to create the SimFIT dictionary. Specials can be added,
as independent text files, to the files after these headings in order to re-define any existing functions, or even
add new PostScript plotting instructions. The idea is is very simple; you can just modify the existing SimFIT
dictionary, or even be ambitious and add completely new and arbitrary graphical objects.

21.4.2 The technique for defining specials

Any SimFIT PostScript file can be taken into a text editor in order to delete the existing header in order to save
space in a large document, as done with the SimFIT manual, or else to paste in a special. However, this can
also be done interactively by using the font option, accessible from the SimFIT PostScript interface. Since
this mechanism is so powerful, and could easily lead to the PostScript graphics being permanently disabled
by an incorrectly formatted special, SimFIT always assumes that no specials are installed. If you want to
use a special, then you simply install the special and it will be active until it is de-selected or replaced by
another special. Further details will be found in the on-line documentation and w_readme files, and examples
of specials are distributed with the SimFIT package to illustrate the technique. You should observe the effect
of the example specials before creating your own. Note that any files created with specials can easily be
restored to the default configuration by cutting out the special. So it makes sense to format your specials like
the SimFIT example specials pspecial.1, etc. to facilitate such retrospective editing. The use of specials is
controlled by the file pspecial.cfg as now described. The first ten lines are Booleans indicating which of
files 1 through 10 are to be included. The next ten lines are the file names containing the special code. There
are ten SimFIT examples supplied, and it is suggested that line 1 of your specials should be in the style of these
examples. You simply edit the file names in pspecial.cfg to install your own specials. The Booleans can
be edited interactively from the advanced graphics PS/Fonts option. Note that any specials currently installed
are flagged by the SimFIT program manager and specials only work in advanced graphics mode. In the event
of problems with PostScript printing caused by specials, just delete pspecial.cfg. To summarise.

❏ Create the special you want to insert.

❏ Edit the file psecial.cfg in the SimFIT folder.

❏ Attach the special using the Postscript Font option.

382 SimFIT reference manual

21.4.3 Examples of PostScript specials

To clarify the structure of SimFIT PostScript specials, just consider the code for the first three examples
distributed with the SimFIT package. The file psecial.1 simply adds a monochrome logo, the file psecial.2
shows how to add color, while the file psecial.3 makes more sweeping changes to the color scheme by
reversing the definitions for black and white.

❏ The PostScript special pspecial.1

%file = pspecial.1: add monochrome simfit logo to plot

gsave

/printSIMFIT {0 0 moveto (SIMFIT) show} def

/TimesItalic findfont 300 scalefont setfont

300 4400 translate

.95 .05 0

{setgray printSIMFIT 10 5 translate} for

1 1 1 setrgbcolor printSIMFIT

grestore

%end of pspecial.1

❏ The PostScript special pspecial.2

%file = pspecial.2: add yellow simfit logo to plot

gsave

/printSIMFIT {0 0 moveto (SIMFIT) show} def

/TimesItalic findfont 300 scalefont setfont

300 4400 translate

.95 .05 0

{setgray printSIMFIT 10 5 translate} for

0 0 moveto (SIMFIT) true charpath gsave 1 1 0 setrgbcolor fill grestore

grestore

%end of pspecial.2

❏ The PostScript special pspecial.3

%file = pspecial.3: yellowlogo/bluebackground/swapblackandwhite

/background{.5 .5 1 setrgbcolor}def

background

0 0 0 4790 6390 4790 6390 0 4 pf

/c0{1 1 1 setrgbcolor}def

/c15{0 0 0 setrgbcolor}def

/foreground{c0}def

gsave

/printSIMFIT {0 0 moveto (SIMFIT) show} def

/TimesItalic findfont 300 scalefont setfont

300 4400 translate

.95 .05 0

{setgray printSIMFIT 10 5 translate} for

0 0 moveto (SIMFIT) true charpath gsave 1 1 0 setrgbcolor fill grestore

grestore

%end of pspecial.3

Remember, the effects of these specials are only visible in the PostScript files created by SimFIT and not in
any direct Windows quality hardcopy.

Part 22

Scalable vector graphics (SVG)

22.1 SVG: introduction

In order to appreciate the nature and use of scalable vector graphics files (*.SVG) it is useful to review the two
document types, namely bitmap and vector, that are used to archive graphs and include them into computer
generated documents or web pages.

22.1.1 Bitmaps

These files (*.BMP) contain the raw information for every pixel captured by a digital photograph or displayed
on a computer screen. They have the following properties.

• The larger the number of pixels then the greater the detail recorded.

• Such files are very easy to display, include in documents, or print but, unless there is a large number of
pixels, then lines and curves will appear stepped and fonts will pixelate.

• For complicated portraits, landscapes, capture of microscope fields, or 3D display of molecules etc.
requiring shading such files are indispensable.

• Where there are appreciable homogeneous patches such as blue sky in a landscape then considerable
compression into formats such those of the joint photographic expert group (*.JPG) or portable network
graphics (*.PNG) can result in smaller files, but compression is not always lossless.

• Where a bitmap has been created using antialiasing to smooth out polygons and polylines as in text,
curves, or lines then compression can lead to fuzzy curves or distorted characters. Traditional computer
graphics hardly ever looked good on computer screens because hard edges at an angle would show as
a series of steps (a distortion known as aliasing). This made even the simplest graph – such as a sine
curve, look ugly. This problem has been largely eliminated by anti-aliasing (automatically employed
by SimFIT). However a bitmap of a specific size generated using anti-aliasing, never looks its best if
it is ultimately displayed at another resolution. SVG completely sidesteps this problem because the
necessary anti-aliasing is performed as an image is displayed (or printed), so that data are displayed
correctly. This property of being device–independent is something that sets aside vector graphics from
bitmap graphics.

22.1.2 Vector graphics

Scientific graphs largely consist of axes, curves, and plotting symbols, with small amounts of text, and vector
graphic files simply contain the mathematical data such as coordinates necessary to reproduce the graph at
any degree of magnification or compression without loss of information. Here is a summary of properties for
the two main vector graphics files; encapsulated PostScript (*.EPS), and scalable vector graphics (*.SVG).

384 Scalable vector graphics (SVG)

• The files are in text format, which means they can easily be edited retrospectively in text editors such
as notepad in order to change, titles, legends, line types, plotting symbols, or colours.

• They are device independent so there is no loss of information on expansion or compression.

• They can be imported into LATEX documents or include LATEX code, so that high quality mathematical
formulas and chemical structures can be incorporated.

• The free program Ghostscript can be used to convert EPS files into other formats, and similarly
Inkscape can be used to visualize and transform SVG files.

• While EPS is the main import format for LATEX documents, SVG is the recommended format for
scientific graphs on the internet.

22.1.3 Bogus vector files

Note that many applications claim to transform bitmap and compressed bitmap files into vector files without
loss of significant information, but this is almost impossible except for fairly simple images. Such applications
usually just exploit a weakness in vector files that allows bitmaps to be inserted giving bogus vector files that are
wrappers containing bitmaps. Similarly portable document files (*.PDF) were developed from PostScript and
retain many PostScript features that can be exploited. For instance, using the SimFIT interface to GhostScript
to transform SimFIT EPS files into PDF files yields PDF files that are effectively device independent, whereas
using Windows to distil files into PDF merely creates bitmap files.

22.1.4 Using SVG files in SimFIT

The SVG format is very comprehensive as it has been specifically developed to be versatile for web use. For that
reason few applications implement the whole standard and SimFIT is no exception, so it must be emphasized
that SimFIT will only accept and manipulate SVG files according to the graph plotting functionality provided
by Silverfrost FTN95 Clearwin+. This interface was written by David Bailey and it provides the following
SVG file functionality for SimFIT users.

• The SVG files can be used on the web and opened by browsers such as firefox.

• The SVG files can be displayed and edited retrospectively by the program EditSVG.

• The SVG files created by other applications may cause warning messages, but in some circumstances
files may use acceptable subsets of SVG facilities. To explore this option just open the SVG file with a
text editor and splice the option Clearwin_output="1" into the line beginning <svg. It is easy to get this
wrong, so it is probably best to file the result to a different file name.

22.1.5 Editing SVG files in SimFIT

The functionality provided by procedure EditSVG is now listed.

1. The only file types that can be used in this program are:

(A) *.SVG files created by SimFIT, and other Clearwin+ output from Silverfrost FTN95 programs.

(B) *.TEX files describing mathematical equations or chemical formulas. Such *.TEX files can be
used to generate internal *.SVG files if latex.exe, dvips.exe, and dvisvgm.exe are on the path.
For instance if users have a recent version of MikTeX available.

2. Files can be input from the console, by drag and drop, or by using library files.

3. Images can be enlarged or reduced by "right clicking" on the image.

4. Images can be freely positioned by dragging a window from any point on its surface. Using the view
menu it is possible to add a graticule with optional "snap to nearest graticule intersection" facility. The
graticule does not remain on the finished image.

Scalable vector graphics (SVG) 385

5. After manipulating a file or a set of files the resulting composite image can be written out to a *.SVG,
or *.PNG, file, or even to a *.ISVG rebuild–image file.

6. It can be used to create strict collages where every image is snapped to the nearest grid point, freestyle
collages where images can be arranged in arbitrary positions, or overlays where smaller images can be
inserted into larger ones.

386 Scalable vector graphics (SVG)

22.1.6 Using LATEX

Some examples of how to use these procedures within the SimFIT package from version 7.5.0 onwards using
the test files provided follow. However the procedure used to create the SVG files using LATEX should be noted.

To enlarge on the use of LATEX it must be emphasized that the procedure to use LATEX depends on whether the
user has a fully functioning LATEX installation on their machine. So there are three distinct cases.

1. The direct method

There is a LATEX installation so the user prefers to input a *.TEX file directly into program EditSVG

whereupon the *.TEX file will be processed and the image will appear in the main window.

2. The indirect method

There is a LATEX installation but the user prefers to use the command line technique described subse-
quently to transform the *.TEX file into *.DVI then use dvisvgm to transform this into a stand alone
*.SVG file. Note that filenames used in this procedure must be local files with no spaces in the file
name.

3. The remote user method

There is no LATEXinstallation so a known LATEX user will have to perform the transformation. Alterna-
tively, a stand–alone *.SVG file, such as the demonstration files distributed with SimFIT will have to be
used.

LATEX is designed to create documents and, because of this, care is needed to remove much of the header
information in order to create simple images that can be imported into EditSVG. This is much the same as the
steps required to create a *.EPS from from a *.PS file but using the following commands.

To make DVI: use latex myfile.tex to create myfile.dvi.

To make PS: use dvips myfile.dvi to create myfile.ps.

To make SVG: use dvisvgm E myfile.ps to create myfile.svg.

The argument E indicates that a PostScript file is to be input. Note that white space can be trimmed from the
resulting SVG file by EditSVG, or alternatively by using inkscape or GSview (e.g. Version 5) to transform
myfile.ps into myfile.eps, where the BoundingBox will automatically remove white space.

22.1.7 Important differences between EPS and SVG files

From within any SimFIT graph it is possible to create *.EPS files by first selecting [PS] then choosing [File],
or to create *.SVG files by first selecting [Win] then choosing the [SVG] option. Any *.SVG file created in
this way will be a fairly accurate representation of the display, as will any *.EPS files, except that there will
be small but significant differences between them. That is unavoidable because the fonts used may differ
slightly as the *.SVG file will use Windows fonts whereas the *EPS file will use PostScript fonts. In addition
SimFIT allows users to set different global line thickness for EPS and SVG files as line thickness do not scale
in exactly the same way in EPS and SVG files. Nevertheless it is useful to know how to create a *.SVG file
from a *.EPS file and vice versa.

Fortunately such transformations can readily be carried out due to the widespread availability of Open Source
programs such as Inkscape and Cairo. The usefulness of such transformationswill be explained in subsequent
tutorial sections.

Scalable vector graphics (SVG) 387

22.2 SVG: Importing LATEX maths equations

Sometimes it is required to use LATEX to display a mathematical equation inside a scientific plot, and this
document describes how to do this for the normal distribution cumulative distribution function Φ(G). Note
that all the files mentioned in this document are distributed as SimFIT test files so that users simply wishing to
create the final composed document can proceed directly to the last section describing how to use EditSVG.

22.2.1 The TEX source

This is the code contained in the file latex_maths_equation.tex

\documentclass[12pt]{article}

\usepackage{amsmath,bm}

\pagestyle{empty}

\begin{document}

\Large

\[

\frac{1}{\sigma \sqrt{2\pi}}

\int\limits_{\infty}^x

\exp \left\{

\frac{1}{2} \left(\frac{t\mu}{\sigma} \right)^2 \right\}\,dt

\]

\end{document}

which displays the mathematical definition of Φ(G) as follows.

In order to import this formula into a graph using EditSVG this code must be used to create the corresponding
SVG file latex_maths_equation.svg, the overall process being the following sequence of commands.

• latex latex_maths_equation.tex

• dvips latex_maths_equation.dvi

• dvisvgm E latex_maths_equation.ps

The file latex_maths_equation.svg created is then ready to be imported into EditSVG but, alternatively,
the source file latex_maths_equation.tex can be opened in or dragged and dropped directly onto EditSVG

if there is a local installation of LATEX.

It should be realized that, when using LATEX in this way to create a SVG file, the command line must be used
from a folder containing the *.TEX file required as a local file and not as a fully qualified path–filename to
a remote source file. The program EditSVG circumvents this issue when importing LATEX source by creating
local copies of all files.

388 Scalable vector graphics (SVG)

22.2.2 Creating the plot file

The file latex_maths_plot.svg with theΦ(G) profile to be used looks like this before the equation is added.

0.5

1.0

-4.0 -2.0 0.0 2.0

Normal (0,1) Distribution Function

x

cd
f(

x)

This figure was created using makmat by selecting to display the normal cumulative distribution Φ(G) with
` = 0 and f2 = 1 for −4 ≤ G ≤ 2, and then transferring the resulting plot into the program simplot using the
[Advanced] option to manipulate the title, legends, line–widths, and colors, etc.

Users wishing to avoid this process can simply read the SimFIT metafile latex_maths_plot.metafile

directly into the SimFIT program simplot, or the SimDEM program simdem70.

In either case the file is then saved as latex_maths_plot.svg using the [Win] or [SVG] option.

22.2.3 Joining the SVG files using EditSVG

First open program EditSVG then input the test file latex_maths_plot.svg to act as a background, then
there two possible options.

1. Input the test file latex_maths_equation.svg directly; or

2. read in the test file latex_maths_equation.tex which will then be used by LATEX to generate an
internal copy of latex_maths_equation.svg.

Finally, just use the mouse to move the equation into position and alter the scaling as required to obtain the
final plot saved as latex_maths.svg and shown next.

Scalable vector graphics (SVG) 389

0.5

1.0

-4.0 -2.0 0.0 2.0

Normal (0,1) Distribution Function

x

cd
f(

x)

22.2.4 Summary of files described in this section

The programs referred to in this document are as follows.

1. InkScape is an OpenSource program that takes in SVG files and can write out EPS and other files.

2. EditSVG is a SimFIT and SimDEM program that takes in SVG or TEX files and writes out SVG and
other files.

3. editPS is a SimFIT and SimDEM program that takes in EPS files and writes out only EPS files.

4. The SimFIT program simplot and the SimDEM program simdem70 take in SimFIT metafiles and write
out either SVG or EPS files.

Further, the SimFIT test files (*.TEX and *.SVG) described in this document that can be used by program
EditSVG, and those (*.EPS) that can be used by program editPS are now listed.

File name Data included
latex_maths_plot.metafile SimFIT or SimDEM metafile to create the plot without any equation
latex_maths_equation.tex LATEX source file for the maths equation with no plot
latex_maths_equation.svg SVG file containing the formula only
latex_maths_plot.svg SVG file containing the plot only
latex_maths.svg SVG file containing both the equation and plot
latex_maths_equation.eps EPS file containing the formula only
latex_maths_plot.eps EPS file containing the plot only
latex_maths.eps EPS file containing both the equation and plot

390 Scalable vector graphics (SVG)

22.3 SVG: Importing LATEX chemical formulas

Sometimes it is required use LATEX to display chemical structures inside a scientific plot, and this document
describes how to do this using a condensed scheme for the oxidation of p-dimethylaminomethylbenzylamine.
Note that all the files mentioned in this document are distributed as SimFIT test files so that users simply
wishing to create the final composed document can proceed directly to the last section describing how to use
EditSVG

22.3.1 The TEX source

This is the code contained in the file latex_chemical_formula.tex

\documentclass[12pt]{article}

\usepackage{carom}

\pagestyle{empty}

\begin{document}

{\begin{picture}(3000,600)(0,0)

\thicklines

\put(0,0){\bzdrv{1==CH$_{2}$NH$_{2}$;4==CH$_{2}$N(CH$_{3}$)$_{2}$}}

\put(700,450){\vector(1,0){400}}

\put(820,550){[O]}

\put(1000,0){\bzdrv{1==CHO;4==CH$_{2}$N(CH$_{3}$)$_{2}$}}

\put(1650,400){+}

\put(1750,400){NH$_{3}$}

\put(2000,450){\vector(1,0){400}}

\put(2120,550){[O]}

\put(2300,0){\bzdrv{1==CO$_{2}$H;4==CH$_{2}$N(CH$_{3}$)$_{2}$}}

\end{picture}}

\end{document}

which displays like this.

To import this formula into a graph using EditSVG, latex_maths_equation.svg can be made using the
following commands, or latex_maths_equation.tex can be input directly into EditSVG.

• latex latex_chemical_formula.tex

• dvips latex_chemical_formula.dvi

• dvisvgm E latex_chemical_formula.ps

The file latex_chemical_formula.svg created is then ready to be imported into EditSVG but, alternatively,
the source file latex_chemical_formula.tex can be opened in or dragged and dropped directly onto
EditSVG if there is a local installation of LATEX. It should be realized that, when using LATEX in this way to
create a SVG file, the command line must be used from a folder containing the *.TEX file required as a local
file and not as a fully qualified path–filename to a remote source file. The program EditSVG circumvents this
issue when importing LATEX source by creating local copies of all files.

Scalable vector graphics (SVG) 391

22.3.2 Creating the plot file

The file latex_chemical_plot.svg with the time course data to be used looks like this before the equation
is added.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 2.0 4.0 6.0 8.0 10.0

Oxidation of p-Dimethylaminomethylbenzylamine

Time/minutes

C
on

ce
nt

ra
tio

n/
m

M

This figure was created using qnfit fit three data sets for the consecutive reaction scheme

� → � → �

in the SimFIT test library file consec3.tfl, then fitted using the model in the model file consec3.mod.

After manipulating the line thicknesses, title, legend, and colors, the files latex_chemical_plot.svg,
and latex_chemical_plot.eps were created to archive the graph. In addition the SimFIT metafile
latex_chemical_plot.metafile was saved so that users wishing generate this plot can easily do so using
the SimFIT program simplot or the SimDEM program simdem70. Users wishing to avoid this process can
simply read the SimFIT metafile latex_maths_plot.metafile directly into the SimFIT program simplot,
or the SimDEM program simdem70.

22.3.3 Joining the SVG files using EditSVG

Open program EditSVG then input the test file latex_chemical_plot.svg. Then there are two options.

1. Input the test file latex_chemical_formula.svg directly; or

2. read in the test file latex_chemical_formula.tex which will then be used by LATEX to generate an
internal copy of latex_chemical_formula.svg.

Finally, just use the mouse to move the equation into position and alter the scaling as required to obtain the
final plot saved as latex_chemistry.svg and shown next.

392 Scalable vector graphics (SVG)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 2.0 4.0 6.0 8.0 10.0

Oxidation of p-Dimethylaminomethylbenzylamine

Time/minutes

C
on

ce
nt

ra
tio

n/
m

M

22.3.4 Summary of files used in this section

The programs referred to in this document are as follows.

1. InkScape is an OpenSource program that takes in SVG files and can write out EPS and other files.

2. EditSVG is a SimFIT and SimDEM program that takes in SVG or TEX files and writes out SVG and
other files.

3. editPS is a SimFIT and SimDEM program that takes in EPS files and writes out only EPS files.

4. The SimFIT program simplot and the SimDEM program simdem70 take in SimFIT metafiles and write
out either SVG or EPS files.

Further, the SimFIT test files (*.TEX and *.SVG) described in this document that can be used by program
EditSVG, and those (*.EPS) that can be used by program editPS are now listed.

File name Data included
latex_chemical_plot.metafile SimFIT or SimDEM metafile to create the plot without any equation
latex_chemical_formula.tex LATEX source file for the maths equation with no plot
latex_chemical_formula.svg SVG file containing the formula only
latex_chemical_plot.svg SVG file containing the plot only
latex_chemistry.svg SVG file containing both the formula and plot
latex_chemical_formula.eps EPS file containing the formula only
latex_chemical_plot.eps EPS file containing the plot only
latex_chemistry.eps EPS file containing both the formula and plot

Scalable vector graphics (SVG) 393

22.4 SVG: Importing SVG files into SVG files

Sometimes it is required to import one SVG file into another SVG file,for example to create overlays, insets,
or collages. This document describes how to do this using program EditSVG when fitting one then two
exponential functions to a data set and plotting the best–fit curves to evaluate the improvement in fit.

22.4.1 Fitting exponential functions

Using SimFIT program exfit in the default mode to analyze data in the test file exfit.tf4 for models of
orders 1 and 2 fits the following exponential functions sequentially.

51(C) = �4−�C

52(C) = U14
−:1C + U24

−:2C

Program exfit then outputs goodness of fit criteria and statistical tests to see if there is sufficient statistical
evidence to accept the need to fit the additional parameters required by the two exponential model. In addition
the following graph is plotted to illustrate the goodness of fit for both models.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.875 1.75

Data fitted by One and Two Exponentials

t

f(
t)

One Exponential

Two Exponentials

The following SimFIT test files are provided to reproduce this fit.

• exfit.t4f, the data for input into program exfit

• exfit_normalplot.eps, the above plot in EPS format for input into program editps

• exfit_normalplot.svg, the above plot in SVG format for input into program EditSVG

• exfit_normalplot.metafile, a metafile to create this plot in SimFIT program simplot or SimDEM
program simdem70

The file exfit_normalplot.svg was also created at this stage to archive this plot.

394 Scalable vector graphics (SVG)

22.4.2 Creating the log transform

Of course the previous plot was created from within program exfit by simply transferring the plot into SimFIT
advanced graphics mode then editing. Now one technique that can be used to check the relative fit for
two exponentials as opposed to one is to plot a semilogarithm plot, which results in linearizing the single
exponential function but not the double exponential model.

Within the advanced graphics environment this transformation was selected to produce the next plot.

-0.75

-0.25

0.25

0.0 0.875 1.75

t

lo
g 1

0[
f(

t)
]

Y-Semilog Plot

As the intention was to insert this graph into the previous one the graph was edited as follows

• Suppressing the title

• Changing the legends

• Adding a subsidiary title within the graph

• Making the lines thicker so they do not look too narrow when the plot is reduced in size. As the figure
is to be reduced by a factor of two, the line thicknesses were doubled. Sometimes it is useful to enlarge
the legends or to replace using a bold font, and even the numbers can be enlarged if required.

The following SimFIT test files are provided to reproduce this fit.

• exfit_logplot.eps, the above plot in EPS format for input into program editps

• exfit_logplot.svg, the above plot in SVG format for input into program EditSVG

• exfit_logplot.metafile, a metafile to create this plot in SimFIT program simplot or SimDEM
program simdem70

The file exfit.svg was also created at this stage to archive the compound plot, as described next.

Scalable vector graphics (SVG) 395

22.4.3 Joining the SVG files using EditSVG

Open program EditSVG then input the test file exfit_normalplot.svg.

Now input the file exfit_logplot.svg then just use the mouse to move the equation into position and alter
the scaling as required to obtain the final plot saved as exfit.svg and shown next.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.875 1.75

Data fitted by One and Two Exponentials

t

f(
t)

One Exponential

Two Exponentials

-0.75

-0.25

0.25

0.0 0.875 1.75

t

lo
g 1

0[
f(

t)
]

Y-Semilog Plot

22.4.4 Summary of files used in this section

Finally, the SimFIT test files described in this document that can be used to create this plot are now listed.

File name Data included
exfit_normalplot.metafile SimFIT or SimDEM metafile to create the normal plot
exfit_logplot.metafile SimFIT or SimDEM metafile to create the log plot
exfit_normal.svg SVG file containing the normal plot
exfit_logplot.svg SVG file containing the log plot
exfit.svg SVG file containing both the final compound plot
exfit_normalplot.eps EPS file containing the normal plot
exfit_logplot.eps EPS file containing the log plot
exfit.eps EPS file containing the final compound plot
exfit.tf4 Test file containing the data for fitting

396 Scalable vector graphics (SVG)

22.5 SVG: Using LaTeX to label SVG H axes

Sometimes it is required to use LATEX to display a mathematical equation but with the formula rotated so it
can be used as the H axis label inside a scientific SVG plot, and this document describes how to do this using
the beta probability distribution as an example.

Note that all the files mentioned in this document are distributed as SimFIT test files so that users simply
wishing to create the final composed document can proceed directly to the last section describing how to use
EditSVG.

22.5.1 The beta probability density function

Consider, for example, the wide variety of shapes possible for the beta probability distribution as the two
positive parameters U and V are varied as shown next.

0

1

2

3

0 1

The Beta Distribution

x
α = 2.0, β = 2.0 α = 2.0, β = 5.0 α = 1.0, β = 3.0

α = 5.0, β = 2.0 α = 3.0, β = 1.0 α = 0.5, β = 0.5

This distribution is widely used in data analysis where a unimodal distribution is required as an empirical
equation to model data as positive frequencies for a variable G that can be scaled into the range 0 ≤ G ≤ 1.

The great advantage of this distribution is that for positive parameters U and V a great variety of shapes can
be generated to illustrate and quantify skew and kurtosis with frequency histograms.

Scalable vector graphics (SVG) 397

22.5.2 The LaTeX source

This is the LATEX code contained in the file latex_beta_pdf.tex to generate the rotated formula.

\documentclass[12pt]{article}

\usepackage{amsmath}

\usepackage{graphicx}

\pagestyle{empty}

\begin{document}

\Large

\rotatebox{90}{$ f_X(x:\alpha,\beta) = \frac{\Gamma(\alpha +

\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha 1}(1 x)^{\beta 1}$}

\end{document}

which displays the mathematical definition of the beta function (shown before rotation) as follows.

In order to import this formula into a graph using EditSVG the code must be used to create the corresponding
SVG file latex_beta_pdf.svg, the overall process being the following sequence of commands.

• latex latex_beta_pdf.tex

• dvips latex_beta_pdf.dvi

• dvisvgm E latex_beta_pdf.ps

The file latex_beta_pdf.svg created is then ready to be imported into EditSVG but, alternatively, the source
file latex_beta_pdf.tex can be opened in or dragged and dropped directly onto EditSVG if there is a local
installation of LATEX. When using LATEX in this way to create a SVG file, the command line must be used
from a folder containing the *.TEX file required as a local file and not as a fully qualified path–filename to
a remote source file. The program EditSVG circumvents this issue when importing LATEX source by creating
local copies of all files.

22.5.3 Creating the plot file

0

1

2

3

0 1

The Beta Distribution

x
α = 2.0, β = 2.0 α = 2.0, β = 5.0 α = 1.0, β = 3.0

α = 5.0, β = 2.0 α = 3.0, β = 1.0 α = 0.5, β = 0.5

398 Scalable vector graphics (SVG)

The file beta_pdf_plot.svg with the 5- (G : U, V) to be used looks like the previous figure before the
equation is added.

This figure was created using the SimFIT program makmat by selecting to display the beta distribution
5- (G : U, V)) with various values for the positive parameters U and V over the range 0.01 ≤ G ≤ 0.99 so as
to avoid the poles at either extreme. Users wishing to avoid this process can simply read the SimFIT metafile
beta_pdf_plot.metafile directly into the SimFIT program simplot, or the SimDEM program simdem70.
In either case the file is then saved as beta_pdf_plot.svg using the [Win] or [SVG] option.

22.5.4 Joining the SVG files using EditSVG

First open program EditSVG then input the test file beta_pdf_plot.svg to act as a main plot, then there are
two possible options.

1. Input the test file latex_beta_pdf.svg directly; or

2. read in the test file latex_beta_pdf.tex which will then be used by LATEX to generate an internal copy
of latex_beta_pdf.svg.

Finally, just use the mouse to move the equation into position and alter the scaling as required to obtain the
final plot saved as beta_pdf_with_equation.svg shown previously at the start of this document.

22.5.5 Summary

The programs referred to in this document are as follows.

1. EditSVG is a SimFIT and SimDEM program that takes in SVG or TEX files and writes out SVG and
other files.

2. The SimFIT program simplot and the SimDEM program simdem70 take in SimFIT metafiles and write
out either SVG or EPS files.

Further, the SimFIT test files (*.TEX and *.SVG) described in this document that can be used by program
EditSVG, and those (*.EPS) that can be used by program editPS are now listed.

File name Data included
beta_pdf_plot.metafile SimFIT or SimDEM metafile to create the plot without any equation
latex_beta_pdf.tex LATEX source file for the beta_pdf equation with no plot
latex_beta_pdf.svg SVG file containing the formula only
beta_pdf_plot.svg SVG file containing the plot only
beta_pdf_with_equation.svg SVG file containing both the equation and plot
beta_pdf_with_equation.eps EPS file containing both the equation and plot only
latex_beta_pdf.eps EPS file containing formula only
beta_pdf_plot.eps EPS file containing the plot only

Scalable vector graphics (SVG) 399

22.6 SVG: Editing using text editors, e.g., Notepad

It is frequently convenient to edit SVG files retrospectively, usually in order to change sizes, titles, legends,
labels, line–types, line–widths, and colors, etc. Fortunately, SVG files, like EPS files, are in ASCII text format
so they can be edited using any text editor that supports UTF8 characters, such as the Windows program
notepad or better notepad++. The actual format is in XML which is similar to HTML but, in addition, the
SVG files created by SimFIT have been designed with editing in mind. For instance, each individual markup
code starts on a new line.

22.6.1 Titles and Legends

As a simple example consider the following stacked bar chart created by importing the SimFIT metafile
stack_plot.metafile into SimFIT program simplot or SimDEM program simdem70.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 2 3 4 5

Stack Plot

Columns

R
ow

s

On searching for the string "Stack Plot" in the file stack_plot.svg using a text editor we find the following
markup at line 34, where the tokens have been shown on separate lines for clarity.

<text

x="420.00" y="44.72"

fontfamily="ARIAL"

fontsize="47px"

fontweight="700"

fill="rgb(170,0,0)">

Stack Plot</text>

Note the key markup codes used in this line.

400 Scalable vector graphics (SVG)

• <text ... ></text>

• font-family=

• font-size=

• font-weight=

• fill=

We might think the title could be more explanatory and would be better using a more subdued coloring
given the amount of color already associated with the stack segments. So, after some editing in notepad++,
re-displaying using firefox gives the next graph.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 2 3 4 5

Stack Plot

Columns

R
ow

s

Lines 34, 35, and 36 now look like this (with line numbers added for clarity).

34 <text x="330.00" y="44.72" fontfamily="ARIAL" fontsize="47px"

fontweight="700" fill="rgb(0,0,170)">Bar Chart in Stacked Format</text>

35 <text x="504.00" y="788.92" fontfamily="ARIAL" fontsize="42px"

fontweight="400" fill="rgb(0,170,0)">Columns</text>

36 <text x="68.00" y="449.44" fontfamily="ARIAL" fontsize="44px"

fontweight="400" transform="rotate(270.00,68.00,460.00)"

fill="rgb(0,170,0)">Rows</text>

The following editing will be apparent on inspection.

Line 34

The original short title "Stack Plot" has been changed to the longer title "Bar Chart in Stacked Format",
the color has been changed from red rgb(170,0,0) to blue rgb(0,0,170), and the x-coordinate has been
changed from 420.0 to 330.00 (so that the title remains centralized over the plot).

Scalable vector graphics (SVG) 401

Line 35

The x-legend color has been changed from blue rgb(0,0,170) to green rgb(0,170,0)

Line 36

The y-legend color has been changed from blue rgb(0,0,170) to green rgb(0,170,0)

22.6.2 Lines and Curves

Consider the next plot with five lines, each in a different color and line width.

This plot can easily be created by reading the SimFIT metafile lines.metafile into SimFIT program simplot

or SimDEM program simdem70.

Note that in this plot the lines were created by drawing a polyline between two points which could easily have
been drawn as a simple line. However a polyline was drawn as it would be more usual to change the line type,
thickness, and color for a smooth curve which would then have made it more difficult to comprehend with the
presence of a large number of coordinates, whereas only the end points are needed for a straight line.

The point is that, in order to search for a graphical object in a SVG file, the the markup code would be used.
For instance, searching for the text string <polyline points= in the file lines.svg locates the following
code on a single line, but here broken up into separate tokens for clarity.

<polyline points="196.81,823.62 1095.69,823.62"

style="fill:none;stroke:rgb(0,0,0) ;strokewidth:1.84"

strokelinecap="butt"

strokelinejoin="round" />

402 Scalable vector graphics (SVG)

To understand this code the following summary is presented.

1. <polyline points= ... />

This markup section starting with < and ending with /> defines all the properties of the polyline.

2. style=

Here all the details of the curve to be drawn are to be found.

3. :rgb(0,0,0)

This color convention is exactly as used for HTML, where red, blue, and green color components are
defined on a scale from 0 to 255.

4. stroke width:

This defines the line width in pixels.

5. strokelinecap=

This defines the way the ends of curves are finished off.

6. strokelinejoin=

This is where the way that the sections of the polyline making up the curve are to be connected together
is defined.

In fact the code for drawing all five lines is as follows , where dots . . . are used to indicate the text omitted for
clarity.

... style="fill:none;stroke:rgb(0,0,0) ;strokewidth:1.84" ...

... style="fill:none;stroke:rgb(170,0,0) ;strokewidth:2.00" ...

... style="fill:none;stroke:rgb(0,0,170) ;strokewidth:4.00" ...

... style="fill:none;stroke:rgb(0,170,0) ;strokewidth:8.00" ...

... style="fill:none;stroke:rgb(0,170,170) ;strokewidth:16.00" ...

Note that the order of these commands is in the direction from bottom to top, so that the first line (stroke-
width:1.84) refers to the bottom line, while the last command (stroke-width:16) refers to the top line.

Another change that is often required is to swap between solid lines and dashed, dotted, or dash–dotted lines
which requires the definition of a strokedasharray parameter as follows.

• strokedasharray="18.00,12.00" for dashed lines

• strokedasharray="6.00,12.00" for dotted lines

• strokedasharray="18.00,12.00,6.00,12.00" for dash–dotted lines

To demonstrate this technique, note that replacing this section of lines.svg by the next section

:rgb(170,0,0) ;strokewidth:16.00"

:rgb(0,0,0) ;strokewidth:2.00" strokedasharray="18.00,12.00"

:rgb(0,0,0) ;strokewidth:2.00" strokedasharray="6.00,12.00"

:rgb(0,0,0) ;strokewidth:2.00" strokedasharray="18.00,12.00,6.00,12.00"

:rgb(170,0,170) ;strokewidth:16.00"

generates the following graph with the dashed, dotted, and dash–dotted lines colored black.

Scalable vector graphics (SVG) 403

22.6.3 Character Strings and Fonts

A common need is to reposition a character string, to edit the string, to change the font size, or to change the
colour. Consider, for instance, the following diagram.

This is Arial/Helvetica size = 1.2

This is Arial/Helvetica size = 2.0

This is Arial/HelveticaBold size 2.0 in red

Times Roman rotated 0 degrees

Tim
es

 R
om

an
 ro

tat
ed

 45
 de

gr
ee

s

Times Roman rotated -45 degrees

A
rial B

o
ld

O
b

liq
u

e ro
tated

 -90 d
eg

reesA
ri

al
 B

o
ld

O
b

liq
u

e
ro

ta
te

d
 9

0
d

eg
re

es

αβχδεφγηιϕκλµνοπθρστυϖωξψζ
ΑΒΧ∆ΕΦΓΗΙϑΚΛΜΝΟΠΘΡΣΤΥςΩΞΨΖ

404 Scalable vector graphics (SVG)

Here is the first character string with Arial/Helvetica at size 1.2, but broken into separate tokens for clarity.

<text x="289.00" y="62.48"

fontfamily="ARIAL"

fontsize="23px"

fontweight="400"

fill="rgb(0,0,0)"

>This is Arial/Helvetica size = 1.2

</text>

If this is understood then editing such a SVG file will be simple. Here is what the rules are.

• <text ...

This indicates the start of a new character string which includes several self–evident definitions such as
these.

– fontfamily

– fontsize

– fontweight

– fill

• This is Arial/Helvetica size = 1.2

This is the actual string itself that is going to be displayed

• </text>

This indicates the end of the instructions to display the string

The command to rotate 90 degrees, again with tokens separated for clarity, is as follows.

<text x="232.00" y="705.00"

fontfamily="ARIAL"

fontsize="25px"

fontweight="700"

transform="rotate(270.00,232.00,711.00)"

fontstyle = "oblique"

fill="rgb(0,140,0)">

Arial BoldOblique rotated 90 degrees</text>

The following files are distributed with the SimFIT package in order to understand the previous details.

1. lines.metafile, new_lines.metafile, fonts.metafile

These can be used to generate the figures using the SimFIT program simplot or the SimDEM program
simdem70

2. lines.eps, newlines.eps, fonts.eps

PostScript graphics files

3. lines.svg, newlines.svg, fonts.svg

SVG graphics files

Note that, to edit text strings containing non–ASCII characters as in the lower strings using Symbol font, an
editor supporting UTF8 must be used.

Scalable vector graphics (SVG) 405

22.7 SVG: Creating collages

Sometimes it is required to combine several SVG files together to create a collage, i.e., a single SVG file
containing subgraphs arranged into fixed or arbitrary positions. To do this, subsidiary SVG files are input into
program EditSVG, then rearranged and scaled as necessary. When satisfied, program EditSVG can be used to
output the composite graph as a SVG file (*.SVG).

Note that, after constructing a collage, program EditSVG also provides the facility to output re–build files
(*.ISVG). These simply contain a list of SVG files used to compose the collage along with positions, scaling,
and flags to indicate if white space borders are to be clipped from graphs, etc.

Such collages can be classified into several types as follows.

• A fixed or strict collage

Here all the subgraphs have the same size and shape. For instance, all square, or all in landscape format,
or all in portrait aspect ratio.

• An arbitrary or free–style collage

In this case the subgraphs can be of arbitrary size and shape.

• Using ribbon graphs

On occasions graphs created in square, portrait, or landscape, format are too compressed and it is
necessary to apply differential stretching into a non standard format. This involves scaling the length
of lines without altering the aspect ratio of the fonts used in titles, legends or plot labels. For instance
with dendrograms or forest plots.

Several collages from the SimFIT tutorials section concerning SVG are now shown to illustrate some typical
possibilities.

• Collage 1.

Freestyle non–overlapping type showing a collection of arbitrary mathematical equations and chemical
formulas.

• Collage 2.

Freestyle inlay type illustrating how to combine LATEX maths with visual display of data.

• Collage 3.

Freestyle inlay type illustrating how to combine a LATEX chemical scheme and graph with data and
best-fit curves.

• Collage 4.

Strict type displaying illustrations from the SimFIT tutorials SVG section.

• Collage 5.

Differential stretching type illustrating how to stretch the G or H axes while maintaining constant aspect
ratios for characters required for ribbon graphs.

406 Scalable vector graphics (SVG)

22.7.1 Collage 1: Miscellaneous LATEX examples

0 1

1 0

(

0 −i
i 0

)

[

0 −1
1 0

] {

1 0

0 −1

}

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∥

∥

∥

∥

i 0

0 −i

∥

∥

∥

∥

√

√

√

√

√

1 +

√

√

√

√

1 +

√

1 +

√

1 +

√

1 +
√
1 + x

∫∫

V

µ(v, w) du dv

∫∫∫

V

µ(u, v, w) du dv dw

∫

· · ·
∫

V

µ(z1, . . . , zk)dz

lim
x→0

sin2(x)

x2
= 1

lim
n→∞
|an+1|/|an| = 0

lim−→(mλ
i ·M)∗ ≤ lim←−

A/p→λ(A)

Ap ≤ 0

Scalable vector graphics (SVG) 407

22.7.2 Collage 2: LATEX maths

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 1 2 3 4 5 6 7 8 9 10

Fitting a Poisson Distribution

Values

O
/E

 F
re

qu
en

ci
es

Observed (O)

Expected (E)

408 Scalable vector graphics (SVG)

22.7.3 Collage 3: LATEX chemistry

❜
❜

✧
✧

❜
❜

✧
✧

❜❜

✧✧

CN

CH2Br

✲
HN(CH3)2 ❜

❜

✧
✧

❜
❜

✧
✧

❜❜

✧✧

CN

CH2N(CH3)2

✲
C6H16AlNaO4

❜
❜

✧
✧

❜
❜

✧
✧

❜❜

✧✧

CH2NH2

CH2N(CH3)2

Chemical synthesis of p-dimethylaminomethlbenzylamine

using

p-cyanobenzyl bromide, dimethylamine and Red-Al

0.0

0.5

1.0

1.5

2.0

2.5

0.0 2.0 4.0 6.0 8.0 10.0

Oxidation of p-Dimethylaminomethylbenzylamine

Time/minutes

C
on

ce
nt

ra
tio

n/
m

M

Scalable vector graphics (SVG) 409

22.7.4 Collage 4: Tutorial examples

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.875 1.75

Data fitted by One and Two Exponentials

t

f(
t)

One Exponential

Two Exponentials

-0.75

-0.25

0.25

0.0 0.875 1.75

t
lo

g 1
0[

f(
t)

]

Y-Semilog Plot

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 2 3 4 5

Stack Plot

Columns

R
ow

s

0.0

0.5

1.0

1.5

2.0

2.5

0.0 2.0 4.0 6.0 8.0 10.0

Oxidation of p-Dimethylaminomethylbenzylamine

Time/minutes

C
on

ce
nt

ra
tio

n/
m

M

0.5

1.0

-4.0 -2.0 0.0 2.0

Normal (0,1) Distribution Function

x

cd
f(

x)

This is Arial/Helvetica size = 1.2

This is Arial/Helvetica size = 2.0

This is Arial/HelveticaBold size 2.0 in red

Times Roman rotated 0 degrees

Tim
es

 R
om

an
 ro

tat
ed

 45
 de

gr
ee

s

Times Roman rotated -45 degrees

A
rial B

o
ld

O
b

liq
u

e ro
tated

 -90 d
eg

reesA
ri

al
 B

o
ld

O
b

liq
u

e
ro

ta
te

d
 9

0
d

eg
re

es

αβχδεφγηιϕκλµνοπθρστυϖωξψζ
ΑΒΧ∆ΕΦΓΗΙϑΚΛΜΝΟΠΘΡΣΤΥςΩΞΨΖ

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 1 2 3 4 5 6 7 8 9 10

Fitting a Poisson Distribution

Values

O
/E

 F
re

qu
en

ci
es

Observed (O)

Expected (E)

410 Scalable vector graphics (SVG)

22.7.5 Collage 5: Differential scaling to create ribbon graphs

100%

80%

60%

40%

20% 0%

PC1
PC2
PC5
PC8
PC6
HC8
PC3
PC4
PC7
HC7
HC4
24A
33B
76B
30B

100A
34

53A
76

30A
61B
60A
27A
27B

52
37B

68
28A
97A
26A
60B

29
36A
36B
31B
31A
35B
32A
32B
35A
72A
72B
99A
99B
37A

47
100B
33A
53B

73
24B
26B
28B
97B
91A
91B
25A
25B
61A
HC5
HC6

-1.00 -0.50 0.00 0.50 1.00 1.50

log10[Odds Ratios]

m
et

a.
tf1

m
et

a.
tf2

m
et

a.
tf3

Scalable vector graphics (SVG) 411

22.8 SVG: Differential scaling examples

Usually scientific graphs are in landscape, square, or portrait aspect ratios as they are intended for inclusion in
documents. However there many occasions where the data to be displayed are very extensive which would lead
to overcrowding of curves or overlapping of labels and plotting symbols. Examples would be the display of
dendrograms, forest plots, time series, or spectra where it would be useful to display data with extreme aspect
ratios and attached scroll bars to scan the graph vertically or horizontally, as with chart–paper. Fortunately
internet graphics using scalable vector graphics (SVG) allows this as all browsers support the SVG format,
and SimFIT provides facilities to stretch out overcrowded SVG graphs.

Unfortunately, where a graph is in bitmap, compressed bitmap, or vector format with landscape, square,
or portrait aspect ratio, it is not possible to merely stretch the graph as this would lead to pixellation, and
distortion of characters and plotting symbols, e.g., circles becoming ellipses, squares becoming rectangles,
etc., so a special type of stretching procedure is required.

SimFIT allows users to sculpture plots in advanced 2D format by editing symbols, line–types, labels, colors,
titles and legends, but then to save in SVG format followed by interactively applying differential scaling until
a satisfactory aspect ratio has been achieved before saving to a new SVG file which will automatically be
displayed with scroll bars in browsers.

So differential scaling as defined in this way requires several steps in SimFIT as follows.

1. Sculpture the graph in advanced 2D graphics

2. Choose the [SVG] option to view the current plot as SVG

3. Select values for X_scale and Y_scale and view the outcome

4. When satisfied save as a new differentially scaled SVG file

Note that the differentially scaled SVG files will have the following characteristics.

• The fonts and inter–character spacings will remain unchanged

• The line type and thickness will remain unchanged

• The plotting symbols will maintain their aspect ratios

• Only the white space between the lines, symbols and labels will change

• However there are likely to be unexpected effects if extreme scaling is used. For instance.

– With horizontally stretched graphs a centralized title or -–legend may only become visible after
horizontal scrolling.

– With vertically stretched graphs a centralized .–legend may only become visible after vertical
scrolling.

– In extreme cases like this it is best to delete the offending title or legend and add a new text string
in an appropriate position, i.e., close to the top left of the plot.

– Moving text, arrows, or information panels by eye with the red arrow will never be precise and
this will become increasingly obvious at as the scaling increases. Positioning can be improved by
using the graticule function, i.e., the mesh of intersecting lines created from the [Style] button.

Some of the unexpected effects and avoidance of such issues will be clear by detailing several examples
that will be discussed next and, to understand this material, it should be combined with viewing the page
https://simfit.org.uk/svg.html.

412 Scalable vector graphics (SVG)

22.8.1 A normal dendrogram

This is a very simple example where differential scaling is scarcely necessary but, as it does illustrate several
points, creation of the next plot requires some explanation.

100%

80%

60%

40%

20%

0%

P
C

1
24

B
26

B
91

A
91

B
P

C
2

53
A

76
27

A
10

0A
34

27
B

30
B

52
24

A
33

B
28

A
68

37
B

60
A

76
B

28
B

97
A

97
B

33
A

53
B

73
72

B
25

A
29

31
B

32
B

36
B

35
A

30
A

61
B

31
A

36
A

32
A

35
B

99
A

37
A

47
72

A
99

B
10

0B
25

B
61

A
P

C
3

60
B

P
C

4
P

C
7

26
A

P
C

5
P

C
8

P
C

6
H

C
7

H
C

8
H

C
4

H
C

5
H

C
6

Bray-Curtis Similarity Dendrogram

P
er

ce
nt

ag
e

S
im

ila
rit

y

The steps required to generate this default plot are as follows.

1. The SimFIT test data file cluster.tf2 contains a multivariate data set that can be used to generate
a dendrogram either by input into the SimFITprogram simstat then choosing multivariate statistics to
create a distance matrix with a chosen metric followed by plotting a dendrogram with labels, or by input
into simplot then opening the option to create statistical graphs.

2. The type of dendrogram required can be selected as the Bray-Curtis similarity type, which is often used
for such biological data. This would, of course, always be a user–selected decision that would depend
on the data and either statistical arguments or simply the visual appearance preferred.

3. The title and legend would normally be edited at this stage as required.

4. It should be noted that, with this example, SimFIT has automatically chosen to create a double label
system with rotated - axis labels in order to create a legible -–axis labeling system without the labels
overlapping.

The next plot illustrates the effect of differential -–axis scaling, where the title and .–legend have been
suppressed in order to display the graph in as large a size as is possible in a document.

Scalable vector graphics (SVG) 413

3.4 100%

80%

60%

40%

20% 0%

PC1
PC2
PC5
PC8
PC6
HC8
PC3
PC4
PC7
HC7
HC4
24A
33B
76B
30B

100A
34

53A
76

30A
61B
60A
27A
27B

52
37B

68
28A
97A
26A
60B

29
36A
36B
31B
31A
35B
32A
32B
35A
72A
72B
99A
99B
37A

47
100B
33A
53B

73
24B
26B
28B
97B
91A
91B
25A
25B
61A
HC5
HC6

To generate this particular figure these
steps were taken.

The dendrogram was created in SimFIT
advanced 2D graphics

The title was suppressed.

The .–legend was suppressed.

The double label threshold was increased
using the [Labels]option followed by
choosing to edit the --axis labels
This allows the labels to be displayed on
one line.

The font size for the .–axis numbers and
the -–axis labels was increased.

To improve legibility the --axis scaling
factor X_scale was then increased to 3.
Of course the graph becomes too large to
display in this document so the scrolling
version with title and .–legend has to be
observedusing the [SVG] option from the
main page at
https://simfit.org.uk.

In order to view with the labels in stan-
dard orientation rather than rotated it
would then be necessary to increase the
-–scaling factor to a larger value than 3
so as to maintain legibility and prevent
labels overlapping.

The re–scaled and edited graph was saved
to a new file which is displayed to the left,
after rotation.

414 Scalable vector graphics (SVG)

22.8.2 A crowded dendrogram

Proceeding as before but using the SimFIT test file iris.tf1 displays the famous Fisher iris multivariate data
as the following dendrogram.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

S
et

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
ir

V
er

V
ir

V
ir

V
ir

V
er

V
er

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
ir

V
er

V
er

V
er

V
er

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

Fisher’s Iris data, 3 groups, 4 variables

E
uc

lid
ea

n
D

is
ta

nc
e

Here the labels are too crowded to read easily but placing all the labels on the same line instead of on double
lines then stretching by using X_scale = 5 creates a much more legible dendrogram as will be seen from
the SimFIT website. Unfortunately this is then too wide to display in full in this document without serious
reduction.

However, using the SimFIT Postscript technique to clip a section out of such an expanded graph (which is
described in the reference manuals) does allows the display of an arbitrary section clipped out of the center of
the stretched graph as shown next (after some reduction).

S
et

S
et

S
et

S
et

S
et

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er V
ir

V
er V
ir

V
ir

V
ir

V
er

V
er V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er

V
er V
ir

V
er

V
er

V
er

V
er V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

V
ir

Fisher’s Iris data, 3 groups, 4 variables

Scalable vector graphics (SVG) 415

22.8.3 An extremely crowded plot

To create the chart–paper type of plot for primes displayed on the website the test files primes.tf1 and
primes.tf2 were input into SimFIT program simplot followed by editing the .–axis to have range (0, 1.25),
the data being plotted with no lines but with solid barchart–type symbols colored black for primes.tf1 and
red for primes.tf2, to create the next figure (after suppressing - and . legends and . labels and using
integers as -–labels).

0 2000 4000 6000 8000 10000

Primes up to 10000 (Single in Black and twins in Red)

Using the SimFIT Postscript facility described for the previous example to stretch by a factor of 10 and then
clip out the start of this graph to an EPS file (shown below) indicates the effect of differential scaling to separate
out the vertical bars from the solid mass of color in the plot (shown above) without differential scaling. This
is seen more clearly in the scrolling example stretched by a factor of 20 on the website.

0

416 Scalable vector graphics (SVG)

Appendix A

Distributions and special functions

Techniques for calling these functions from within user defined models are discussed starting on page 432.

A.1 Discrete distribution functions

A discrete random variable - can have one of = possible values G1, G2, . . . , G= and has a mass function 5- ≥ 0
and cumulative distribution function 0 ≤ �- ≤ 1 that define probability, expectation, and variance by

%(- = G 9) = 5- (G 9), for 9 = 1, 2, . . . , =

= 0 otherwise

%(- ≤ G 9) =
9∑
8=1

5- (G8)

1 =

=∑
8=1

5- (G8)

� (6(-)) =
=∑
8=1

6(G8) 5- (G8)

� (-) =
=∑
8=1

G8 5 (G8)

+ (-) =
=∑
8=1

(G8 − � (-))2 5- (G8)

= � (-2) − � (-)2.

A.1.1 Bernoulli distribution

A Bernoulli trial has only two possible outcomes, - = 1 or - = 0 with probabilities ? and @ = 1 − ?.

%(- = :) = ?:@1−: for : = 0 or : = 1

� (-) = ?
+ (-) = ?@

A.1.2 Binomial distribution

This models the case of = independent Bernoulli trials with probability of success (i.e. -8 = 1) equal to ? and
failure (i.e. -8 = 0) equal to @ = 1− ?. The random binomial variable (= is defined as the sum of the = values

418 Appendix

of -8 without regard to order, i.e. the number of successes in = trials.

(= =

=∑
8=1

-8

%((= = :) =
(
=

:

)
?: (1 − ?)=−: , for : = 0, 1, 2, . . . , =

� ((=) = =?
+ ((=) = =?(1 − ?)

The run test, sign test, analysis of proportions, and many methods for analyzing experiments with only two
possible outcomes are based on the binomial distribution.

A.1.3 Multinomial distribution

Extending the binomial distribution to : possible outcomes of frequency 58 in a sample of size = is described
by

%(-1 = 51, -2 = 52, . . . , -: = 5:) =
=!

51! 52! · · · 5:!
?
51
1
?
52
2
· · · ? 5:

:

where 51 + 52 + · · · + 5: = =
and ?1 + ?2 + · · · + ?: = 1.

An example would be the trinomial distribution, which is used to analyse the outcome of incubating a clutch
of eggs; they can hatch male, or female, or fail to hatch.

A.1.4 Geometric distribution

This is the distribution of the number of failures prior to the first success, where

%(- = :) = ?@:

� (-) = @/?
+ (-) = @/?2.

A.1.5 Negative binomial distribution

The probability of : failures prior to the Ath success is the random variable (A , where

%((A = :) =
(
A + : − 1

:

)
?A@:

� ((A) = A@/?
+ ((A) = A@/?2.

A.1.6 Hypergeometric distribution

This models sampling without replacement, where = objects are selected from # objects, consisting of" ≤ #

of one kind and # − " of another kind, and defines the random variable (= as

(= = -1 + -2 + . . . -=
where -8 = 1 for success with %(-8 = 1) = "/# , and -8 = 0 for failure.

%((= = :) =
(
"

:

) (
− "
= − :

) / (
#

=

)
, where

(
0

1

)
= 0 when 1 > 0 > 0

� ((=) = ="/#
+ ((=) = =?@(# − =)/(# − 1)

Note that when # ≫ = this reduces to the binomial distribution with ? = "/# .

Statistical distributions supported by SimFIT 419

A.1.7 Poisson distribution

This is the limiting form of the binomial distribution for large = and small ? but finite =? = _ > 0.

%(- = :) = _:

:!
exp(−_), for G = 0, 1, 2, . . . ,

� (-) = _
+ (-) = _

The limiting result, for fixed =? > 0, that

lim
=→∞

(
=

:

)
?: (1 − ?)=−: = (=?):

:!
exp(−=?)

can be used to support the hypothesis that counting is a Poisson process, as in the distribution of bacteria in
an sample, so that the error is of the order of the mean. The Poisson distribution also arises from Poisson
processes, like radioactive decay, where the probability of : events which occur at a rate _ per unit time is

%(: events in (0, C)) = (_C):
:!

exp(−_C) .

The Poisson distribution has the additive property that, given = independent Poisson variables -8 with
parameters _8 , the sum . =

∑=
8=1 -8 has a Poisson distribution with parameter _H =

∑=
8=1 _8 .

A.2 Continuous distributions

A continuous random variable - is defined over some range by a probability density function 5- ≥ 0 and
cumulative distribution function 0 ≤ �- ≤ 1 that define probability, expectation, and variance by

�- (G) =
∫ G

−∞
5- (C) 3C

%(� ≤ G ≤ �) = �G (�) − �- (�)

=

∫ �

�

5- (C) 3C

1 =

∫ ∞

−∞
5- (C) 3C

� (6(-)) =
∫ ∞

−∞
6(C) 5- (C) 3C

� (-) =
∫ ∞

−∞
C 5- (C) 3C

+ (-) =
∫ ∞

−∞
(C − � (-))2 5- (C) 3C.

In the context of survival analysis, the random survival time - ≥ 0, with density 5 (G), cumulative distribution
function � (G), survivor function ((G), hazard function ℎ(G), and integrated hazard function � (G) are defined
by

((G) = 1 − � (G)
ℎ(G) = 5 (G)/((G)

� (G) =
∫ G

0

ℎ(D) 3D

5 (G) = ℎ(G) exp{−� (G)}.

420 Appendix

A.2.1 Uniform distribution

This assumes that every value is equally likely for � ≤ - ≤ �, so that

5- (G) = 1/(� − �)
� (-) = (� + �)/2
+ (-) = (� + �)2/12.

A.2.2 Normal (or Gaussian) distribution

This has mean ` and variance f2 and, for convenience, - is often standardized to / , so that if - ∼ # (`, f2),
then / = (G − `)/f ∼ # (0, 1).

5- (G) =
1

f
√

2c
exp

(
− (G − `)2

2f2

)

� (-) = `
+ (-) = f2

Φ(I) = �- (I)

=
1

√
2c

∫ I

−∞
exp(−C2/2) 3C.

It is widely used in statistical modelling, e.g., the assumption of normally distributed dosage tolerance leads
to a probit regression model for the relationship between the probability of death and dose. There are several
important results concerning the normal distribution which are heavily used in hypothesis testing.

A.2.2.1 Example 1. Sums of normal variables

Given = independent random variables -8 ∼ # (`8 , f2
8), then the linear combination. =

∑=
8=1 08-8 is normally

distributed with parameters `H =
∑=
8=1 08`8 and f2

H =
∑=
8=1 0

2
8f

2
8 .

A.2.2.2 Example 2. Convergence of a binomial to a normal distribution

If (= is the sum of = Bernoulli variables that can be 1 with probability ?, and 0 with probability 1 − ?, then
(= is binomially distributed and, by the central limit theorem, it is asymptotically normal in the sense that

lim
=→∞

%

(
(= − =?√
=?(1 − ?)

≤ I

)
= Φ(I) .

The argument that experimental error is the sum of many errors that are equally likely to be positive or negative
can be used, along with the above result, to support the view that experimental error is often approximately
normally distributed.

A.2.2.3 Example 3. Distribution of a normal sample mean and variance

If - ∼ # (`, f2) and from a sample of size = the sample mean

Ḡ =

=∑
8=1

G8/=

and the sample variance

(2
=

=∑
8=1

(G8 − Ḡ)2/=

are calculated, then

Statistical distributions supported by SimFIT 421

(a) -̄ ∼ # (`, f2/=);
(b) =(2/f2 ∼ j2 (= − 1), � ((2) = (= − 1)f2/=, + ((2) = 2(= − 1)f4/=2; and
(c) -̄ and (2 are stochastically independent.

A.2.2.4 Example 4. The central limit theorem

If independent random variables -8 have mean ` and variance f2 from some distribution, then the sum
(= =

∑=
8=1 -8, suitably normalized, is asymptotically normal, that is

lim
=→∞

%

(
(= − =`
f
√
=

≤ I

)
= Φ(I), or

%(-1 + -2 + · · · + -= ≤ H) ≈ Φ

(
H − =`
f
√
=

)
.

Under appropriate restrictions, even the need for identical distributions can be relaxed.

A.2.3 Lognormal distribution

This is frequently used to model unimodal distributions that are skewed to the right, e.g., plasma concentrations
which cannot be negative, that is, where the logarithm is presumed to be normally distributed so that, for
- = exp(.) where . ∼ # (`, f2), then

5- (G) =
1

fG
√

2c
exp

(
− (log(G) − `)2

2f2

)

� (-) = exp(` + f2/2)
+ (-) = (exp(f2) − 1) exp(2` + f2) .

A.2.4 Bivariate normal distribution

If variables - and . are jointly distributed according to a bivariate normal distribution the density function is

5-,. =
1

2cf-f.
√

1 − d2
exp

(
−1

2
&

)

where & =
1

1 − d2

(
(G − `-)2

f2
-

− 2d
(G − `-) (H − `.)

f-f.
+ (H − `.)2

f2
.

)

with f2
-
> 0, f2

.
> 0, and −1 < d < 1. Here the marginal density for - is normal with mean `- and variance

f2
-

, the marginal density for . is normal with mean `. and variance f2
.

, and when - and . are independent
the correlation d is zero. At fixed probability levels, the quadratic form& defines an ellipse in the -,. plane
which will have axes parallel to the -,. axes if d = 0, but with rotated axes otherwise.

A.2.5 Multivariate normal distribution

If a < dimensional random vector - has a # (`, Σ) distribution , the density is

5- (G) = (2c)−</2|Σ |−1/2 exp{−1
2
(G − `))Σ−1(G − `)}.

Contours of equi-probability are defined by 5 (G) = : for some : > 0 as a hyper-ellipsoid in < dimensional
space, and the density has the properties that any subsets of - or linear transformations of - are also
multivariate normal. Many techniques, e.g., MANOVA, assume this distribution.

422 Appendix

A.2.6 C distribution

The C distribution arises naturally as the distribution of the ratio of a normalized normal variate / divided by
the square root of a chi-square variable j2 divided by its degrees of freedom a.

C(a) = /√
j2 (a)/a

, or setting - = C(a)

5- (G) =
Γ((a + 1)/2)
Γ(a/2)√ac

(
1 + G

2

a

)−(a+1)/2

� (-) = 0

+ (-) = a/(a − 2) for a > 2.

The use of the C test for testing for equality of means with two normal samples -1, and -2 (page 136), with
sizes =1 and =2 and the same variance, uses the fact that the sample means are normally distributed, while the
sample variances are chi-square distributed, so that under �0,

/ =
Ḡ1 − Ḡ2

f
√

1/=1 + 1/=2

* =
=1B

2
1
+ =2B

2
2

f2 (=1 + =2 − 2)
) = //

√
*

∼ C(=1 + =2 − 2)
)2 ∼ � (1, =1 + =2 − 2) .

For the case of unequal variances the Welch approximation is used, where the above test statistic) and degrees
of freedom a calculated using a pooled variance estimate, are replaced by

) =
Ḡ1 − Ḡ2√

B2
1
/=1 + B22/=2

a =
(B2

1
/=1 + B22/=2)2

(B2
1
/=1)2/(=1 − 1) + (B2

2
/=2)2/(=2 − 1)

.

The paired C test (page 138) uses the differences 38 = G8 − H8 between correlated variables - and . and only
assumes that the differences are normally distributed, so that the test statistic for the null hypothesis is

3̄ =

=∑
8=1

38/=

B23 =

=∑
8=1

(38 − 3̄)2/(= − 1)

) = 3̄
/√

B2
3̄
/=.

A.2.7 Cauchy distribution

This is the distribution of the ratio of two normal variables. For, instance, if -1 ∼ # (0, 1) and -2 ∼ # (0, 1)
then the ratio - = -1/-2 has a Cauchy distribution, where � (-) and + (-) are not defined, with

5- =
1

c(1 + G2)
.

This is a better model for experimental error than the normal distribution as the tails are larger than with a
normal distribution. However, because of the large tails, the mean and variance are not defined, as with the C
distribution with a = 1 which reduces to a Cauchy distribution.

Statistical distributions supported by SimFIT 423

A.2.8 Chi-square distribution

The j2 distribution with a degrees of freedom results from adding together the squares of a independent /
variables.

j2 (a) =
a∑
8=1

I28 or, setting - = j2 (a),

5- (G) =
1

2a/2Γ(a/2)
Ga/2−1 exp(−G/2)

� (-) = a
+ (-) = 2a.

It is the distribution of the sample variance from a normal distribution, and is widely used in goodness of fit
testing since, if = frequencies �8 are expected and = frequencies$8 are observed, then

lim
=→∞

=∑
8=1

($8 − �8)2

�8
= j2 (a) .

Here the degrees of freedom a is just = − 1 minus the number of extra parameters estimated from the data to
define the expected frequencies. Cochran’s theorem is another result of considerable importance in several
areas of data analysis, e.g., the analysis of variance, and this considers the situation where /1, /2, . . . , /= are
independent standard normal variables that can be written in the form

=∑
8=1

/2
8 = &1 +&2 + · · · +&:

where each &8 is a sum of squares of linear combinations of the /8 . If the rank of each &8 is A8 and

= = A1 + A2 + · · · + A:

then the &8 have independent chi-square distributions, each with A8 degrees of freedom.

A.2.9 � distribution

The � distribution arises when a chi-square variable with a1 degrees of freedom (divided by a1) is divided by
another independent chi-square variable with a2 degrees of freedom (divided by a2).

� (a1, a2) =
j2 (a1)/a1

j2 (a2)/a2

or, setting - = � (a1, a2),

5- (G) =
a
a1/2
1

a
a2/2
2

Γ((a1 + a2)/2)
Γ(a1/2)Γ(a2/2)

G (a1−2)/2(a1G + a2)−(a1+a2)/2

� (-) = a2/(a2 − 2) for a2 > 2.

The � distribution is used in the variance ratio tests and analysis of variance, where sums of squares are
partitioned into independent chi-square variables whose normalized ratios, as described above, are tested for
equality, etc. as variance ratios.

A.2.10 Exponential distribution

This is the distribution of time to the next failure in a Poisson process. It is also known as the Laplace or
negative exponential distribution, and is defined for - ≥ 0 and _ > 0.

5- (G) = _ exp(−_G)
� (-) = 1/_
+ (-) = 1/_2 .

424 Appendix

Note that, if 0 ≤ - ≤ 1 has a uniform distribution, then . = (1/_) log(-) has an exponential distribution.
Also, when used as a model in survival analysis, this distribution does not allow for wear and tear, as the
hazard function is just the constant _, as follows:

((G) = exp(−_G)
ℎ(G) = _
� (G) = _G.

A.2.11 Beta distribution

This is useful for modelling densities that are constrained to the unit interval 0 ≤ G ≤ 1, as a great many
shapes can be generated by varying the parameters A > 0 and B > 0.

5- (G) =
Γ(A + B)
Γ(A)Γ(B) G

A−1 (1 − G)B−1

� (-) = A/(A + B)
+ (-) = AB/((A + B + 1) (A + B)2)

It is also used to model situations where a probability, e.g., the binomial parameter, is treated as a random
variable, and it is also used in order statistics, e.g., the distribution of the :th largest of = uniform (0, 1)
random numbers is beta distributed with A = : and B = = − : + 1.

A.2.12 Gamma distribution

This distribution with G > 0, A > 0, and _ > 0 arises in modelling waiting times from Poisson processes.

5- (G) =
_AGA−1

Γ(A) exp(−_G)

� (-) = A/_
+ (-) = A/_2

When A is a positive integer it is also known as the Erlang density, i.e. the time to the Ath occurrence in a
Poisson process with parameter _.

A.2.13 Weibull distribution

This is used to model survival times where the survivor function ((G) and hazard rate or failure rate function
ℎ(G) are defined as follows.

5- (G) = ��(�G)�−1 exp(−�G)�

�- (G) = 1 − exp(−�G)�

((G) = 1 − �- (G)
ℎ(G) = 5- (G)/((G)

= ��(�G)�−1.

It reduces to the exponential distribution when � = 1, but it is a much better model for survival times, due to
the flexibility in curve shapes when � is allowed to vary, and the simple forms for the survivor and hazard
functions. Various alternative parameterizations are used, for instance

5- (G) =
(
U

V

) (
G − W
V

)U−1

exp−
(
G − W
V

)U

� (-) = W + VΓ
(

1
U
+ 1

)

+ (-) = V2

{
Γ

(
2
U
+ 1

)
− Γ

2

(
1
U
+ 1

)}
.

Statistical distributions supported by SimFIT 425

A.2.14 Logistic distribution

This resembles the normal distribution and is widely used in statistical modelling, e.g., the assumption of
logistic dosage tolerances leads to a linear logistic regression model.

5- (G) =
exp[(G − `)/g]

g{1 − exp[(G − `)/g]}2

�- (G) =
exp[(G − `)/g]

1 + exp[(G − `)/g]
� (-) = `
+ (G) = c2g2/3

A.2.15 Log logistic distribution

By analogy with the lognormal distribution, if log - has the logistic distribution, and ` = − log d, ^ = 1/g,
then the density, survivor function, and hazard functions are simpler than for the log normal distribution,
namely

5 (G) = ^G^−1d^

{1 + (dG)^ }2

((G) = 1
1 + (dG)^

ℎ(G) = ^G^−1d^

1 + (dG)^ .

A.3 Non-central distributions

These distributions are similar to the corresponding central distributions but they require an additional non-
centrality parameter, _. One of the main uses is in calculations of statistical power as a function of sample
size. For instance, calculating the power for a chi-square test requires the cumulative probability function for
the non-central chi-square distribution.

A.3.1 Non-central beta distribution

The lower tail probability for parameters 0 and 1 is

%(- ≤ G) =
∞∑
8=0

(_/2) exp(−_/2)
8!

%(V0,1 ≤ G),

where 0 ≤ G ≤ 1, 0 > 0, 1 > 0, _ ≥ 0, and %(V0,1 ≤ G) is the lower tail probability for the central beta
distribution.

A.3.2 Non-central chi-square distribution

The lower tail probability for a degrees of freedom is

%(- ≤ G) =
∞∑
8=0

(_/2)8 exp(−_/2)
8!

%(j2
a+28 ≤ G),

where G ≥ 0, _ ≥ 0, and %(j2
:
≤ G) is the lower tail probability for the central chi-square distribution with :

degrees of freedom.

426 Appendix

A.3.3 Non-central � distribution

The lower tail probability %(- ≤ G) for a1 and a2 degrees of freedom is

∫ G

0

∞∑
8=0

(_/2)8 (a1 + 28) (a1+28)/2aa2/2
2

exp(−_/2)
8! �((a1 + 28)/2, a2/2)

D (a1+28−2)/2 [a2 + (a1 + 28)D]−(a1+28+a2)/2 3D

where G ≥ 0, _ ≥ 0, and �(0, 1) is the beta function for parameters 0 and 1.

A.3.4 Non-central C distribution

The lower tail probability for a degrees of freedom is

%(- ≤ G) = 1

Γ(a/2)2(a−2)/2

∫ ∞

0

Φ

(
DG
√
a
− _

)
Da−1 exp(−D2/2) 3D,

where Φ(H) is the lower tail probability for the standard normal distribution and argument H.

A.4 Special functions

A.4.1 Binomial coefficient

This is required in the treatment of discrete distributions. It is just the number of selections without regard to
order of : objects out of =. (

=

:

)
=

=!
:!(= − :)!

=
=(= − 1) (= − 2) · · · (= − : + 1)
: (: − 1) (: − 2) · · · 3.2.1

=

(
=

= − :

)

A.4.2 Gamma and incomplete gamma functions

The gamma function is widely used in the treatment of continuous random variables and is defined as follows.

Γ(U) =
∫ ∞

0

CU−1 exp(−C) 3C

Γ(U + 1) = UΓ(U) .
So that Γ(:) = (: − 1)! for integer : ≥ 0

and Γ(: + 1/2) = (2: − 1) (2: − 3) · · · 5.3.1.
√
c/2: .

The incomplete gamma function %(G) and incomplete gamma function complement&(G) given parameter U
usually, as here, normalized by the complete gamma function, are also frequently required.

%(G, U) = 1
Γ(U)

∫ G

0

CU−1 exp(−C) 3C

&(G, U) = 1
Γ(U)

∫ ∞

G

CU−1 exp(−C) 3C

As the gamma distribution function with � > 0, U > 0, and V > 0 is

%(G, U, V) = 1
VUΓ(U)

∫ G

0

�U−1 exp(−�/V) 3�,

the incomplete gamma function is also the cumulative distribution function for a gamma distribution with
second parameter V equal to one.

Special functions supported by SimFIT 427

A.4.3 Beta and incomplete beta functions

Using the gamma function, the beta function is then defined as

�(6, ℎ) = Γ(6)Γ(ℎ)
Γ(6 + ℎ)

and the incomplete beta function for 0 ≤ G ≤ 1 as

'(G, 6, ℎ) = 1
�(6, ℎ)

∫ G

0

C6−1 (1 − C)ℎ−1 3C.

The incomplete beta function is also the cumulative distribution function for the beta distribution.

A.4.4 Exponential integrals

�1 (G) =
∫ ∞

G

exp(−C)
C

3C

�8 (G) = −
∫ ∞

−G

exp(−C)
C

3C

where G > 0, excluding the origin in �8(G).

A.4.5 Sine and cosine integrals and Euler’s gamma

(8(G) =
∫ G

0

sin C
C
3C

�8(G) = W + log G +
∫ G

0

cos C − 1
C

3C, G > 0

W = lim
<→∞

{1 + 1
2
+ 1

3
+ 1

4
· · · + 1

<
− log<}

= .5772156649 . . .

A.4.6 Fermi-Dirac integrals

5 (G) = 1
Γ(1 + U)

∫ ∞

0

CU

1 + exp(C − G) 3C

A.4.7 Debye functions

5 (G) = =

G=

∫ G

0

C=

exp(C) − 1
3C, G > 0, = ≥ 1

A.4.8 Clausen integral

5 (G) = −
∫ G

0

log
(
2 sin

C

2

)
3C, 0 ≤ G ≤ c

A.4.9 Spence integral

5 (G) =
∫ G

0

− log |1 − C |
C

3C

428 Appendix

A.4.10 Dawson integral

5 (G) = exp(−G2)
∫ G

0

exp(C2) 3C

A.4.11 Fresnel integrals

� (G) =
∫ G

0

cos
(c
2
C2

)
3C

((G) =
∫ G

0

sin
(c
2
C2

)
3C

A.4.12 Polygamma functions

The polygamma function is defined in terms of the gamma function Γ(G), or the Psi function (i.e. digamma
function) Ψ(G) = Γ′(G)/Γ(G)

k (=) (G) = 3=+1

3G=+1
log Γ(G)

=
3=

3G=
k(G)

= (−1)=+1

∫ ∞

0

C= exp(−GC)
1 − exp(−C) 3C.

So the case = = 0 is the digamma function, the case = = 1 is the trigamma function, and so on.

A.4.13 Struve functions

�a (I) =
2(1

2
I)a

√
cΓ(a + 1

2
)

∫ c
2

0

sin(I cos \) sin2a \ 3\

!a (I) =
2(1

2
I)a

√
cΓ(a + 1

2
)

∫ c
2

0

sinh(I cos \) sin2a \ 3\

A.4.14 Kummer confluent hypergeometric functions

" (0, 1, I) = 1 + 0I
1

+ (0)2I2
(1)22!

+ · · · + (0)=I=
(1)==!

+ · · ·

where (0)= = 0(0 + 1) (0 + 2) . . . (0 + = − 1), (0)0 = 1

* (0, 1, I) = c

sin c1

{
" (0, 1, I)

Γ(1 + 0 − 1)Γ(1) − I
1−1 " (1 + 0 − 1, 2 − 1, I)

Γ(0)Γ(2− 1)

}

* (0, = + 1, I) = (−1)=+1

=!Γ(0 − =) [" (0, = + 1, I) log I

+
∞∑
A=0

(0)A IA
(= + 1)AA!

{k(0 + A) − k(1 + A) − k(1 + = + A)}]

+ (= − 1)!
Γ(0) I−=" (0 − =, 1 − =, I)=

A.4.15 Abramovitz functions

The Abramovitz functions of order = = 0, 1, 2 are defined for G ≥ 0 as

5 (G) =
∫ ∞

0

C= exp(−C2 − G/C) 3C

Special functions supported by SimFIT 429

A.4.16 Legendre polynomials

The Legendre polynomials %= (G) and %<= are defined in terms of the hypergeometric function � or Rodrigue’s
formula for −1 ≤ G ≤ 1 by

%= (G) = �
(
−=, = + 1, 1,

1
2
(1 − G)

)

=
1

2==!
3=

3G=
(G2 − 1)=

%<= (G) = (−1)<(1 − G2)</2 3
<

3G<
%= (G) .

A.4.17 Bessel, Kelvin, and Airy functions

�a (I) = (1
2
I)a

∞∑
:=0

(− 1
4
I2):

:!Γ(a + : + 1)

.a (I) =
�a (I) cos(ac) − �−a (I)

sin(ac)

�a (I) = (1
2
I)a

∞∑
:=0

(1
4
I2):

:!Γ(a + : + 1)

 a (I) = 1
2
c
�−a (I) − �a (I)

sin(ac)
beraG + 8beiaG = exp(1

2
ac8) �a (G exp(1

4
c8))

keraG + 8keiaG = exp(− 1
2
ac8) a (G exp(1

4
c8))

�8(I) = 1
3

√
I[�−1/3 (b) − �1/3 (b)], where b = 2

3
I3/2

�8′(I) = − 1
3
I[�−2/3 (b) − �2/3 (b)]

�8(I) =
√
I/3[�−1/3 (b) + �1/3 (b)]

�8′(I) = (I/
√

3) [�−2/3(b) + �2/3 (b)]

A.4.18 Elliptic integrals

'� (G, H) =
1
2

∫ ∞

0

3C
√
C + G (C + H)

'� (G, H, I) =
1
2

∫ ∞

0

3C√
(C + G) (C + H) (C + I)

'� (G, H, I) =
3
2

∫ ∞

0

3C√
(C + G) (C + H) (C + I)3

' 9 (G, H, I, d) =
3
2

∫ ∞

0

3C

(C + d)
√
(C + G) (C + H) (C + I)

D =

∫ q

0

3\
√

1 − < sin2 \

(# (D |<) = sin q

�# (D |<) = cos q

�# (D |<) =
√

1 − < sin2 q

430 Appendix

A.4.19 Single impulse functions

These discontinuous functions all generate a single impulse, but some of them require special techniques for
plotting, which are described on page 357.

A.4.19.1 Heaviside unit function

The Heaviside unit function ℎ(G − 0) is defined as

ℎ(G − 0) = 0, for G < 0

= 1, for G ≥ 0,

so it provides a useful way to construct models that switch definition at critical values of the independent
variable, in addition to acting in the usual way as a ramp function.

A.4.19.2 Kronecker delta function

The Kronecker delta function X8 9 is defined as

X8 9 = 0, for 8 ≠ 9

= 1, for 8 = 9 ,

which can be very useful when constructing models with simple logical switches.

A.4.19.3 Unit impulse function

The single square wave impulse function 5 (G, 0, 1) of width 21 > 0 with unit area is defined as

5 (G, 0, 1) = 0, for G < 0 − 1, G > 0 + 1
= 1/21, for 0 − 1 ≤ G ≤ 0 + 1,

so it can be used to model the Dirac delta function by using extremely small values for 1.

A.4.19.4 Unit spike function

The triangular spike function 5 (G, 0, 1) of width 21 > 0 with unit area is defined as

5 (G, 0, 1) = 0, for G < 0 − 1, G > 0 + 1
= (G − 0 + 1)/12, for 0 − 1 ≤ G ≤ 0

= (0 + 1 − G)/12, for 0 ≤ G ≤ 0 + 1.

A.4.19.5 Gauss pdf

The probability density function 5 (G, 0, 1) for the normal distribution with unit area is defined for 1 > 0 as

5 (G, 0, 1) = 1
√

2c 1
exp

{
−1

2

(G − 0
1

)2
}
,

which is very useful for modelling bell shaped impulse functions.

A.4.20 Periodic impulse functions

These generate pulses at regular intervals, and some of them require special techniques for plotting, as
described on page 358.

Special functions supported by SimFIT 431

A.4.20.1 Square wave function

This has an amplitude of one and period of 20 > 0, and can be described for C ≥ 0,in terms of the Heaviside
unit function ℎ(C) as

51(C) = ℎ(C) − 2ℎ(C − 0) + 2ℎ(C − 20) − · · · ,
so it oscillates between plus and minus one at each G-increment of length 0, with pulses of area plus and
minus 0.

A.4.20.2 Rectified triangular wave

This generates a triangular pulse of unit amplitude with period 20 > 0 and can be defined for C ≥ 0 as

52 =
1
0

∫ C

0

51(D) 3D

so it consists of a series of contiguous isosceles triangles of area 0.

A.4.20.3 Morse dot wave function

This is essentially the upper half of the square wave. It has a period of 20 > 0 and can be defined for C ≥ 0 by

53 (C) =
1
2
[ℎ(C) + 51(C)] =

∞∑
8=0

(−1)8ℎ(C − 80),

so it alternates between sections of zero and squares of area 0.

A.4.20.4 Sawtooth wave function

This consists of half triangles of unit amplitude and period 0 > 0 and can be defined for C ≥ 0 by

54(C) =
C

0
−

∞∑
8=1

ℎ(C − 80),

so it generates a sequence of right angled triangles with area 0/2

A.4.20.5 Rectified sine wave function

This is just the absolute value of the sine function with argument 0C, that is

55 (C) = | sin 0C |,
so it has unit amplitude and period c/0.

A.4.20.6 Rectified sine half-wave function

This is just the positive part of the sine wave

56(C) =
1
2
[sin 0C + | sin 0C |]

so it has period 2c/0.

A.4.20.7 Unit impulse wave function

This is a sequence of Dirac delta function pulses with unit area given by

57 (C) =
∞∑
8=1

X(8 − 0C) .

Of course, the width of the pulse has to be specified as a parameter 1, so the function can be used to generate a
spaced sequence of rectangular impulse with arbitrary width but unit area. Small values of 1 simulate pulses
of the Dirac delta function at intervals of length 0.

Appendix B

User defined models

B.1 Supplying models as a dynamic link library

This is still the best method to supply your own models, but it requires programming skill. You can write
in a language, such as Fortran or C, or even use assembler. Using this technique, you can specify your own
numerical analysis library, or even reference other dynamic link libraries, as long as all the locations and
addresses are consistent with the other SimFIT dynamic link libraries. Since the development of program
usermod it is now only necessary to create new entries in the dynamic link library for convenience, or for very
large sets of differential equations, or for models requiring special functions not supported by w_models.dll.

B.2 Supplying models using standard mathematical notation

For simple models it is very easy to define equations using standard mathematical notation. For instance, a
line would require

begin{expression}

f(1) = p(1) + p(2)x

end{expression}

while a quadratic would need

begin{expression}

f(1) = p(1) + p(2)x + p(3)x^2

end{expression}

and a 2:2 rational function could be formulated as follows

begin{expression}

f(1) = [p(1)x + p(2)x^2]/[1.0 + p(3)x + p(4)x^2].

end{expression}

The rule is that equations inside begin{expression} and end{expression} tokens can use all the standard
mathematical expressions then, at execution time, SimFIT simply transforms the code into reverse Polish to
create a virtual stack. Note that there are many test files illustrating this technique and, after parsing, the
resulting reverse Polish expression is written to a file called f$parser.tmp in the temporary folder, should it
be required to consult it or archive it. Test files using expressions in this way have an underscore e character,
for example usermod1_e.tf? defines the same model as usermod1.tf?

Inside expressions it is advisable to make liberal use of * for multiplying and brackets {.}, [.], and (.) to avoid
ambiguities. For example the following advice should be noted.

• Instead of xlogx use x*log(x).

User defined models 433

• Instead of 1/2pi use 1/(2pi).

• Instead of e^kt use exp(kt).

Full details for this method can be found in the file w_readme.f10 and note that program usermod now
assumes the new user-defined model files will be created using this technique. Further examples are presented
on page 453.

B.3 Supplying models as ASCII text files

The method that has been developed for the SimFIT package works extremely well, and can be used to create
very complex model equations, even though it requires no programming skill. You can use all the usual
mathematical functions, including trigonometric and hyperbolic functions, as well as the gamma function,
the log-gamma function, the normal probability integral and the erfc function. The set of allowable functions
will increase as w_models.dll is upgraded. The essence of the method is to supply an ASCII text file
containing a set of instructions in reverse Polish, that is, postfix, or last in first out, which will be familiar to
all programmers, since it is, after all, essentially the way that computers evaluate mathematical expressions.
Using reverse Polish, any explicit model can be written as a series of sequential instructions without using any
brackets. Just think of a stack to which arguments are added and functions which operate on the top item of
the stack. Suppose the top item is the current value of G and the operator log is added, then this will replace G
by log(G) as the current item on the top of the stack. What happens is that the model file is read in, checked,
and parsed just once to create a virtual instruction stack. This means that model execution is very rapid, since
the file is only read once, but also it allows users to optimize the stack operations by rolling, duplicating,
storing, retrieving, and so on, which is very useful when developing code with repeated subexpressions, such
as occur frequently with systems of differential equation and Jacobians.

So, to supply a model this way, you must create an ASCII text file with the appropriate model or differential
equation. This is described in the w_readme.? files and can be best understood by browsing the test files
supplied, i.e. usermod1.tf? for functions of one variable, usermod2.tf? for functions of two variables,
usermod3.tf? for functions of three variables and usermodd.tf? for single differential equations. The
special program usermod should be used to develop and test your models before trying them with makdat

or qnfit. Note that usermod checks your model file for syntax errors, but it also allows you to evaluate the
model, plot it, or even use it to find areas or zeros of = functions in = unknowns.

Note that new syntax is being developed for this method, as described in the w_readme.* files. For instance
put and get commands considerably simplify the formulation of models with repeated sub-expressions.

Further details about the performance of this method for supplying mathematical models as ASCII text files
can be found in an article by Bardsley, W.G. and Prasad, N. in Computers and Chemistry (1997) 21, 71–82.

B.3.1 Formatting conventions for user defined models

Please observe the use of the special symbol % in model files. The symbol % starting a line is an escape
sequence to indicate a change in the meaning of the input stream, e.g., from text to parameters, from parameters
to model instructions, from model to Jacobian, etc. Characters occurring to the right of the first non-blank
character are interpreted as comments and text here is ignored when the model is parsed. The % symbol must

be used to indicate:-

i) start of the file
ii) start of the model parameters
iii) start of the model equations
iv) end of model equations (start of Jacobian with diff. eqns.)

The file you supply must have exactly the format now described.

434 Appendix

a) The file must start with a % symbol indicating where text starts The next lines must be the name/details
you choose for the model. This would normally be at least 4 and not greater than 24 lines. This text is
only to identify the model and is not used by SimFIT. The end of this section is marked by a % symbol.
The next three lines define the type of model.

b) The first of these lines must indicate the number of equations in the model, e.g., 1 equation, 2 equations,
3 equations, etc.

c) The next must indicate the number of independent variables as in:- 1 variable, 2 variables, 3 variables, etc.
or else it could be differential equation to indicate that the model is one or a set of ordinary differential
equations with one independent variable.

d) The next line must define the number of parameters in the model.

e) With differential equations, the last parameters are reserved to set the values for the integration constants
H0 (8), which can be either estimated or fixed as required. For example, if there are = equations
and < parameters are declared in the file, only < − = can be actually used in the model, since
H0 (8) = ?(< − = + 8) for 8 = 1, 2, ..., =.

f) Lines are broken up into tokens by spaces.

g) Only the first token in each line matters after the model starts.

h) Comments begin with % and are added just to explain what’s going on.

i) Usually the comments beginning with a % can be omitted.

j) Critical lines starting with % must be present as explained above.

k) The model operations then follow, one per line until the next line starting with a % character indicates the
end of the model.

l) Numbers can be in any format, e.g., 2, 1.234, 1.234E-6, 1.234E6

m) The symbol f(i) indicates that model equation i is evaluated at this point.

n) Differential equations can define the Jacobian after defining the model. If there are = differential equations
of the form

3H

3G
= 5 (8) (G, H(1), H(2), ..., H(=))

then the symbol H(8) is used to put H(8) on the stack and there must be a = by = matrix defined
in the following way. The element � (0, 1) is indicated by putting 9 (=(1 − 1) + 0) on the stack.
That is the columns are filled up first. For instance with 3 equations you would have a Jacobian
� (8, 9) = 35 (8)/3H(9) defined by the sequence:

J(1,1) = j(1), J(1,2) = j(4), J(3,1) = j(7)

J(2,1) = j(2), J(2,2) = j(5), J(3,2) = j(8)

J(3,1) = j(3), J(3,2) = j(6), J(3,3) = j(9)

B.3.1.1 Table of user-defined model commands

Command Effects produced

x stack > stack, x

y stack > stack, y

z stack > stack, z

add stack, a, b > stack, (a + b)

subtract stack, a, b > stack, (a b)

multiply stack, a, b > stack, (a*b)

User defined models 435

divide stack, a, b > stack, (a/b)

p(i) stack > stack, p(i) ... i can be 1, 2, 3, etc

f(i) stack, a > stack ...evaluate model since now f(i) = a

power stack, a, b > stack, (a^b)

squareroot stack, a > stack, sqrt(a)

exponential stack, a > stack, exp(a)

tentothepower stack, a > stack, 10^a

ln (or log) stack, a > stack, ln(a)

log10 stack, a > stack, log(a) (to base ten)

pi stack > stack, 3.1415927

sine stack, a > stack, sin(a) ... radians not degrees

cosine stack, a > stack, cos(a) ... radians not degrees

tangent stack, a > stack, tan(a) ... radians not degrees

arcsine stack, a > stack, arcsin(a) ... radians not degrees

arccosine stack, a > stack, arccos(a) ... radians not degrees

arctangent stack, a > stack, arctan(a) ... radians not degrees

sinh stack, a > stack, sinh(a)

cosh stack, a > stack, cosh(a)

tanh stack, a > stack, tanh(a)

exchange stack, a, b > stack, b, a

duplicate stack, a > stack, a, a

pop stack, a, b > stack, a

absolutevalue stack, a > stack, abs(a)

negative stack, a > stack , a

minimum stack, a, b > stack, min(a,b)

maximum stack, a, b > stack, max(a,b)

gammafunction stack, a > stack, gamma(a)

lgamma stack, a > stack, ln(gamma(a))

normalcdf stack, a > stack, phi(a) integral from infinity to a

erfc stack, a > stack, erfc(a)

y(i) stack > stack, y(i) Only diff. eqns.

j(i) stack, a > stack J(i(i/n), (i/n)+1) Only diff. eqns.

*** stack > stack, *** ... *** can be any number

B.3.1.2 Table of synonyms for user-defined model commands

The following sets of commands are equivalent:-

sub, minus, subtract

mul, multiply

div, divide

sqrt, squarero, squareroot

exp, exponent, exponential

ten, tentothe, tentothepower

ln, log

sin, sine

cos, cosine

tan, tangent

asin, arcsin, arcsine

acos, arccos, arccosine

atan, arctan, arctangent

dup, duplicate

exch, exchange, swap

del, delete, pop

abs, absolute

436 Appendix

neg, negative

min, minimum

max, maximum

phi, normal, normalcd, normalcdf

abserr, epsabs

relerr, epsrel

middle, mid

B.3.1.3 Error handling in user defined models

As the stack is evaluated, action is taken to avoid underflow, overflow and forbidden operations, like 1/G as
G tends to zero or taking the log or square root of a negative number etc. This should never be necessary, as
users should be able to design the fitting or simulation procedures in such a way that such singularities are not
encountered, rather than relying on default actions which can lead to very misleading results.

B.3.1.4 Notation for functions of more than three variables

The model for nine equations in nine unknowns coded in usermodn.tf4 is provided to show you how to use
usermod to find a zero vector for a system of nonlinear equations. It illustrates how to code for n functions
of m variables, and shows how to use H(1), H(2), . . . , H(<) instead of G, H, I, etc. The idea is that, when there
are more than three variables, you should not use G, H or I in the model file, you should use H(1), H(2) and
H(3), etc.

B.3.1.5 The commands put(.) and get(.)

These facilitate writing complicated models that re-use previously calculated expressions (very common with
differential equations).
The commands are as follows

put(i) : move the top stack element into storage location i

get(j) : transfer storage element j onto the top of the stack

and the following code gives an example.

x

put(11)

get(11)

get(11)

multiply

put(23)

get(11)

get(23)

add : now (x + x^2) has been added to the top of the stack

It should be observed that these two commands reference a global store. This is particularly important when a
main model calls sub-models for evaluation, root finding or quadrature, as it provides a way to communicate
information between the models.

B.3.1.6 The command get3(.,.,.)

Often a three way branch is required where the next step in a calculation depends on whether a critical
expression is negative, zero or positive, e.g., the nature of the roots of a quadratic equation depend on the
value of the discriminant. The way this is effected is to define the three possible actions and store the results
using three put commands. Then use a get3(i,j,k) command to pop the top stack element and invoke
get(i) if the element is negative, get(j) if it is zero (to machine precision), or get(k) otherwise. For
example, the model updown.mod, illustrated on page 356, is a simple example of how to use a get3(.,.,.)

User defined models 437

command to define a model which swaps over from one equation to another at a critical value of the independent
variable. This command can be used after the command order has been used to place a −1, 0 or 1 on the
stack, and the model updownup.mod illustrates how to use order with value3 to create a model with two
swap-over points.

x

negative

put(5)

1.0e100

put(6)

x

put(7)

x

get3(5,6,7) : now the top stack element is |x|, or 1.0e100

B.3.1.7 The commands epsabs and epsrel

When the evaluation of a model requires iterative procedures, like root finding or quadrature, the absolute
and relative error tolerances must be specified. Default values (1.0e-6 and 1.0e-3) are initialized and these
should suffice for most purposes. However you may need to specify alternative values by using the epasabs
or epsrel commands with difficult problems, or to control the accuracy used in a calculation. For instance,
when fitting a model that involves the evaluation of a multiple integral as a sub-model, you would normally
use fairly large values for the error tolerances until a good fit has been found, then decrease the tolerances for
a final refinement. Values added to the stack to define the tolerances are popped.

1.0e4

epsabs

1.0e2

epsrel : now epsabs = 0.0001 and epsrel = 0.01

B.3.1.8 The commands blim(.) and tlim(.)

When finding roots of equations it is necessary to specify starting limits and when integrating by quadrature
it is necessary to supply lower and upper limits of integration. The command blim(i) sets the lower limit for
variable 8 while the command tlim(j) sets the upper limit for variable 9 . Values added to the stack to define
the limits are popped.

0

blim(1)

0

blim(2)

pi

tlim(1)

pi

2

multiply

tlim(2) :limits are now 0 < x < 3.14159 and 0 < y < 6.28318

B.3.2 Plotting user defined models

Once a model has been checked by program usermod it can be plotted directly if it is a function of one variable,
a function of two variables, a parametric curve in A (\) format (page 362), G(C), H(C) format (page 354), or a
space curve in G(C), H(C), I(C) format (page 355). This is also be a very convenient way to simulate families
of curves described as separate functions of one variable, as will be readily appreciated by reading in the test
file usermodn.tf1, which defines four trigonometric functions of one variable.

438 Appendix

B.3.3 Finding zeros of user defined models

After a model function of one variable has been checked by program usermod it is possible to locate zeros
of the equation

5 (G) − : = 0

for fixed values of :. It is no use expecting this root finding to work unless you know the approximate location
of a root and can supply two values �, � that bracket the root required, in the sense that

5 (�) 5 (�) < 0.

For this reason, it is usual to simulate the model first and observe the plot until two sensible limits �, � are
located. Try usermod.tf1 which is just a straight line to get the idea. Note that in difficult cases, where
IFAIL is not returned as zero, it will be necessary to adjust EPSABS and EPSREL, the absolute and relative
error tolerances.

B.3.4 Finding zeros of = functions in = variables

When a model file defining = functions of = unknowns has been checked by program usermod it is possible
to attempt to find a =-vector solution given = starting estimates, if = > 1. As the location of such vectors uses
iterative techniques, it is only likely to succeed if sensible starting estimates are provided. As an example,
try the model file usermodn.tf4 which defines nine equations in nine unknowns. Note that to obtain IFAIL
equal to zero, i.e. a satisfactory solution, you will have to experiment with starting estimates. Observe that
these are supplied using the usermod H vector, not the parameter vector ?. Try setting the nine elements of
the H vector to zero, which is easily done from a menu.

B.3.5 Integrating 1 function of 1 variable

After using program usermod to check a function of one variable, definite integration over fixed limits can be
done by two methods. Simpson’s rule is used, because users may wish to embed a straightforward Simpson’s
rule calculation in a model, but also adaptive quadrature is used, in case the integral is ill conditioned, e.g., has
spikes or poles. Again preliminary plotting is recommended for ill-conditioned functions. Try usermod1.tf1
to see how it all works.

B.3.6 Integrating = functions of < variables

When a model defining = functions of< variables has been successfully parsed by program usermod, adaptive
integration can be attempted if < > 1. For this to succeed, the user must set the < lower limits (blim) and
the < upper limits (tlim) to sensible values, and it probably will be necessary to alter the error tolerances for
success (i.e. zero IFAIL). Where users wish to embed the calculation of an adaptive quadrature procedure
inside a main model, it is essential to investigate the quadrature independently, especially if the quadrature is
part of a sub-model involving root finding. Try usermod4.tf1 which is a single four dimensional integral
(i.e. = = 1 and < = 4) that should be integrated between zero and one for all four variables. Observe, in this
model, that H(1), H(2), H(3), H(4) are the variables, because < > 3.

B.3.7 Calling sub-models from user-defined models

B.3.7.1 The command putpar

This command is used to communicate parameters ?(8) to a sub-model. It must be used to transfer the current
parameter values into global storage locations if it is wished to use them in a subsidiary model. Unless the
command putpar is used in a main model, the sub-models have no access to parameter values to enable the
command ?(8) to add parameter 8 to the sub-model stack. The stack length is unchanged. Note that the storage
locations for putpar are initialized to zero so, if you do not use putpar at the start of the main model, calls to
?(8) in subsequent sub-models will not lead to a crash, they will simply use ?(8) = 0. The command putpar

cannot be used in a subsidiary model, of course.

User defined models 439

B.3.7.2 The command value(.)

This command is used to evaluate a subsidiary model. It uses the current values for independent variables to
evaluate subsidiary model 8. The stack length is increased by one, as the value returned by function evaluation
is added to the top of the stack. The command putpar must be used before value(i) if it wished to use the
main parameters in subsidiary model number 8.
It is important to make sure that a subsidiary model is correct, by testing it as a main model, if possible, before
using it as a subsidiary model. You must be careful that the independent variables passed to the sub-model
for evaluation are the ones intended. Of course, value can call sub-models which themselves can call root,
and/or quad.

B.3.7.3 The command quad(.)

This command is used to estimate an integral by adaptive quadrature. It uses the epsabs, epsrel, blim and
tlim values to integrate model 8 and place the return value on the stack. The values assigned to the blim and
tlim arrays are the limits for the integration. If the model 8 requires 9 independent variables then 9 blim and
tlim values must be set before quad(i) is used. The length of the stack increases by one, the return value
placed on the top of the stack. The command putpar must be used before quad(i) if it is wished to use the
main parameters in the subsidiary model number 8.

Adaptive quadrature cannot be expected to work correctly if the range of integration includes sharp spikes
or long stretches of near-zero values, e.g., the extreme upper tail of a decaying exponential. The routines
used (D01AJF and D01EAF) cannot really handle infinite ranges, but excellent results can be obtained using
commonsense extreme limits, e.g., several relaxation times for a decaying exponential. With difficult problems
it will be necessary to increase epsrel and epsabs.

B.3.7.4 The command convolute(.,.)

When two or sub-models have been defined, say <>34; (8) = 5 (G) and <>34; (9) = 6(G), a special type of
adaptive quadrature, which is actually a special case of the quad(.) command just explained, can be invoked
to evaluate the convolution integral

5 ∗ 6 =

∫ G

0

5 (D)6(G − D) 3D

= 6 ∗ 5

using the command convolute(i,j). To illustrate this type of model, consider the convolution of an
exponential input function and gamma response function defined by the test file convolve.mod and listed as
Example 8 later.

B.3.7.5 The command root(.)

This command is used to estimate a zero of a sub-model iteratively. It uses the epsabs, epsrel, blim and
tlim values to find a root for model 8 and places the return value on the stack. The values assigned to blim(1)

and tlim(1) are the limits for root location. The length of the stack increases by one, the root value placed
on the top of the stack. The command putpar must be used before root(i) if it wished to use the main
parameters in the subsidiary model 8.
The limits A = blim(1) and B = tlim(1) are used as starting estimates to bracket the root. If 5 (�) ∗ 5 (�) >
0 then the range (�, �) is expanded by up to ten orders of magnitude (without changing blim(1) or tlim(1))
until 5 (�) ∗ 5 (�) < 0. If this or any other failure occurs, the root is returned as zero. Note that � and
� will not change sign, so you can search for, say, just positive roots. If this is too restrictive, make sure
blim(1)*tlim(1) < 0. C05AZF is used, and with difficult problems it will be necessary to increase epsrel.

440 Appendix

B.3.7.6 The command value3(.,.,.)

This is a very powerful command which is capable of many applications of the form: if ... elseif ... else. If the
top stack number is negative value(i) is called, if it is zero (to machine precision), value(j) is called, and
if it is positive value(k) is called. It relies on the presence of correctly formatted sub-models 8, 9 and : of
course, but the values returned by sub-models 8, 9 and : are arbitrary, as almost any code can be employed in
models 8, 9 and :. The top value of the stack is replaced by the value returned by the appropriate sub-model.
This command is best used in conjunction with the command order, which places either −1, 0 or 1 on the
stack.

B.3.7.7 The command order

Given a lower limit, an initial value, and an upper limit, this command puts −1 on the stack for values below
the lower limit, puts 0 on the stack for values between the limits, and puts 1 on the stack for values in excess
of the upper limit.

0

x

4

order

value3(1,2,3)

f(1)

This code is used in the model updownup.mod to generate a model that changes definition at the critical
swap-over points G = 0 and G = 4.

To summarize, the effect of this command is to replace the top three stack elements, say 0, F, 1 where 0 < 1
by either −1 if F ≤ 0, 0 if 0 < F ≤ 1, or 1 if F > 1, so reducing the stack length by two.

B.3.7.8 The command middle

Given a lower limit, an initial value, and an upper limit, this command reflects values below the lower limit
back up to the lower limit and decreases values in excess of the upper limit back down to the upper limit, but
leaves intermediate values unchanged. For example, the code

0

x

1

middle

will always place a value F on the stack for 0 ≤ F ≤ 1, and F = G only if 0 ≤ G ≤ 1.

To summarize, the effect of this command is to replace the top three stack elements, say 0, F, 1 where 0 < 1
by either 0 if F ≤ 0, F if 0 < F ≤ 1 or 1 if F > 1, so reducing the stack length by two.

B.3.7.9 The syntax for subsidiary models

The format for defining sub-models is very strict and must be used exactly as now described. Suppose you
want to use n independent equations. Then n separate user files are developed and, when these are tested,
they are placed in order directly after the end of the main model, each surrounded by a begin{model(i)}

and end{model(i)} command. So, if you want to use a particular model as a sub-model, you first of all
develop it using program usermod then, when it is satisfactory, just add it to the main model. However, note
that sub-models are subject to several restrictions.

User defined models 441

B.3.7.10 Rules for using sub-models

• Sub-model files must be placed in numerically increasing order at the end of the main model file. Model
parsing is abandoned if a sub-model occurs out of sequence.

• There must be no spaces or non-model lines between the main model and the subsidiary models, or
between any subsequent sub-models.

• Sub-models cannot be differential equations.

• Sub-models of the type being described must define just one equation.

• Sub-models are not tested for consistent put and get commands, since puts might be defined in the main
model, etc.

• Sub-models cannot use putpar, since putpar only has meaning in a main model.

• Sub-models can use the commands value(i), root(j) and quad(k), but it is up to users to make sure
that all calls are consistent.

• When the command value(i) is used, the arguments passed to the sub-model for evaluation are the
independent variables at the level at which the command is used. For instance if the main model uses
value(i) then value(i) will be evaluated at the G, H, I, etc. of the main model, but with model(i)

being used for evaluation. Note that H(:) must be used for functions with more than three independent
variables, i.e. when G, H and I no longer suffice. It is clear that if a model uses value(i) then
the number of independent variables in that model must be equal to or greater than the number of
independent variables in sub-model(8).

• When the commands root(i) and quad(j) are used, the independent variables in the sub-model
numbers 8 and 9 are always dummy variables.

• When developing models and subsidiary models independently you may get error messages about G not
being used, or a get without a corresponding put. Often these can be suppressed by using a pop until
the model is developed. For instance G followed by pop will silence the message about G not being used.

B.3.7.11 Nesting subsidiary models

The subsidiary models can be considered to be independent except when there is a clash that would lead to
recursion. For instance, value(1) can call model(1) which uses root(2) to find a root of model(2), which
calls quad(3) to integrate model(3). However, at no stage can there be simultaneous use of the same model
as value(k), and/or quad(k), and/or root(k). The same subsidiary model cannot be used by more than
any one instance of value, quad, root at the same time. Just commonsense really, virtual stack : for model
: can only be used for one function evaluation at a time. Obviously there can be at most one instance each of
value, root and quad simultaneously.

B.3.7.12 IFAIL values for D01AJF, D01AEF and C05AZF

Since these iterative techniques may be used inside optimization or numerical integration procedures, the soft
fail option IFAIL = 1 is used. If the SimFIT version of these routines is used, a silent exit will occur and
failure will not be communicated to users. So it is up to users to be very careful that all calls to quadrature
and root finding are consistent and certain to succeed. Default function values of zero are returned on failure.

B.3.7.13 Test files illustrating how to call sub-models

The test files usermodx.tf? give numerous examples of how to use sub-models for function evaluation, root
finding, and adaptive quadrature.

442 Appendix

B.3.8 Calling special functions from user-defined models

The special functions commonly used in numerical analysis, statistics, mathematical simulation and data
fitting, can be called by one-line commands as in this table.

B.3.8.1 Table of special function commands

Command NAG Description

arctanh(x) S11AAF Inverse hyperbolic tangent

arcsinh(x) S11AAF Inverse hyperbolic sine

arccosh(x) S11AAF Inverse hyperbolic cosine

ai(x) S17AGF Airy function Ai(x)

dai(x) S17AJF Derivative of Ai(x)

bi(x) S17AHF Airy function Bi(x)

dbi(x) S17AKF Derivative of Bi(x)

besj0(x) S17AEF Bessel function J0

besj1(x) S17AFF Bessel function J1

besy0(x) S17ACF Bessel function Y0

besy1(x) S17ADF Bessel function Y1

besi0(x) S18ADF Bessel function I0

besi1(x) S18AFF Bessel function I1

besk0(x) S18ACF Bessel function K0

besk1(x) S18ADF Bessel function K1

phi(x) S15ABF Normal cdf

phic(x) S15ACF Normal cdf complement

erf(x) S15AEF Error function

erfc(x) S15ADF Error function complement

dawson(x) S15AFF Dawson integral

ci(x) S13ACF Cosine integral Ci(x)

si(x) S13ADF Sine integral Si(x)

e1(x) S13AAF Exponential integral E1(x)

ei(x) Exponential integral Ei(x)

rc(x,y) S21BAF Elliptic integral RC

rf(x,y,z) S21BBF Elliptic integral RF

rd(x,y,z) S21BCF Elliptic integral RD

rj(x,y,z,r) S21BDF Elliptic integral RJ

sn(x,m) S21CAF Jacobi elliptic function SN

cn(x,m) S21CAF Jacobi elliptic function CN

dn(x,m) S21CAF Jacobi elliptic function DN

ln(1+x) S01BAF ln(1 + x) for x near zero

mchoosen(m,n) Binomial coefficient

gamma(x) S13AAF Gamma function

lngamma(x) S14ABF log Gamma function

psi(x) S14ADF Digamma function, (d/dx)log(Gamma(x))

dpsi(x) S14ADF Trigamma function, (d^2/dx^2)log(Gamma(x))

igamma(x,a) S14BAF Incomplete Gamma function

igammac(x,a) S14BAF Complement of Incomplete Gamma function

fresnelc(x) S20ADF Fresnel C function

fresnels(x) S20ACF Fresnel S function

bei(x) S19ABF Kelvin bei function

ber(x) S19AAF Kelvin ber function

kei(x) S19ADF Kelvin kei function

ker(x) S19ACF Kelvin ker function

cdft(x,m) G01EBF cdf for t distribution

User defined models 443

cdfc(x,m) G01ECF cdf for chisquare distribution

cdff(x,m,n) G01EDF cdf for F distribution (m = num, n = denom)

cdfb(x,a,b) G01EEF cdf for beta distribution

cdfg(x,a,b) G01EFF cdf for gamma distribution

invn(x) G01FAF inverse normal

invt(x,m) G01FBF inverse t

invc(x,m) G01FCF inverse chisquare

invb(x,a,b) G01FEF inverse beta

invg(x,a,b) G01FFF inverse gamma

spence(x) Spence integral: 0 to x of (1/y)log|(1y)|

clausen(x) Clausen integral: 0 to x of log(2*sin(t/2))

struveh(x,m) Struve H function order m (m = 0, 1)

struvel(x,m) Struve L function order m (m = 0, 1)

kummerm(x,a,b)...... Confluent hypergeometric function M(a,b,x)

kummeru(x,a,b)...... U(a,b,x), b = 1 + n, the logarithmic solution

lpol(x,m,n) Legendre polynomial of the 1st kind, P_n^m(x),

1 =< x =< 1, 0 =< m =< n

abram(x,m) Abramovitz function order m (m = 0, 1, 2), x > 0,

integral: 0 to infinity of t^m exp(t^2 x/t)

debye(x,m) Debye function of order m (m = 1, 2, 3, 4)

(m/x^m)[integral: 0 to x of t^m/(exp(t) 1)]

fermi(x,a) FermiDirac integral (1/Gamma(1 + a))[integral:

0 to infinity t^a/(1 + exp(t x))]

heaviside(x,a)...... Heaviside unit function h(x a)

delta(i,j) Kronecker delta function

impulse(x,a,b)...... Unit impulse function (small b for Dirac delta)

spike(x,a,b) Unit triangular spike function

gauss(x,a,b) Gauss pdf

sqwave(x,a) Square wave amplitude 1, period 2a

rtwave(x,a) Rectified triangular wave amplitude 1, period 2a

mdwave(x,a) Morse dot wave amplitude 1, period 2a

stwave(x,a) Sawtooth wave amplitude 1, period a

rswave(x,a) Rectified sine wave amplitude 1, period pi/a

shwave(x,a) Sine halfwave amplitude 1, period 2*pi/a

uiwave(x,a,b) Unit impulse wave area 1, period a, width b

Also, to allow users to document their models, all lines starting with a !, a / or a * character within models are
ignored and treated as comment lines.

Any of the above commands included as a line in a SimFIT model or sub-model simply takes the top stack
element as argument and replaces it by the function value. The NAG routines indicated can be consulted
for details, as equivalent routines, agreeing very closely with the NAG specifications, are used. The soft fail
(IFAIL = 1) options have been used so the simulation will not terminate on error condition, a default value
will be returned. Obviously it is up to users to make sure that sensible arguments are supplied, for instance
positive degrees of freedom, � or chi-square arguments, etc. To help prevent this problem, and to provide
additional opportunities, the command middle (synonym mid) is available.

B.3.8.2 Using the command middle with special functions

Given a lower limit, an initial value, and an upper limit, this command reflects values below the lower limit
back up to the lower limit and decreases values in excess of the upper limit back down to the upper limit, but
leaves intermediate values unchanged. For example, the code

5

0.001

444 Appendix

x

0.999

middle

invn(x,n)

will always return a zero IFAIL when calculating a percentage point for the C distribution with 5 degrees of
freedom, because the argument will always be in the range (0.001, 0.999) whatever the value of G.

B.3.8.3 Special functions with one argument

The top stack element will be popped and used as an argument, so the routines can be used in several ways.
For instance the following code

x

phi(x)

f(1)

would simulate model 1 as a normal cdf, while the code

get(4)

phi(x)

f(3)

would return model three as the normal cdf for whatever was stored in storage location 4.

B.3.8.4 Special functions with two arguments

The top stack element is popped and used as G, while the second is popped and used as variable 0, =, or H, as
the case may be. For instance the code

10

x

cdft(x,n)

would place the C distribution cdf with 10 degrees of freedom on the stack, while the code

5

0.975

invt(x,n)

would place the critical value for a two-tailed C test with 5 degrees of freedom at a confidence level of 95% on
the stack.
Another simple example would be

p(1)

x

heavi(x,a)

f(1)

which would return the function value 0 for G < ?(1) but 1 otherwise.

User defined models 445

B.3.8.5 Special functions with three or more arguments

The procedure is a simple extension of that described for functions of two arguments. First the stack is
prepared as . . . D, E, F, I, H, G but, after the function call, it would be . . . D, E, F, 5 (G, H, I). For example, the
code

z

y

x

rf(x,y,z)

f(11)

would return model 11 as the elliptic function RF, since f(11) would have been defined as a function of at
least three variables. However, the code

get(3)

get(2)

get(1)

rd(x,y,z)

1

add

f(7)

would define f(7) as one plus the elliptic function RD evaluated at whatever was stored in locations 3 (i.e.
I), 2 (i.e. H) and 1 (i.e. G).

B.3.8.6 Test files illustrating how to call special functions

Three test files have been supplied to illustrate these commands:

• usermods.tf1: special functions with one argument

• usermods.tf2: special functions with two arguments

• usermods.tf3: special functions with three arguments

These should be used in program usermod by repeatedly editing, reading in the edited files, simulating, etc. to
explore the options. Users can choose which of the options provided is to be used, by simply uncommenting
the desired option and leaving all the others commented. Note that these are all set up for f(1) as a function
of one variable and that, by commenting and removing comments so that only one command is active at any
one time, the models can be plotted as continuous functions. Alternatively singly calculated values can be
compared to tabulated values, which should be indistinguishable if your editing is correct.

B.3.9 Operations with scalars and vectors

B.3.9.1 The command store(j)

This command is similar to the put(j) command, but there is an important difference; the command put(j)
is executed every time the model is evaluated, but the command store(j) is only executed when the model
file is parsed for the first time. So store(j) is really equivalent to a data initialization statement at compile
time. For instance, the code

3

store(14)

446 Appendix

would initialize storage location 14 to the value 3. If no further put(14) is used, then storage location
14 would preserve the value 3 for all subsequent calculations in the main model or any sub-model, so that
storage location 14 could be regarded as a global constant. Of course any put(14) in the main model or
any sub-model would overwrite storage location 14. The main use for the store command is to define special
values that are to be used repeatedly for model evaluation, e.g., coefficients for a Chebyshev expansion. For
this reason there is another very important difference between put(j) and store(j); store(j) must be
preceded by a literal constant, e.g., 3.2e-6, and cannot be assigned as the end result of a calculation, because
storage initialization is done before calculations.

To summarize: store(j) must be preceded by a numerical value, when it pops this top stack element after
copying it into storage location 9 . So the stack length is decreased by one, to initialize storage location 9 , but
only on the first pass through the model, i.e. when parsing.

B.3.9.2 The command storef(file)

Since it is tedious to define more than a few storage locations using the command store(j), the command
storef(*.*), for some named file instead of *.*, provides a mechanism for initializing an arbitrary number
of storage locations at first pass using contiguous locations. The file specified by the storef(*.*) command
is read and, if it is a SimFIT vector file, all the successive components are copied into corresponding storage
locations. An example of this is the test model file cheby.mod (and the related data file cheby.dat) which
should be run using program usermod to see how a global vector is set up for a Chebshev approximation.
Other uses could be when a model involves calculations with a set of fixed observations, such as a time series.

To summarize: the command storef(mydatya) will read the components of any =-dimensional SimFIT
vector file, mydata, into = successive storage locations starting at position 1, but only when the model file
is parsed at first pass. Subsequent use of put(j) or store(j) for 9 in the range (1, =) will overwrite the
previous effect of storef(mydata).

B.3.9.3 The command poly(x,m,n)

This evaluates m terms of a polynomial by Horner’s method of nested multiplication, with terms starting at
store(n) and proceeding as far as store(n + m 1). The polynomial will be of degree < − 1 and it will
be evaluated in ascending order. For example, the code

1

store(10)

0

store(11)

1

store(12)

10

3

x

poly(x,m,n)

will place the value of 5 (G) = 1− G2 on the stack, where G is the local argument. Of course, the contents of the
storage locations can also be set by put(j) commands which would then overwrite the previous store(j)
command. For instance, the following code

5

put(12)

10

3

2

poly(x,m,n)

User defined models 447

used after the previous code, would now place the value 21 on the stack, since 5 (C) = 1 + 5C2 = 21, and the
argument is now C = 2.

To summarize: poly(x,m,n) evaluates a polynomial of degree < − 1, using successive storage locations
=, = + 1, = + 2, . . . , = + < − 1, i.e. the constant term is storage location n, and the coefficient of degree < − 1
is storage location = + < − 1. The argument is whatever value is on the top of the stack when poly(x,m,n)

is invoked. This command takes three arguments G, <, = off the stack and replaces them by one value, so the
stack is decreased by two elements. If there is an error in < or =, e.g., < or = negative, there is no error
message, and the value 5 (G) = 0 is returned.

B.3.9.4 The command cheby(x,m,n)

The Chebyshev coefficients are first stored in locations = to = +< − 1, then the command cheby(x,m,n) will
evaluate a Chebyshev expansion using the Broucke method with < terms. Note that the first term must be
twice the constant term since, as usual, only half the constant is used in the expansion. This code, for instance,
will return the Chebyshev approximation to exp(G).

2.532132

store(20)

1.130318

store(21)

0.271495

store(22)

0.044337

store(23)

0.005474

store(24)

20

5

x

cheby(x,m,n)

Note that, if the numerical values are placed on the stack sequentially, then they obviously must be peeled off
in reverse order, as follows.

2.532132

1.130318

0.271495

0.044337

0.005474

store(24)

store(23)

store(22)

store(21)

store(20)

20

5

x

cheby(x,m,n)

To summarize: cheby(x,m,n) evaluates a Chebyshev approximation with < terms, using successive storage
locations =, = + 1, = + 2, . . . , = +< + 1, i.e. twice the constant term is in storage location =, and the coefficient
of) (< − 1) is in storage location < + = − 1. The argument is whatever value is on the top of the stack when
cheby(x,m,n) is invoked. This command takes three arguments G, <, = off the stack and replaces them by one

448 Appendix

value, so the stack is decreased by two elements. If there is an error in G, < or =, e.g., G not in (−1, 1), or <
or = negative, there is no error message, and the value 5 (G) = 0 is returned. Use the test file cheby.mod with
program usermod to appreciate this command.

B.3.9.5 The commands l1norm(m,n), l2norm(m,n) and linorm(m,n)

The !? norms are calculated for a vector with m terms, starting at storage location =, i.e. l1norm calculates
the sum of the absolute values, l2norm calculates the Euclidean norm, while linorm calculates the infinity
norm (that is, the largest absolute value in the vector).

It should be emphasized that l2norm(m,n) puts the Euclidean norm on the stack, that is the length of the
vector (the square root of the sum of squares of the elements) and not the square of the distance. For example,
the code

2

put(5)

4

put(6)

3

put(7)

4

put(8)

1

put(9)

l1norm(3,5)

would place 9 on the stack, while the command l2norm(5,5) would put 6.78233 on the stack, and the
command linorm(5,5) would return 4.

To summarize: these commands take two arguments off the stack and calculate either the sum of the absolute
values, the square root of the sum of squares, or the largest absolute value in < successive storage locations
starting at location =. The stack length is decreased by one since < and = are popped and replaced by the
norm. There are no error messages and, if an error is encountered, a zero value is returned.

B.3.9.6 The commands sum(m,n) and ssq(m,n)

As there are occasions when it is useful to be able to add up the signed values or the squares of values in
storage, these commands are provided. For instance, the code

1

2

3

4

put(103)

put(102)

put(101)

put(100)

100

4

sum(m,n)

f(1)

101

3

ssq(m,n)

f(2)

User defined models 449

would assign 10 to function 1 and 29 to function 2.

To summarize: these commands take two arguments off the stack and then replace them with either the sum
of m storage locations starting at position =, or the sum of squares of < storage locations starting at position
=, so decreasing the stack length by 1.

B.3.9.7 The command dotprod(l,m,n)

This calculates the scalar product of two vectors of length l which are stored in successive locations starting
at positions < and =.

To summarize: The stack length is decreased by 2, as three arguments are consumed, and the top stack element
is then set equal to the dot product, unless an error is encountered when zero is returned.

B.3.9.8 Commands to use mathematical constants

The following commands are provided to facilitate model building.

Command Value Comment

pi 3.141592653589793e+00 pi

piby2 1.570796326794897e+00 pi divided by two

piby3 1.047197551196598e+00 pi divided by three

piby4 7.853981633974483e01 pi divided by four

twopi 6.283185307179586e+00 pi multiplied by two

root2pi 2.506628274631000e+00 square root of two pi

deg2rad 1.745329251994330e02 degrees to radians

rad2deg 5.729577951308232e+01 radians to degrees

root2 1.414213562373095e+00 square root of two

root3 1.732050807568877e+00 square root of three

eulerg 5.772156649015329e01 Euler’s gamma

lneulerg 5.495393129816448e01 log (Euler’s gamma)

To summarize: these constants are merely added passively to the stack and do not affect any existing stack
elements. To use the constants, the necessary further instructions would be required. So, for instance, to
transform degrees into radial measure, the code

94.25

deg2rad

multiply

would replace the 94.25 degrees by the equivalent radians.

B.3.10 Integer functions

Sometimes integers are needed in models, for instance, as exponents, as summation indices, as logical flags,
as limits in do loops, or as pointers in case constructs, etc. So there are special integer functions that take the
top argument off the stack whatever number it is (say G) then replace it by an appropriate integer as follows.

Command Description

int(x) replace x by the integer part of x

nint(x) replace x by the nearest integer to x

sign(x) replace x by 1 if x < 0, by 0 if x = 0, or by 1 if x > 0

450 Appendix

When using integers with SimFIT models it must be observed that only double precision floating point
numbers are stored, and all calculations are done with such numbers, so that 0 actually means 0.0 to machine
precision. So, for instance, when using these integer functions with real arguments to create logicals or
indices for summation, etc. the numbers on the stack that are to be used as logicals or integers are actually
transformed dynamically into integers when required at run time, using the equivalent of nint(x) to generate
the appropriate integers. Because of this, you should note that code such as

...

11.3

19.7

1.2

int(x)

2.9

nint(x)

divide

would result in 1.0/3.0 being added to the stack (i.e. 0.3333 . . .) and not 1/3 (i.e 0) as it would for true integer
division, leading to the stack

..., 11.3, 19.7, 0.3333333

B.3.11 Logical functions

Logical variables are stored in the global storage vector as either 1.0 (so that nint(x) = 1 = true) or as
0.0 (so that nint(x) = 0 = false). The logical functions either generate logical variables by testing the
magnitude of the arbitrary stack value (say G) with respect to zero (to machine precision) or they accept only
logical arguments (say < or =) and return an error message if the stack values are not pre-set to 0.0 or 1.0.
Note that logical variables (i.e. Booleans) can be stored using put(i) and retrieved using get(i), so that
logical tests of any order of complexity can be constructed.

Command Description

lt0(x) replace x by 1 if x < 0, otherwise by 0

le0(x) replace x by 1 if x =< 0, otherwise by 0

eq0(x) replace x by 1 if x = 0, otherwise by 0

ge0(x) replace x by 1 if x >= 0, otherwise by 0

gt0(x) replace x by 1 if x > 0, otherwise by 0

not(m) replace m by NOT(m), error if m not 0 or 1

and(m,n) replace m and n by AND(m,n), error if m or n not 0 or 1

or(m,n) replace m and n by OR(m,n), error if m or n not 0 or 1

xor(m,n) replace m and n by XOR(m,n), error if m or n not 0 or 1

B.3.12 Conditional execution

Using these integer and logical functions in an appropriate sequence interspersed by put(.) and get(.)

commands, any storage location (say 9) can be set up to test whether any logical condition is true or false.
So, the commands if(.) and ifnot(.) are provided to select model features depending on logical variables.
The idea is to calculate the logical variables using the integer and logical functions, then load them into storage
using put(.) commands. The if(.) and ifnot(.) commands inspect the designated storage locations and
return 1 if the storage location has the value 1.0 (to machine precision), or 0 otherwise, even if the location is
not 0.0 (to machine precision). The logical values returned are not added to the stack but, if a 1 is returned,
the next line of the model code is executed whereas, if a 0 is returned, the next line is missed out.

User defined models 451

Command Description

if(j) execute the next line only if storage(j) = 1.0

ifnot(j) execute the next line only if storage(j) = 0.0

Note that very extensive logical tests and blocks of code for conditional executions, do loops, while and case
constructs can be generated by using these logical functions sequentially but, because not all the lines of
code will be active, the parsing routines will indicate the number of if(.) and ifnot(.) commands and the
resulting potentially unused lines of code. This information is not important for correctly formatted models,
but it can be used to check or debug code if required.

Consult the test file if.mod to see how to use logical functions.

B.3.13 Arbitrary functions with arbitrary arguments

The sub-models described so far for evaluation, integration, root finding, etc. are indexed at compile time
and take dummy arguments, i.e. the ones supplied by the SimFIT calls to the model evaluation subroutines.
However, sometimes it is useful to be able to evaluate a sub-model with arbitrary arguments added to the
stack, or arguments that are functions of the main arguments. Again, it is useful to be able to evaluate an
arbitrary function chosen dynamically from a set of sub-models indexed by an integer parameter calculated
at run time, rather than read in at compile time when the model is first parsed. So, to extend the user-defined
model syntax, the command user1(x,m) is provided. The way this works involves three steps:

1. an integer (m) is put on the stack to denote the required model,

2. calculations are performed to put the argument (x) on the stack, then

3. the user defined model is called and the result placed on the stack.

For instance the code

...

14.7

3

11.3

user1(x,m)

would result in

..., 14.7, 12.5

if the value of sub-model number 3 is 12.5 at an argument of 11.3.

Similar syntax is used for functions of two and three variables, i.e.

user1(x,m)

user2(x,y,m)

user3(x,y,z,m)

Clearly the integer< can be literal, calculated or retrieved from storage, but it must correspond to a sub-model
that has been defined in the sequence of sub-models, and the calculated arbitrary arguments G, H, I must be
sensible values. For instance the commands

2

x

user1(x,m)

452 Appendix

and

value(2)

are equivalent. However the first form is more versatile, as the model number (<, 2 in this case) and argument
(G, the dummy value in this case) can be altered dynamically as the result of stack calculations, while the
second form will always invoke the case with < = 2 and G = the subroutine argument to the model.

The model file user1.mod illustrates how to use the user1(x,m) command.

User defined models 453

B.4 Examples using standard mathematical expressions

B.4.1 Test file usermod1_e.tf1: 1 function of 1 variable

begin{expression}

f(1) = p(1) + p(2)x

end{expression}

B.4.2 Test file line3_e.mod: 3 functions of 1 variable

begin{expression}

f(1) = p(1) + p(2)x

f(2) = p(3) + p(4)x

f(3) = p(5) + p(6)x

end{expression}

B.4.3 Test file e04fyf_e.mod: 1 function of 3 variables

[] used for clarity and x, y, z for variables

begin{expression}

f(1) = p(1) + x/[p(2)y + p(3)z]

end{expression}

B.4.4 Test file d01fcf_e.mod: 1 function of 4 variables

[] used for clarity and y(i) for variables

begin{expression}

f(1) = 4y(1)y(3)^2[exp(2y(1)y(3))]/[1.0 + y(2) + y(4)]^2

end{expression}

B.4.5 Test file optimum_e.mod: 3 functions of 2 variables

Rosenbrock’s function and partial derivatives dummy variables A and B used to avoid repetition

begin{expression}

A = y x^2

B = 1 x

f(1) = 100*A^2 + B^2

f(2) = 400A*x 2B

f(3) = 200A

end{expression}

B.4.6 Test file d01eaf_e.mod: 10 functions of 4 variables

Uses a * character for multiplication to be unambiguous

begin{expression}

A = y(1) + 2y(2) + 3y(3) + 4y(4)

B = log(A)

f(1) = B*sin(1 + A)

f(2) = B*sin(2 + A)

f(3) = B*sin(3 + A)

f(4) = B*sin(4 + A)

f(5) = B*sin(5 + A)

454 Appendix

f(6) = B*sin(6 + A)

f(7) = B*sin(7 + A)

f(8) = B*sin(8 + A)

f(9) = B*sin(9 + A)

f(10) = B*sin(10 + A)

end{expression}

B.4.7 Test file c05nbf_e.mod: 9 functions of 9 variables

begin{expression}

f(1) = (3 2y(1))y(1) + 1 2y(2)

f(2) = (3 2y(2))y(2) + 1 y(1) 2y(3)

f(3) = (3 2y(3))y(3) + 1 y(2) 2y(4)

f(4) = (3 2y(4))y(4) + 1 y(3) 2y(5)

f(5) = (3 2y(5))y(5) + 1 y(4) 2y(6)

f(6) = (3 2y(6))y(6) + 1 y(5) 2y(7)

f(7) = (3 2y(7))y(7) + 1 y(6) 2y(8)

f(8) = (3 2y(8))y(8) + 1 y(7) 2y(9)

f(9) = (3 2y(9))y(9) + 1 y(8)

end{expression}

B.4.8 Test file deqmod2_e.tf2: 2 differential equations

Lotka-Volterra scheme with Jacobian

begin{expression}

f(1) = p(1)y(1) p(2)y(1)y(2)

f(2) = p(3)y(2) + p(4)y(1)y(2)

end{expression}

%

begin{expression}

j(1) = p(1) p(2)y(2)

j(2) = p(4)y(2)

j(3) = p(2)y(1)

j(4) = p(3) + p(4)y(1)

end{expression}

User defined models 455

B.5 Examples of user-defined models in reverse Polish notation

Examples will now be given in order to explain the format that must be adopted by users to define their
own models for simulation, fitting and plotting. There are many more user-defined models distributed as test
files with the SimFIT package. The simpler method using standard mathematical expressions is described on
page 453

B.5.1 Example 1: a straight line

This example illustrates how the test file usermod1.tf1 codes for a simple straight line.

%

Example: user supplied function of 1 variable ... a straight line

.............

p(1) + p(2)*x

.............

%

1 equation

1 variable

2 parameters

%

p(1)

p(2)

x

multiply

add

f(1)

%

Now exactly the same model but with comments added to explain what is going on. Note that in the model
file, all text to the right of the instruction is treated as comment for the benefit of users and it is not referenced
when the model is parsed.

% start of text defining model indicated by %

Example: user supplied function of 1 variable ... a straight line

.............

p(1) + p(2)*x

.............

% end of text, start of parameters indicated by %

1 equation number of equations to define the model

1 variable number of variables (or differential equation)

2 parameters number of parameters in the model

% end of parameters, start of model indicated by %

p(1) put p(1) on the stack: stack = p(1)

p(2) put p(2) on the stack: stack = p(1), p(2)

x put an x on the stack: stack = p(1), p(2), x

multiply multiply top elements: stack = p(1), p(2)*x

add add the top elements: stack = p(1) + p(2)*x

f(1) evaluate the model f(1) = p(1) + p(2)*x

% end of the model definitions indicated by %

B.5.2 Example 2: damped simple harmonic motion

This time test file usermod1.tf9 illustrates trigonometric and exponential functions.

456 Appendix

%

Example: user supplied function of 1 variable ... damped SHM

Damped simple harmonic motion in the form

f(x) = p(4)*exp[p(3)*x]*cos[p(1)*x p(2)]

where p(i) >= 0

%

1 equation

1 variable

4 parameters

%

p(1)

x

multiply

p(2)

subtract

cosine

p(3)

x

multiply

negative

exponential

multiply

p(4)

multiply

f(1)

%

B.5.3 Example 3: diffusion into a capillary

Test file usermod1.tf8 codes for diffusion into a capillary and shows how to call special functions, in this
case the error function complement with argument equal to distance divided by twice the square root of the
product of the diffusion constant and time (i.e. ?2).

%

Example: user supplied function of 1 variable ... capillary diffusion

f(x) = p(1)*erfc[x/(2*sqrt(p(2))]

%

1 equation

1 variable

2 parameters

%

x

p(2)

squareroot

2

multiply

divide

erfc

p(1)

multiply

f(1)

%

User defined models 457

B.5.4 Example 4: defining three models at the same time

The test file line3.mod illustrates the technique for defining several models for simultaneous fitting by
program qnfit, in this case three straight lines unlinked for simplicity, although the models can be of arbitrary
complexity and they can be linked by common parameters as illustrated later.

%

f(1) = p(1) + p(2)x: (line 1)

f(2) = p(3) + p(4)x: (line 2)

f(3) = p(5) + p(6)x: (line 3)

Example: user supplied function of 1 variable ... 3 straight lines

%

3 equations

1 variable

6 parameters

%

p(1)

p(2)

x

multiply

add

f(1)

p(3)

p(4)

x

multiply

add

f(2)

p(5)

p(6)

x

multiply

add

f(3)

%

B.5.5 Example 5: Lotka-Volterra predator-prey differential equations

A special extended version of this format is needed with systems of differential equations, where the associated
Jacobian can be supplied, as well as the differential equations if the equations are stiff and Gear’s method is
required. However, supplying the wrong Jacobian is a common source of error in differential equation solving,
so you should always compare results with the option to calculate the Jacobian numerically, especially if slow
convergence is suspected. A dummy Jacobian can be supplied if Gear’s method is not to be used or if the
Jacobian is to be estimated numerically. You can even prepare a differential equation file with no Jacobian at
all.

So, to develop a model file for a system of differential equations, you first of all write the model ending with
two lines, each containing only a %. When this runs properly you can start to add code for the Jacobian by
adding new lines between the two % lines. This will be clear from inspecting the large number of model
files provided and the readme.* files. If at any stage the code with Jacobian runs more slowly than the code
without the Jacobian, then the Jacobian must be coded incorrectly.

The next example is the text for test file deqmod2.tf2 which codes for the Lotka-Volterra predator-prey
equations. This time all the comments are left in and a Jacobian is coded. This can be left out entirely
by following the model by a percentage sign on two consecutive lines. SimFIT can use the Adam’s method

458 Appendix

but can still use Gears method by estimating the Jacobian by finite differences. Note that the Jacobian is
initialized to the identity, so when supplying a Jacobian only the elements not equal to identity elements need
be set.

%

Example of a user supplied pair of differential equations

file: deqmod2.tf2 (typical parameter file deqpar2.tf2)

model: LotkaVolterra predatorprey equations

differential equations: f(1) = dy(1)/dx

= p(1)*y(1) p(2)*y(1)*y(2)

f(2) = dy(2)/dx

= p(3)*y(2) + p(4)*y(1)*y(2)

jacobian: j(1) = df(1)/dy(1)

= p(1) p(2)*y(2)

j(2) = df(2)/dy(1)

= p(4)*y(2)

j(3) = df(1)/dy(2)

= p(2)*y(1)

j(4) = df(2)/dy(2)

= p(3) + p(4)*y(1)

initial condition: y0(1) = p(5), y0(2) = p(6)

Note: the last parameters must be y0(i) in differential equations

%

2 equations no. equations

differential equation no. variables (or differential equation)

6 parameters no. of parameters in this model

%

y(1) stack = y(1)

y(2) stack = y(1), y(2)

multiply stack = y(1)*y(2)

duplicate stack = y(1)*y(2), y(1)*y(2)

p(2) stack = y(1)*y(2), y(1)*y(2), p(2)

multiply stack = y(1)*y(2), p(2)*y(1)*y(2)

negative stack = y(1)*y(2), p(2)*y(1)*y(2)

p(1) stack = y(1)*y(2), p(2)*y(1)*y(2), p(1)

y(1) stack = y(1)*y(2), p(2)*y(1)*y(2), p(1), y(1)

multiply stack = y(1)*y(2), p(2)*y(1)*y(2), p(1)*y(1)

add stack = y(1)*y(2), p(1)*y(1) p(2)*y(1)*y(2)

f(1) evaluate dy(1)/dx

p(4) stack = y(1)*y(2), p(4)

multiply stack = p(4)*y(1)*y(2)

p(3) stack = p(4)*y(1)*y(2), p(3)

y(2) stack = p(4)*y(1)*y(2), p(3), y(2)

multiply stack = p(4)*y(1)*y(2), p(3)*y(2)

subtract stack = p(3)*y(2) + p(4)*y(1)*y(2)

f(2) evaluate dy(2)/dx

% end of model, start of Jacobian

p(1) stack = p(1)

p(2) stack = p(1), p(2)

y(2) stack = p(1), p(2), y(2)

User defined models 459

multiply stack = p(1), p(2)*y(2)

subtract stack = p(1) p(2)*y(2)

j(1) evaluate J(1,1)

p(4)

y(2)

multiply

j(2) evaluate J(2,1)

p(2)

y(1)

multiply

negative

j(3) evaluate J(1,2)

p(4)

y(1)

multiply

p(3)

subtract

j(4) evaluate J(2,2)

%

B.5.6 Example 6: supplying initial conditions

The test file deqpar2.tf2 illustrates how initial conditions, starting estimates and limits are supplied.

Title line...(1) Parameter file for deqmod2.tf2 .. this line is ignored

0 (2) IRELAB: mixed(0), decimal places(1), sig. digits(2)

6 (3) M = number of parameters (include p(MN+1)=y0(1), etc.)

1 (4) METHOD: Gear(1), Runge_Kutta(2), Adams(3)

1 (5) MPED: Jacobian estimated(0), calculated(1)

2 (6) N = number of equations

41 (7) NPTS = number of time points

0.0,1.0,3.0 (7+1) pl(1),p(1),ph(1) parameter 1

0.0,1.0,3.0 (7+2) pl(2),p(2),ph(2) parameter 2

0.0,1.0,3.0 (7+3) pl(3),p(3),ph(3) parameter 3

0.0,1.0,3.0 (7+4) pl(4),p(4),ph(4) parameter 4

0.0,1.0,3.0 (7+5) pl(5),p(5),ph(5) y0(1)

0.0,0.5,3.0 (7+M) pl(6),p(6),ph(6) y0(2)

1.0e4 (7+M+1) TOL: tolerance

10.0 (7+M+2) XEND: end of integration

0.0 (7+M+3) XSTART: start of integration

An initial conditions file supplies all the values required for a simulation or curve fitting problem with
differential equations using programs deqsol or qnfit. Note that the values must be supplied in exactly the
above order. The first line (title) and trailing lines after (7+M+3) are ignored. Field width for most values is
12 columns, but is 36 for parameters. Comments can be added after the last significant column if required.
Parameters are in the order of ?; (8) ≤ ?(8) ≤ ?ℎ(8) where ?; (8) are the bottom limits, ?(8) are the starting
parameters and ?ℎ(8) are the upper limits for curve fitting. To fix a parameter during curve fitting just set
?; (8) = ?(8) = ?ℎ(8). Note that ?; (8) and ?ℎ(8) are used in curve fitting but not simulation. Parameters 1 to
" − # are the parameters in the equations, but parameters " − # + 1 to " are the initial conditions, namely
H0 (1) to H0 (#).

B.5.7 Example 7: transforming differential equations

If you just want information on a sub-set of the components, H(8), you can select any required components
(interactively) in deqsol. If you only want to fit a sub-set of components, this is done by adding escape

460 Appendix

sequences to the input data library file as shown by the % characters in the example files deqsol.tf2 and
deqsol.tf3. A more complicated process is required if you are interested only in some linear combination
of the H(8), and do not want to (or can not) re-write the differential equations into an appropriate form, even
using conservation equations to eliminate variables. To solve this problem you can input a matrix �, then
simply choose H(new) = � ∗ H(old), where after integration H(new) replaces H(old).

Format for A-type files

The procedure is that when transformation is selected, deqsol sets A equal to the identity matrix then it reads
in your file with the sub-matrix to overwrite �. The �-file simply contains a column of 8-values,a column of
9-values and a column of corresponding �(8, 9) values. To prepare such a file you can use makmat or a text
editor. Consult the test files (deqmat.tf?) for examples.

Examples

An � matrix to interchange H(1) and H(2). (
0 1
1 0

)

An � matrix to replace H(2) by H(1) + H(2).

©
«

1 0 0
0 1 1
0 0 1

ª®¬
An � matrix to replace H(2) by 0.5H(1) + 2.0H(2) − H(3) then swap H(1) and H(3).

©
«

0.0 0.0 1.0
0.5 2.0 −1.0
1.0 0.0 0.0

ª®
¬

Note the following facts.

1. You only need to supply elements �(8, 9) which differ from those of the corresponding identity matrix.

2. The program solves for the actual H(8) then makes new vectors I(8) where H(8) are to be transformed.
The I(8) are then copied onto the new H(8).

3. This is very important. To solve the H(8) the program has to start with the actual initial conditions H0 (8).
So, even if the H(8) are transformed by an � which is not the identity, the H0 are never transformed.
When simulating you must remember that H0 (8) you set are true H0 (8) and when curve-fitting, parameters
estimated are the actual H0 (8), not transformed ones.

B.5.8 Example 8: consecutive irreversible chemical reactions

This example, from test file consec3.mod, requires two sub-models to be defined, because the standard
formula for the second species becomes singular when the two rate constants are equal and a gamma function
type solution is required.

%

Irreversible chemical kinetics A > B > C

with A(0) > 0, B(0) = 0, C(0) = 0

p(1) = k(1), p(2) = k(2), p(3) = A(0)

A(x) = A(0)exp(k(1)x)

If p(1) does not equal p(2) then submodel 1 evaluates

B = p(1)p(3)[exp(k(1)x) exp(k(2)x)]/[(p(2) p(1)]

otherwise if k(1) equals k(2) then submodel 2 evaluates

B = xA(x)

User defined models 461

C = A(0) B(x) C(x)

%

3 equations

1 variable

3 parameters

%

putpar communicate parameters to submodels

p(1)

x

multiply

negative

exp

p(3)

multiply

put(1) storage(1) = A(x)

p(2)

p(1)

subtract

value3(1,2,1) B(x) depends on p(2) p(1)

put(2) storage(2) = B(x)

p(3)

get(1)

subtract

get(2)

subtract

f(3)

get(1)

f(1)

get(2)

f(2)

%

begin{model(1)}

%

submodel 1

B in A > B > C where p(1) is not equal to p(2)

%

1 equation

1 variable

3 parameters

%

p(1)

x

multiply

negative

exp

p(2)

x

multiply

negative

exp

subtract

p(1)

multiply

p(3)

462 Appendix

multiply

p(2)

p(1)

subtract

divide

f(1)

%

end{model(1)}

begin{model(2)}

%

submodel 2

B in A > B > C where p(1) is equal to p(2)

%

1 equation

1 variable

3 parameters

%

get(1)

x

multiply

f(1)

%

end{model(2)}

B.5.9 Example 9: evaluating a convolution integral

This model is in test file convolv3.mod and requires the two independent (or parameter-linked) models
involved in the convolution to be defined as attached sub-models.

%

An example using two submodels for a convolution integral f*g

===

This demonstrates how to define 2 equations as submodels, using

the command putpar to communicate parameters to the submodels,

and the command convolute(1,2) to integrate submodels 1 and 2

(by adaptive quadrature) from blim(1) = 0 to t = tlim(1) = x.

Precision of D01AJF quadrature is controlled by epsabs and epsrel

and blim(1) and tlim(1) must be used for the convolution limits

which, in this case are 0 to x, where x > 0 by assumption.

...

convolution integral: from 0 to x of f(u)*g(x u) du, where

f1(t) = f(t) = exp(p(1)*t)

f2(t) = g(t) = [p(2)^2]*t*exp(p(2)*t)

f3(t) = f*g = f1*f2

...

Note that usually extra parameters must be supplied if it wished

to normalise so that the integral of f or g or f*g is specified

(e.g.,equals 1) over the total range of possible integration.

This must often be done, e.g., if g(.) is a density function.

The gamma distribution normalising factor p(2)**2 is stored in

this example to avoid unnecessary recalculation.

%

3 equations

1 variable

User defined models 463

2 parameters

%

putpar

p(2)

p(2)

multiply

put(1)

1

x

user1(x,m)

f(1)

2

x

user1(x,m)

f(2)

0.0001

epsabs

0.001

epsrel

0

blim(1)

x

tlim(1)

convolute(1,2)

f(3)

%

begin{model(1)}

%

Example: exponential decay, exp(p(1)*x)

%

1 equation

1 variable

1 parameter

%

p(1)

x

multiply

negative

exponential

f(1)

%

end{model(1)}

begin{model(2)}

%

Example: gamma density of order 2

%

1 equation

1 variable

2 parameters

%

p(2)

x

multiply

negative

464 Appendix

exponential

x

multiply

get(1)

multiply

f(1)

%

end{model(2)}

The command putpar communicates the parameters from the main model to the sub-models, the quadrature
precision is controlled by epsabs and epsrel and, irrespective of which models are used in the convolution,
the limits of integration are always input using the blim(1) and tlim(1) commands just before using the
convolute(.,.) command. Often the response function has to be normalized, usually to integrate to 1 over
the overall range, and the prior squaring of ?(1) to use as a normalizing factor for the gamma density in this
case is done to save multiplication each time model(2) is called by the quadrature routine. Such models are
often used for deconvolution by curve fitting in situations where the sub-models are known, but unknown
parameters have to be estimated from output data with associated error, and this technique should not be
confuse with graphical deconvolution described on page 38.

Appendix C

Library of models

C.1 Mathematical models [Library: Version 2.0]

The SimFIT libraries are used to generate exact data using program makdat, or to fit data using an advanced
curve fitting program, e.g. qnfit. Version 2.0 of the SimFIT library only contains a limited selection of models,
but there are other versions available, with extra features and model equations. The models are protected to
prevent overflow during function evaluation, and they return zero when called with meaningless arguments,
e.g. the beta pdf with negative parameters or independent variable outside [0, 1]. After a model has been
selected, it is initialized, and the parameters are described in more meaningful form, e.g. as rate constants or
initial concentrations, etc. Also, any restrictions on the parameter values or range of independent variable are
listed, and equations for singular cases such as 1/(?2 − ?1) when ?2 = ?1 are given.

C.2 Functions of one variable

C.2.1 Differential equations

These can be integrated using the BDF method as an explicitly calculated Jacobian is supplied from the library.

1. Irreversible Michaelis-Menten substrate depletion.

3H

3G
=

−?2H

?1 + H
; H = (, ((0) = ?3, %(0) = 0, G = time.

2. Irreversible Michaelis-Menten product accumulation.

3H

3G
=

?2(?3 − H)
?1 + (?3 − H)

; H = %, ((0) = ?3, %(0) = 0, G = time.

3. Generalized substrate depletion with a non-specific diffusion term.

3H

3G
=

−?2H

?1 + H
− ?3H − ?4; H = (, ((0) = ?5, %(0) = 0, G = time.

4. General product accumulation with a non-specific diffusion term.

3H

3G
=

?2(?5 − H)
?1 + (?5 − H)

+ ?3(?5 − H) + ?4; H = %, ((0) = ?5, %(0) = 0, G = time.

5. Membrane transport allowing for osmotic volume changes.

3H

3G
=

?3 (H − ?4)
H2 + ?1H + ?2

; H = (, H(∞) = ?4, H(0) = ?5, G = time.

466 Appendix

This model has many applications in transport studies, e.g. (is the mass (not concentration) of glucose
during efflux from loaded erythrocytes where solute moves to maintain osmotic equilibrium, so that
volumes change.

6. Von Bertalanffy allometric growth.

3H

3G
= ?1H

?2 − ?3H
?4 ; H = size, H(0) = ?5, G = time.

This is a difficult model to fit and for most purposes gcfit can be used for the various cases where formal
integration is possible. This model does not allow turning points.

7. Von Bertalanffy allometric growth and decay.

3H

3G
= exp(−?5G)?1H

?2 − ?3H
?4 ; H = size, H(0) = ?6, G = time.

This model is extremely difficult to fit and, in order to get meaningful parameter estimates, it is usually
necessary to fix the exponents ?2 and ?4. However, it does have the advantage of being able to model
growth curves with a turning point, as occurs with isolated bacterial populations and fixed nutrient
supply.

C.2.2 Systems of differential equations

The library has a selection of systems of 1, 2, 3, 4 and 5 differential equations which can be used for simulation
and fitting by program deqsol. Also ASCII coordinate files called deqmod?.tf? and deqpar?.tf? are
provided for the same models, to illustrate how to supply your own differential equations. Program deqsol

can use the Adams methods and allows the use of Gear’s method with an explicit Jacobian or else an internally
approximated one.

C.2.3 Special models

Polynomial of degree n: ?=+1 + ?1G + ?2G
2 + · · · + ?=G=

Order = : = rational function:
?2=+1 + ?1G + ?2G

2 + · · · + ?=G=
1 + ?=+1G + ?=+2G2 + · · · + ?2=G=

Multi Michaelis-Menten functions:
?1G

?=+1 + G
+ ?2G

?=+2 + G
+ · · · + ?=G

?2= + G
+ ?2=+1

Multi M-M in isotope displacement mode, with y =[Hot]:

?1H

?=+1 + H + G
+ ?2H

?=+2 + H + G
+ · · · + ?=H

?2= + H + G
+ ?2=+1

Multi M-M in isotope displacement mode, with [Hot] subsumed:

?1

?=+1 + G
+ ?2

?=+2 + G
+ · · · + ?=

?2= + G
+ ?2=+1

High/Low affinity sites:
?1?=+1G

1 + ?=+1G
+ ?2?=+2G

1 + ?=+2G
+ · · · + ?=?2=G

1 + ?2=G
+ ?2=+1

H/L affinity sites in isotope displacement mode, with y = [Hot]:

?1?=+1H

1 + ?=+1 (G + H)
+ ?2?=+2H

1 + ?=+2 (G + H)
+ · · · + ?=?2=H

1 + ?2= (G + H)
+ ?2=+1

H/L affinity sites in isotope displacement mode, with [Hot] subsumed:

Library of mathematical models 467

?1?=+1

1 + ?=+1G
+ ?2?=+2

1 + ?=+2G
+ · · · + ?=?2=

1 + ?2=G
+ ?2=+1

Binding constants saturation function:
?=+1

=

{
?1G + 2?2G

2 + · · · + =?=G=
1 + ?1G + ?2G2 + · · · + ?=G=

}
+ ?=+2

Binding constants in isotope displacement mode, with y = [Hot]:

?=+1H

=

{
?1 + 2?2(G + H) + · · · + =?= (G + H)=−1

1 + ?1 (G + H) + ?2 (G + H)2 + · · · + ?= (G + H)=

}
+ ?=+2

Adair constants saturation function:
?=+1

=

{
?1G + 2?1?2G

2 + · · · + =?1?2 . . . ?=G
=

1 + ?1G + ?1?2G2 + · · · + ?1?2 . . . ?=G=

}
+ ?=+2

Adair constants in isotope displacement mode , with y = [Hot]:

?=+1H

=

{
?1 + 2?1?2(G + H) + · · · + =?1?2 . . . ?= (G + H)=−1

1 + ?1 (G + H) + ?1?2(G + H)2 + · · · + ?1?2 . . . ?= (G + H)=

}
+ ?=+2

Sum of = exponentials: ?1 exp(−?=+1G) + ?2 exp(−?=+2G) + · · · + ?= exp(−?2=G) + ?2=+1

Sum of = functions of the form 1 − exp(−:G):

?1{1 − exp(−?=+1G)} + ?2{1 − exp(−?=+2G)} + · · · + ?={1 − exp(−?2=G)} + ?2=+1

Sum of = sine functions:
=∑
8=1

?8 sin(?=+8G + ?2=+8) + ?3=+1

Sum of = cosine functions:
=∑
8=1

?8 cos(?=+8G + ?2=+8) + ?3=+1

Sum of = Gauss (Normal) pdf functions:
?1

?2=+1

√
2c

exp

(
−1

2

{
G − ?=+1

?2=+1

}2
)
+

?2

?2=+2

√
2c

exp

(
−1

2

{
G − ?=+2

?2=+2

}2
)
+ · · · + ?=

?3=

√
2c

exp

(
−1

2

{
G − ?2=

?3=

}2
)
+ ?3=+1

Sum of = Gauss (Normal) cdf functions:
?1

?2=+1

√
2c

∫ G

−∞
exp

(
−1

2

{
D − ?=+1

?2=+1

}2
)
3D+

?2

?2=+2

√
2c

∫ G

−∞
exp

(
−1

2

{
D − ?=+2

?2=+2

}2
)
3D + · · · +

?=

?3=

√
2c

∫ G

−∞
exp

(
−1

2

{
D − ?2=

?3=

}2
)
3D + ?3=+1

C.2.4 Biological models

Exponential growth/decay in three parameterizations:

Parameterization 1: ?1 exp(−?2G) + ?3

Parameterization 2: exp(?1 − ?2G) + ?3

Parameterization 3: {?1 − ?3} exp(−?2G) + ?3

468 Appendix

Monomolecular growth: ?1{1 − exp(−?2G)} + ?3

Logistic growth in four parameterizations:

Parameterization1:
?1

1 + ?2 exp(−?3G)
+ ?4

Parameterization 2:
?1

1 + exp(?2 − ?3G)
+ ?4

Parameterization 3:
?1

1 + exp(−[?3(G − ?2)])
+ ?4

Parameterization 4:
?1

1 + exp(−[?2 + ?3G])
+ ?4

Gompertz growth: ?1 exp{−?2 exp(−?3G)} + ?4

Richards growth:
{
?
(1−?4)
1

− ?2 exp(−?3G)
} (

1
1−?4

)
+ ?5

Preece and Baines: ?4 −
2(?4 − ?5)

exp[?1 (G − ?3)] + exp[?2(G − ?3)]

Weibull survival in four parameterizations:

Parameterization 1: ?1 exp (−?2 [G?3]) + ?4

Parameterization 2: ?1 exp (−[G?3]/?2) + ?4

Parameterization 3: ?1 exp (−[?2G] ?3) + ?4

Parameterization 4: ?1 exp (− exp(?2) [G?3]) + ?4

Gompertz survival: ?1 exp

{
−

(
?2

?3

)
[exp(?3G) − 1]

}
+ ?4

C.2.5 Biochemical models

Monod-Wyman-Changeux allosterism: = ?1, 2 = ?2 < 1, ! = ?3, + = ?4

?1?4G

{
(1 + ?1G)=−1 + ?2?3 (1 + ?1?2G)=−1

(1 + ?1G)= + ?3(1 + ?1?2G)=

}

Lag phase to steady state: ?1G + ?2{1 − exp(−?3G)} + ?4

One-site binding: G = [Total ligand], 3 = ?1, [Total sites] = ?2,

� −
√
�2 − 4?2G

2?2

; where � = G + ?1 + ?2

Irreversible Michaelis Menten progress curve: < = ?1, +<0G = ?2, [((G = 0)] = ?3

?1 ln

���� ?3

?3 − 5 (G)

���� + 5 (G) − ?2G = 0, where 5 (0) = 0

Or, in a more familiar parameterization:

 < ln

���� ((0)
((0) − %(C)

���� + %(C) − +<0GC = 0

Library of mathematical models 469

Irreversible Michaelis Menten deplettion curve: < = ?1, +<0G = ?2, [((G = 0)] = ?3

?1 ln

���� 5 (G)?3)

���� + 5 (G) − ?3 + ?2G = 0, where 5 (0) = 0

Or, in a more familiar parameterization:

 < ln

���� ((C)((0)

���� + ((C) − ((0) ++<0GC = 0

Michaelis-Menten plus diffusion in three modes with G = [S] or [Cold], and H = [Hot]:

Type 1:
?1G

?2 + G
+ ?3G, [No hot], ?1 = +<0G , ?2 = <, ?3 = �

Type 2:
?1H

?2 + H + G
+ ?3H, [Hot input], ?1 = +<0G, ?2 = <, ?3 = �

Type 3:
?1

?2 + G
+ ?3, [Hot subsumed], ?1 = +<0GH, ?2 = < + H, ?3 = �H

Generalized inhibition:
?1

?2 + G

C.2.6 Chemical models

Arrhenius rate constant law: ?1 exp(−?2/G)

Transition state rate constant law: ?1G
?3 exp(−?2/G)

B in A → B → C:

{
?1?3

?2 − ?1

}
exp(−?1G) +

{
?4 −

?1?3

?2 − ?1

}
exp(−?2G)

C in A → B → C: ?3 + ?4 + ?5 −
{
?2?3

?2 − ?1

}
exp(−?1G) −

{
?4 −

?1?3

?2 − ?1

}
exp(−?2G)

B in A⇋ B reversibly:
?1(?3 + ?4) + (?2?4 − ?1?3) exp{−(?1 + ?2)G}

?1 + ?2

Michaelis pH functions with scaling and displacement factors:

?3 [1 + ?1/G + ?1?2/G2] + ?4

?3 [1 + G/?1 + ?2/G] + ?4

?3 [1 + G/?2 + G2/(?1?2)] + ?4

Freundlich isotherm: ?1G
1/?2 + ?3

C.2.7 Physical models

Diffusion into a capillary: ?1 erfc

{
G

2
√
?2

}
, where ?2 = �C

Full Mualen equation:

{
1

1 + (?1G) ?2

}?3

Short Mualen equation:

{
1

1 + (?1G) ?2

} (1−1/=)

Brittle-Ductile-Transition equation: ?1 + ?2 tanh

(
G − ?4

?3

)

Pabst-Einstein equation and log transforms: ?3

(
1 − G

?1

)−?1?2

470 Appendix

C.2.8 Statistical models

Normal pdf:
?3

?2

√
2c

exp

(
−1

2

{
G − ?1

?2

}2
)

Beta pdf:
?3Γ(?1 + ?2)
Γ(?1)Γ(?2)

G?1−1(1 − G) ?2−1

Exponential pdf: ?1?2 exp(−?1G)

Cauchy pdf:
?3

c?2

{
1 + [(G − ?1)/?2)]2

}
Logistic pdf:

?3 exp[(G − ?1)/?2]
?2 {1 + exp[(G − ?1)/?2]}2

Lognormal pdf:
?3

?2G
√

2c
exp

(
−1

2

{
ln G − ?1

?2

}2
)

Gamma pdf:
?3?

?2

1
G?2−1 exp(−?1G)
Γ(?2)

Rayleigh pdf:

{
?2G

?2
1

}
exp

(
−1

2

{
G

?1

}2
)

Maxwell pdf:

{
2?2G

2

?3
1

√
2c

}
exp

(
−1

2

{
G

?1

}2
)

Weibull pdf:

{
?1?3G

?1−1

?2

}
exp

(
−G?1

?2

)

Normal cdf, i.e. integral from −∞ to G of the normal pdf defined above

Beta cdf, i.e. integral from 0 to G of the beta pdf defined above

Exponential cdf: ?2{1 − exp(−?1G)}

Cauchy cdf: ?3

{
1
2
+ 1
c

arctan

(
G − ?1

?2

)}

Logistic cdf:
?3 exp{(G − ?1)/?2}
1 + exp{(G − ?1)/?2}

Lognormal cdf, i.e. integral from 0 to G of Lognormal pdf

Weibull cdf: ?3

{
1 − exp

(
−G?1

?2

)}

Logit in exponential format:
1

1 + exp[−{?1 + ?2G}]

Probit in Normal cdf format: Φ(?1 + ?2G)

Sum of 2 normal pdfs:
?3

?2

√
2c

exp

(
−1

2

{
G − ?1

?2

}2
)
+ 1 − ?3

?5

√
2c

exp

(
−1

2

{
G − ?4

?5

}2
)

Sum of 2 normal cdfs, i.e. integral from −∞ to G of sum of 2 normal pdfs defined above

Library of mathematical models 471

C.2.9 Empirical models

Hill with = fixed:
?1G

=

?=
2
+ G= + ?3

Hill with = varied:
?1G

?3

?
?3

2
+ G?3

+ ?4

Power law: ?1G
?2 + ?3

log10 law: ?1 log10 G + ?2

Up/Down exponential: ?3{exp(−?1G) − exp(−?2G)} + ?4

Up/Down logistic:
?1

1 + exp(?2 − ?3G) + exp(?4 + ?5G)
+ ?6

Double exponential plus quadratic: ?1 exp(−?2G) + ?3 exp(−?4G) + ?5G
2 + ?6G + ?7

Double logistic:
?1

1 + exp(?2 − ?3G)
+ ?4

1 + exp(?5 − ?6G)
+ ?7

Linear plus reciprocal: ?1G + ?2/G + ?3

Gaussian plus exponential:
?3

?2

√
2c

exp

(
−1

2

{
G − ?1

?2

}2
)
+ ?5 exp(−?4G) + ?6

Gaussian times exponential:
?3

?2

√
2c

exp

(
−1

2

{
G − ?1

?2

}2
)

exp(−?4G) + ?5

C.2.10 Mathematical models

Upper or lower semicircle: ?2 ±
√
?2

3
− (G − ?1)2

Upper or lower semiellipse: ?2 ± ?4

√
1 −

(
G − ?1

?3

)2

Sine/Cosine: ?1 sin(?3G) + ?2 cos(?3G) + ?4

Damped SHM: exp(−?4G) [?1 sin(?3G) + ?2 cos(?3G)] + ?5

Arctangent: ?1 arctan(?2G) + ?3

Gamma type: ?1G
?2 exp(−?3G) + ?4

Sinh/Cosh: ?1 sinh(?3G) + ?2 cosh(?3G) + ?4

Tanh: ?1 tanh(?2G) + ?3

C.3 Functions of two variables

C.3.1 Polynomials

Degree 1: ?1G + ?2H + ?3

Degree 2: ?1G + ?2H + ?3G
2 + ?4GH + ?5H

2 + ?6

Degree 3: ?1G + ?2H + ?3G
2 + ?4GH + ?5H

2 + ?6G
3 + ?7G

2H + ?8GH
2 + ?9H

3 + ?10

472 Appendix

C.3.2 Rational functions:

2 : 2 with 5 (0, 0) = 0:
?1GH

1 + ?2G + ?3H + ?4G2 + ?5GH + ?6H2

3 : 3 with 5 (0, 0) = 0:
?1GH + ?2G

2H + ?3GH
2

1 + ?4G + ?5H + ?6G2 + ?7GH + ?8H2 + ?9G3 + ?10G2H + ?11GH2 + ?12H3

1 : 1 rational function:
?5 + ?1G + ?2H

1 + ?3G + ?4H

2 : 2 rational function:
?11 + ?1G + ?2H + ?3G

2 + ?4GH + ?5H
2

1 + ?6G + ?7H + ?8G2 + ?9GH + ?10H2

C.3.3 Enzyme kinetics

Reversible Michaelis Menten (product inhibition):
?1G/?2 − ?3H/?4

1 + G/?2 + H/?4

Competitive inhibition:
?1G

?2(1 + H/?3) + G

Uncompetitive inhibition:
?1G

?2 + G(1 + H/?3)

Noncompetitive inhibition:
?1G

(1 + H/?3) (?2 + G)

Mixed inhibition:
?1G

?2(1 + H/?3) + G(1 + H/?4)

Ping pong bi bi:
?1GH

?3G + ?2H + GH

Ordered bi bi:
?1GH

?3?4 + ?3G + ?2H + GH

Time dependent inhibition: ?1 exp−
{

?2G

1 + ?3/H

}

Inhibition by competing substrate:
?1G/?2

1 + G/?2 + H/?3

Michaelis-Menten pH dependence: 5 (H)G/[6(H) + G]

5 (H) = ?1/[1 + H/?5 + ?6H], 6(H) = ?2(1 + H/?3 + ?4H)/[1 + H/?5 + ?6H]

C.3.4 Biological

Logistic growth:
?1

1 + exp(−[?2 + ?3G + ?4H + ?5GH])
+ ?6

C.3.5 Physical

Diffusion into a capillary: ?1 erfc

{
G

2
√
?2H

}

Library of mathematical models 473

C.3.6 Statistical

Bivariate normal pdf: ?1 = `G , ?2 = fG , ?3 = `H , ?4 = fH , ?5 = d

?6

2cfGfH
√

1 − d2
exp

{
−1

2(1 − d2)

[(
G − `G
fG

)2

− 2d

(
G − `G
fG

) (
H − `H
fH

)
+

(
H − `H
fH

)2
]}

+ ?7

Logit in exponential format:
1

1 + exp[−{?1 + ?2G + ?3H}]

Probit in Normal cdf format: Φ(?1 + ?2G + ?3H)

C.4 Functions of three variables

C.4.1 Polynomials

Linear: ?1G + ?2H + ?3I + ?4

C.4.2 Enzyme kinetics

MWC activator/inhibitor:
=+U(1 + U)=−1

(1 + U)= + ! [(1 + V)/(1 + W)]=

U = ?1 [G], V = ?2 [H], W = ?3 [I], + = ?4, ! = ?5

C.4.3 Biological

Logistic growth:
?1

1 + exp(−[?2 + ?3G + ?4H + ?5I + ?6GH + ?7GI + ?8HI + ?9GHI])
+ ?10

C.4.4 Statistics

Logit in exponential format:
1

1 + exp[−{?1 + ?2G + ?3H + ?4I}]

Probit in Normal cdf format: Φ(?1 + ?2G + ?3H + ?4I)

Appendix D

Auxiliary programs

D.1 Recommended software

SimFIT can be used as a self-contained free-standing package. However, it is assumed that users will want to
integrate SimFIT with other software, and the driver w_simfit.exe has been constructed with the Windows
calculator, the Windows Notepad text editor, the GSview PostScript interpreter, and the Adobe Acrobat pdf
reader as defaults. Users can, of course, easily replace these by their own choices, by using the Configuration
option on the main menu. The clipboard can be used to integrate SimFIT with any other Windows programs,
and it is assumed that some users will want to interface SimFIT with LATEX while others would use the
Microsoft Office suite.

D.1.1 Ghostscript

This valuable package is able to read PostScript files and output files in other formats, e.g., PDF, PNG, JPG,
etc. There is no need to install this package any more as the run–time DLL is distributed with the SimFIT
package.

D.1.2 GSview

This valuable program is able to read PostScript files then display or print them. There are also other useful
features and so it should be installed. If it is not installed and you request to view or print PostScript files,
SimFIT will use GhostScript to transform them into PDF format and pass them on to your PDF reader.

D.1.3 The interface between SimFIT, LATEX , and Dvips

The .eps files generated by SimFIT have correct BoundingBox dimensions, so that LATEX can use packages
such as Dvips, Wrapfig, PSfrag and so on, as will be clear, for instance, from the LATEX code for this manual.

D.1.4 SimFIT, Microsoft Office, and OpenOffice

SimFITcan import data tables with or without row and column labels in any of these formats.

a) Tables in SimFITformat
b) Tables copied to the clipboard from any program
c) Tables written to file using any program
d) Spreadsheet files saved in tab, space, comma, or semicolon delimited format
e) Spreadsheet files saved in XML or HTML format
f) Spreadsheet tables saved in Unicode format

Appendix E

MS_Office, OpenOffice, and LibreOffice

E.1 The easy way to import data into SimFIT

Often the easiest way to use data from from a spreadsheet program, word processor, or text editor in SimFIT
is to use the clipboard which will now be illustrated by two simple examples. However, for repeated analysis
or where extra features are required, it is better to create a SimFIT style data file, and this will be explained
subsequently.

E.1.1 Creating a pie chart

This example illustrates how to plot a relatively small sample of positive numbers in pie chart format.

First of all open SimFIT to obtain the menu displayed in figure E.1 which will be referred to as the main
SimFIT menu.

Now click on the [Editor] button which will open your text editor, and type in a data vector consisting of a
single column of nonnegative numbers as in

1
2
3
4
5.

Then select, that is highlight, the column and copy to the clipboard as follows.

1
2
3
4
5

This data vector has been stored for further use so you can now click on the [A/Z] button to get an alphabetical
list of SimFIT programs and select program simplot. Choose to create a pie chart and you will then reach the
SimFIT file open control shown in figure E.2 where the [Paste] button will not be greyed out, showing that
SimFIT has recognized the data vector that has been copied to the clipboard.

Note that, until you copy something else to the clipboard, this data set will remain ready for re-use by any
SimFIT procedure, and on pressing the [Paste] button SimFIT gives you the option to create a temporary
SimFIT data file then proceed with further analysis.

476 The easy way

File Edit View Fit Calibrate Plot Statistics Area/Slope Simulate Modules Help A/Z Results Speedup Significant-figures Contact

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Version 8.1.2

sv_simfit is a simplified version

of simfit for inexperienced users

 Open sv_simfit

Summary Tutorials Examples Manual Configure FAQ Recent Editor Explorer Calculator

Figure E.1: The main SimFIT menu

File Edit View Help

OK

Browse Keyboard Paste Demo NAG

Analyzed Created

Previous << Next >> Swap_Type Step from Analyzed file list item 1

Open ...

C:\Program Files\Simfit\dem\normal.tf1

Figure E.2: The SimFIT file open control

First a default pie chart will be displayed which can then be edited if required, as in figure E.3 where the
SimFIT segment fill styles are illustrated.

The easy way 477

label 1

label 2

label 3

label 4

label 5

Temporary Simfit data file

x(1) = 1

x(2) = 2

x(3) = 3

x(4) = 4

x(5) = 5

Demonstrating Pie Chart Fill Styles
Data Vector x = (1 ,2, 3, 4, 5)

Empty
Solid
Diagonal Up
Diagonal Down
Criss Cross

Figure E.3: Creating a SimFIT pie chart

478 The easy way

E.1.2 Creating a bar chart

This example explains how to input a data matrix with row and column labels into SimFIT in order to plot a
simple bar chart, and also how to save the data matrix in SimFIT data file format for re-use.

Type the following table into the Editor as for a pie chart, or highlight and copy to the clipboard from your
spreadsheet. Note that each row and column has a label, also there is a dummy label in position 1,1 and labels
must not contain spaces. For instance, you can use Time_of_Day as a label but not Time of Day.

name/variable one two three
Fred 2 3 1
Mary 1 2 3
Jim 4 6 1
Jean 3 7 2
Anne 4 4 2
Kevin 5 1 3

After choosing the barchart option in program simplot, the clipboard data will be written to a temporary file
called clipboard_n.tmp in yourMy Documents\simfit\res SimFIT results folder, accessible subsequently
after pressing the main menu [Recent] button so you can save it for future re-use. The temporary SimFIT file
will look like this

Temporary Simfit data file

6 3

2 3 1

1 2 3

4 6 1

3 7 2

4 4 2

5 1 3

12

begin{labels}

Fred

Mary

Jim

Jean

Anne

Kevin

one

two

three

end{labels}

ccyymmdd=20130703, hhmmss=085959

indicating the title, number of rows and columns, the data matrix, then the number of extra lines followed by
row then column labels, and finally the date. Figure E.4 shows the resulting bar chart after preliminary then
more extensive editing.

Definitions 479

0

1

2

3

4

5

6

7

Fred

M
ary

Jim

Jean

Anne

Kevin

Demonstration Bar Chart

Names

N
um

be
r

of
 E

ve
nt

s

0

1

2

3

4

5

6

7
Fred

M
ary

Jim

Jean

Anne

Kevin

Demonstration Bar Chart

Names

N
um

be
r

of
 E

ve
nt

s

Number of Visits Number of Increases Number of Samples

Figure E.4: Creating a SimFIT bar chart

E.2 Definitions

Here we summarize the definitions to be used in this section.

480 Definitions

E.2.1 Data tables

A data table is a = by < rectangular set of cells which contain only numerical values, as in the following
example of a 2 by 3 data matrix.

1.1 1.2 1.3
2.1 2.2 2.3

Here the the columns are space-delimited, i.e., separated by one or more spaces, but we can also have comma-
delimited tables, with zero or more spaces in addition to the commas, as shown next.

1.1, 1.2, 1.3
2.1, 2.2, 2.3

In spreadsheet and word-processing programs, data tables are stored in tab-delimited format, which results in
tables being displayed with cells outlined by lines, as follows.

1.1 1.2 1.3
2.1 2.2 2.3

E.2.2 Labeled data tables

A labeled data table employs row 1 for column labels and column 1 for row labels with a dummy label in
cell(1,1) as illustrated below.

R/C Col-1 Col-2 Col-3
Row-1 1.1 1.2 1.3
Row-2 2.1 2.2 2.3

Here labels are shown as character strings, and the main table contains only numerical data. Note that there
can be no spaces in labels of space-delimited tables, and underscores, hyphens, or similar must be used to
avoid ambiguities. Spaces within labels also cause problems with importing SimFIT results log files into
Word and Excel.

E.2.3 Missing values

Missing values arise because data values are misplaced, not recorded, or discarded and this leads to a deficient
table. The next example illustrates how a missing value can be indicated by an empty cell or a character
variable in a data cell.

1.1 1.3
2.1 2.2 X

Any non-numerical characters can be used to indicate missing values, and pre-processing is required to replace
empty cells by estimates derived in some way from the rest of the data set, before SimFIT can process the
data.

E.2.4 SimFIT data files

SimFIT data files can have an optional header with title on line 1, and number of rows and columns on line 2,
then a data section table of numerical values, with no missing values, as follows.

Title for data
2 3

1.1 1.2 1.3
2.1 2.2 2.3

Definitions 481

E.2.5 SimFIT data files with labels

For some purposes row and column labels may be appended to SimFIT data files using a special symbolism
as follows.

Title for data
2, 3

1.1, 1.2, 1.3
2.1, 2.2, 2.3
7
begin{labels}
Row-1
Row-2
Col-1
Col-2
Col-3
end{labels}

The number 7 after the data table indicates that there are 7 extra lines appended, but this extra counter is
optional. Note that the label in cell(1,1) is not recorded, and the labels are in sequential order with rows
followed by columns.

Note that SimFIT data files are created automatically by all of the various methods described in the following
sections, so that the user need only create a data table or labeled data table before using a particular method.

E.2.6 Clipboard data

The only type of clipboard data that can be used by SimFIT is where a data table or labeled data table has
been selected and copied to the clipboard. If a space-delimited labeled table has been copied to the clipboard
from a text editor like Notepad, there must be no spaces within labels, so use underscores.

E.2.7 Files exported from spreadsheet programs

The only types of files exported from spreadsheet programs that can be used by SimFIT are data tables or
labeled data tables exported in text, XML, or HTML format. Text files can be delimited by spaces, tabs,
commas, or semicolons, but files exported in space-delimited text format must have no spaces within labels,
so use underscores.

482 Spreadsheet tables

E.3 Spreadsheet tables

Data for analysis by SimFIT would usually be held in a spreadsheet program, like Microsoft Office Excel or
LibreOffice Calc, as in this example of an unselected table of multivariate statistical data from K.R. Gabriel
in Biometrika 1971, 58, 453–67.

Percent Christian Armenian Jewish Moslem American Shaafat A-Tur Silwan Sur-Bahar

Toilet 98.2 97.2 97.3 96.9 97.6 94.4 90.2 94 70.5

Kitchen 78.8 81 65.6 73.3 91.4 88.7 82.2 84.2 55.1

Bath 14.4 17.6 6 9.6 56.2 69.5 31.8 19.5 10.7

Electricity 86.2 82.1 54.5 74.7 87.2 80.4 68.6 65.5 26.1

Water 32.9 30.3 21.1 26.9 80.1 74.3 46.3 36.2 9.8

Radio 73 70.4 53 60.5 81.2 78 67.9 64.8 57.1

TV set 4.6 6 1.5 3.4 12.7 23 5.6 2.7 1.3

Refrigerator 29.2 26.3 4.3 10.5 52.8 49.7 21.7 9.5 1.2

Such tables must be rectangular, with optional row and column labels, and all other cells filled with numerical
data (missing data will be discussed later). Often it would only be necessary to select cells containing
numerical values from such a table by highlighting as follows.

Percent Christian Armenian Jewish Moslem American Shaafat A-Tur Silwan Sur-Bahar

Toilet 98.2 97.2 97.3 96.9 97.6 94.4 90.2 94 70.5

Kitchen 78.8 81 65.6 73.3 91.4 88.7 82.2 84.2 55.1

Bath 14.4 17.6 6 9.6 56.2 69.5 31.8 19.5 10.7

Electricity 86.2 82.1 54.5 74.7 87.2 80.4 68.6 65.5 26.1

Water 32.9 30.3 21.1 26.9 80.1 74.3 46.3 36.2 9.8

Radio 73 70.4 53 60.5 81.2 78 67.9 64.8 57.1

TV set 4.6 6 1.5 3.4 12.7 23 5.6 2.7 1.3

Refrigerator 29.2 26.3 4.3 10.5 52.8 49.7 21.7 9.5 1.2

However, sometimes row and column labels could also be needed, when a labeled table with cells containing
either labels or numerical values would be selected, as follows.

Percent Christian Armenian Jewish Moslem American Shaafat A-Tur Silwan Sur-Bahar

Toilet 98.2 97.2 97.3 96.9 97.6 94.4 90.2 94 70.5

Kitchen 78.8 81 65.6 73.3 91.4 88.7 82.2 84.2 55.1

Bath 14.4 17.6 6 9.6 56.2 69.5 31.8 19.5 10.7

Electricity 86.2 82.1 54.5 74.7 87.2 80.4 68.6 65.5 26.1

Water 32.9 30.3 21.1 26.9 80.1 74.3 46.3 36.2 9.8

Radio 73 70.4 53 60.5 81.2 78 67.9 64.8 57.1

TV set 4.6 6 1.5 3.4 12.7 23 5.6 2.7 1.3

Refrigerator 29.2 26.3 4.3 10.5 52.8 49.7 21.7 9.5 1.2

As an example, consider the next figures, showing these data from the SimFIT test file houses.tf1 when
displayed as biplots. The dummy label in cell(1,1) is not used.

Spreadsheet tables 483

-80

-40

0

40

-60 0 60

x

y

Toilet
Kitchen

Bath

Electricity

Water

Radio

TV set

Refrigerator

Christian
Armenian

Jewish

MoslemAm.Colony Sh.Jarah

Shaafat Bet-Hanina

A-Tur Isawyie

Silwan Abu-Tor

Sur-Bahar Bet-Safafa

Multivariate Biplot

Three Dimensional Multivariate Biplot

-.4

.6

0

-1
-.4

.35

Toilet Kitchen
Bath

Electricity

Water

Radio

TV set

Refrigerator

Christian

Armenian

Jewish

Moslem

Am.Colony Sh.Jarah

Shaafat Bet-Hanina

A-Tur Isawyie

Silwan Abu-Tor

Sur-Bahar Bet-SafafaX
Y

Z

This document explains how to transfer data from such spreadsheet tables into SimFIT.

484 Using the clipboard

E.4 Using the clipboard to transfer data into SimFIT

Two formats can be used to transfer a tabular data set into SimFIT for analysis.

• The cells contain only numerical data

• The cells also have associated row and column labels

If labels are present then the column labels (usually variables) must occupy the top row of cells, the row
labels (usually cases) must occupy the first column of cells, and there must be a dummy row/column label in
cell(1,1). Purely numerical tables are used for curve fitting and statistical analysis, where the identity of the
observations is immaterial. Row and column labels can be added just to help identify the data retrospectively,
but they are also used in multivariate statistics to identify plotting symbols or label dendrograms. If there are
no empty cells, such tables can be imported directly into SimFIT by a [Paste] button, or be transformed into
SimFIT data files using program maksim.

Cells can be delimited by spaces, commas, semicolons, or tabs, and there must be no empty cells. If semicolons
or tabs are used as column separators, then using continental notation like 1,5 for 1.5 is allowed. Further, if
a space-delimited table has been copied to the clipboard from a text editor like Notepad, there must be no
spaces within labels.

E.4.1 Pasting data from the clipboard directly into SimFIT

In Microsoft Excel, LibreOffice Calc, or almost any text editor (such as Notepad) or word processing program,
the rectangular table required is selected then copied to the clipboard. The appropriate SimFIT program is
opened and, when a data set is requested, the [Paste] button on the file opening control is pressed. If the table
is rectangular, with no missing values, one of the following options will be available.

• Data: use as a SimFIT data file (no labels)

• Data: use as a SimFIT data file (with labels)

If the option to use as a SimFIT data file is chosen from this SimFIT clipboard control, the data will be written
to a temporary file then analyzed. The names of these temporary files are displayed so they can be saved
retrospectively. The options will only be available if the data are consistent with the SimFIT format, otherwise
error messages will be displayed.

E.4.2 Converting data from the clipboard into a SimFIT file

This involves the use of the SimFITprogram maksim. The clipboard table is input into maksim exactly as
just described for any SimFIT program, but then there are many options.

• Rows or columns selected from a check list can be suppressed or restored

• Sub-tables can be selected by properties

• Sub-tables can be Saved As ... SimFIT data files.

The advantage of this technique is that, from a single table copied to the clipboard, numerous selected
sub-tables can be archived, so that retrospective analysis of data sub-sets can be performed.

Using spreadsheet table files 485

E.5 Using spreadsheet output files to transfer data into SimFIT

SimFIT will accept application files (created by any of the data preparation programs) containing rectangular
data tables with or without labels, but with no missing values, and the exported files will be transformed
interactively into temporary SimFIT data files. Otherwise, the exported files can be transformed into SimFIT
data files using program maksim, in which case the options just described for clipboard data will also be
available. Care is needed when using continental notation like 1,5 for 1.5 in text files with spaces or commas
as delimiters, as mentioned below. Spreadsheets with missing values must be pre-processed, e.g., using the
macro simfit6.xls which is in the SimFIT documents installation folder.

E.5.1 Space-delimited text files (.txt)

These files must not have spaces to represent empty cells, or spaces within labels. For example, use TV_set

instead of TV set. Using 1,5 for 1.5 is not acceptable with this file type, since commas are interpreted as
column separators.

E.5.2 Comma-delimited text files (.csv with standard Excel setup)

If it is wished to use commas to separate thousands, i.e., triples of figures before the decimal point, then
the cell must be quoted. That is, writing 1,234.56 as "1,234.56" to represent 1234.56. This has to be done
explicitly in text editors like Notepad, but Excel and Calc will add the quotes. Note that, when the SimFIT
file is output, it will have 1234.56 not 1,234.56. Any comma pairs „ will be taken to represent blank cells and
be expanded to ,X,. Using 1,5 for 1.5 is not acceptable with this file type, since commas are reserved for use
as column separators.

E.5.3 Semicolon-delimited text files (.csv with continental Excel setup)

Commas for thousands in numeric cells will still have to be quoted and semicolon pairs ;; will be taken
to represent blank cells and be expanded to ;X;. Using 1,5 for 1.5 is acceptable with this file type, since
semicolons are reserved for use as column separators.

E.5.4 Tab-delimited files (.txt)

Commas for thousands in numeric cells will still have to be quoted, and adjacent tabs will be interpreted as
empty cells and be expanded to (tab)X(tab). Using 1,5 for 1.5 is acceptable with this file type, since tabs are
reserved for use as column separators.

E.5.5 Unicode (.txt)

If SimFIT program maksim fails to read Unicode files, then switch Notepad into ASCII text mode, read in
the Unicode file, then export again as an ASCII text file, which will then be acceptable

E.5.6 Web documents (.xml, .html, .htm, .mht, .mhtml)

Using 1,5 for 1,5 is acceptable with these file types, since special techniques are used for column separators,
but such files must have the file extension .xml, .html, .htm, .mht, or .mhtml.

486 Using spreadsheet table files

Also note that XML files must follow this case-sensitive convention.

• The tag <Table indicates the start of a table and </Table> indicates the end.

• The tag <Row indicates the start of a row and </Row> indicates the end.

• The tag <Cell indicates the start of a new cell and </Cell> indicates the end.

• The following tokens are used:
ss:Index="2" to indicate an empty cell in column 1,i.e., the next cell is cell 2.
ss:Type="String" for a label, and
ss:Type="Number" for a numeric cell.

HTML files must use standard case-insensitive tags. Files exported from Microsoft Office Excel and Libre-
Office Calc use these conventions.

Using simfit4.xls and simfit6.xls with Excel 487

E.6 Exporting SimFIT data files from Excel

E.6.1 Using simfit4.xls with Excel to create SimFIT data files

The simfit4.xls macro that was distributed with SimFIT version 4 and can be found in the SimFIT documents
installation folder is a very simple program that remains useful, especially for exporting curve fitting files
from Excel, for these reasons:

• it can gather together non-adjacent columns;

• it can check for nondecreasing values, e.g., an independent variable in column 1; and

• it can check for nonnegative values, e.g., positive weights in column 3.

However, it cannot deal with labels, missing values, or perform data transformations, so the more versatile
simfit6.xls macro distributed with SimFIT version 6 is now the preferred tool for creating export files in
SimFITdata file format from Excel. The simfit6.xls macro also validates the data, checking for basic errors
that would cause SimFIT to reject the data table.

E.6.2 Using simfit6.xls with Excel to create transformed SimFIT data files

The simfit6.xls macro replicates some of the functionality of the simfit4.xls macro, and previous versions of
the simfit6.xls macro, but offers additional features for filling empty cells in the data table, for performing
transformations of the data table, and for transposing the data table when the SimFIT export file is created.

In contrast with simfit4.xls, and previous versions of simfit6.xls, which did not modify the data table in the
worksheet, simfit6.xls now applies its editing and transformations to the actual worksheet, and leaves this
modified worksheet in place after the macro has terminated.

E.6.2.1 Invoking the simfit6.xls macro

The simfit6.xls workbook can be located in the SimFIT documents folder, and in order to use the macro you
may need to change the Excel macro security setting. Navigate
Tools>Macro>Security from the Menu Bar and set the security level to Medium.

The simfit6.xls macro has been written and tested with the Microsoft Office XP Excel Version 2002, but
should work satisfactorily with other versions from Excel 97 onwards.

E.6.2.2 Step 1: Open the simfit6.xls workbook

The simfit6.xls workbook acts purely as a carrier for the simfit6 macro and contains no worksheets accessible
to the user. The workbook must, however, be opened in the normal manner, in order to make the macro
available. With the macro security level set to Medium, as described above, you will be warned that workbook
contains macros. Click the Enable Macros button to complete the opening procedure. After the workbook
has been opened, there is no visible sign of its presence, because it operates in the background.

E.6.2.3 Step 2: Select the data table within the user’s workbook

Open the user’s workbook containing the SimFIT table and activate the worksheet which holds the table. The
SimFIT table (either labeled or unlabeled) can be located anywhere within the spreadsheet, i.e. it does not
have to occupy Row 1 and Column 1 of the spreadsheet. Next select the SimFIT table with the mouse in
order to inform the macro of the position and dimensions of the table. Selection is carried out by left-clicking
the mouse on the top left cell of the table and dragging (moving the mouse with the left key held down) to
the bottom right cell of the SimFIT table. [The above selection is called a single-area selection. The simfit6
macro does not support multiple-area selections.]

488 Using simfit6.xls with Excel

E.6.2.4 Step 3: Invoke the simfit6.xls macro

The macro is invoked either by navigating Tools>Macro>Macros from the Menu Bar, or by Alt+F8 from
the keyboard (meaning hold the Alt key down whilst pressing the F8 key). Click on simfit6 in the list of
macros, then click on the Run button, and respond to the various dialog boxes which the macro uses for
communicating with the user. If simfit6 does not appear in the list of macros, check that Step 1 has been
carried out successfully.

E.6.2.5 Using the simfit6.xls macro

Since simfit6 applies its transformations directly to the table which is selected in the active worksheet, it is
necessary to take precautions to preserve the original contents of the worksheet in order to safeguard the
user’s data. The simfit6 macro does this by offering the following two options to the user as soon as the macro
commences:

• First, if the macro detects that the user’s workbook has not been saved on disk, it offers the user the
option of saving the workbook.

• The second option is to make a copy of the active worksheet within the user’s workbook and to have
the macro apply its transformations to this copy, leaving the original worksheet unaltered.

Next the macro ascertains from the user whether or not the selection contains a labeled table, after which it
notifies the user of the data table’s dimensions and obtains confirmation that a SimFIT export file is to be
created. Users are reminded that a SimFIT labeled table must contain both row and column labels.

A simfit6 data table must not contain any non-numeric cells or any cells containing formulas. Any non-
numeric cells found in the data table are reported to the user, but their presence forces the macro to terminate,
as SimFIT does not accept non-numeric data items.

If any cell in the data table is found to contain a formula, this is likewise reported to the user and will
force the macro to terminate. The user must replace all formulas in the data table by their numeric val-
ues before re-running the macro. [Tip: This is simply done by selecting the data table and navigating
Edit>Copy, Edit>Paste Special>Values.]

E.6.2.6 Filling empty cells found in the data table

If any empty cells are found in the data table, the user’s processing options are displayed in the
Data Table contains empty cells dialog box. The options are as follows.

1. Report references of empty cells

2. Replace empty cells in rows by the row average

3. Replace empty cells in rows by by row-wise interpolation

4. Replace empty cells in columns by the column average

5. Replace empty cells in columns by by column-wise interpolation

6. Delete all rows containing an empty cell

7. Delete all columns containing an empty cell

8. Delete both rows and columns containing an empty cell

Row-wise interpolation acts as follows: an empty cell range in the middle of the row will be filled by the
average of the neighboring cells adjacent to the range; and an empty cell range which extends to the beginning
or end of the row will be filled by the neighboring adjacent cell to the range. Column-wise interpolation
applies the same algorithm to columns.

Using simfit6.xls with Excel 489

Note that options 2 to 8 are applied to all rows (or columns) which contain empty cells, i.e. the user is not able
to select a different option for each row or column. Note also that whereas options 2 to 8 will fill all empty
cells in a data table, option 1 merely reports the empty cells and leaves the data table unchanged. In the latter
case the macro will terminate after the reporting has been completed, as empty cells in the data table are not
acceptable to SimFIT.

E.6.2.7 Validation Checks Completed

If the data table passes the checks described above for non-numeric cells, formula cells and empty cells, the
macro displays the Validation Checks Completed window.

• Perform transformations

• Create Simfit file

Clicking the Perform transformations option allows one or multiple transformations to be carried out on
the data table as described below, after which the option to create the SimFIT file will be offered.

If no transformationsare required, click the Create Simfit file option to bypass the transformationprocess
and commence creation of the SimFIT file.

E.6.2.8 Performing transformations of the data table

Transformations can be selected via the Select Required Transformation dialog box, as follows.

1. Normalize columns to length 1

2. Normalize columns to standard deviation 1

3. Centralize columns to mean 0

4. Centralize columns to mean 0 and normalize columns to standard deviation 1

5. Normalize rows to length 1

6. Normalize rows to standard deviation 1

7. Centralize rows to mean 0

8. Centralize rows to mean 0 and normalize rows to standard deviation 1

Multiple transformations can be performed in sequence: each transformation changes the data table, and a
subsequent transformation will be applied to the modified data table. Option 4 is an example of a sequence
of Option 3 followed by Option 2, but is offered as a separate option because this combination is frequently
used. It is the user’s responsibility to ensure that any chosen sequence of transformations is viable from a
statistical analysis standpoint.

The macro will report any normalization transformation for which the divisor evaluates to zero, as this would
result in a division by zero error. However this occurrence is not treated as a catastrophic failure, as the
transformation is declined and the data table is left unaltered.

E.6.2.9 Transposing the SimFIT table

This facility is provided via the dialog box
Option to create Simfit File from the transposed Data Table.
Note that this option operates only on the exported file and does not alter the table which is contained within
the worksheet. The possibilities are as follows.

1. Create Simfit file from the Data Table

490 Using simfit6.xls with Excel

2. Create Simfit file from the transposed Data Table

After this choice has been made the macro proceeds to create the export file with the SimFIT-defined structure.
At the end of this process, the macro will terminate after reporting successful creation of the SimFIT file.

E.6.2.10 Inspecting and saving the modified worksheet

Because simfit6.xls makes successive changes to the actual worksheet, it can be quite useful to be able to
inspect and/or save the modified worksheet. This can only be done when the macro has terminated, either
on normal completion or by taking a termination option at an intermediate stage of processing, such as after
filling empty cells, or after any transformation in a sequence, or before creating the final SimFIT file.

If the user wishes to save the modified workbook it is advisable to do this using the Save As method with a
different filename, otherwise the original file will be overwritten by the modified version. In order to resume
processing, the user must either:

• Select the table in the modified worksheet and re-run the macro; or

• Re-load the original worksheet and re-run the macro, repeating the previous processing steps.

E.6.2.11 The History Log

Every time the simfit6 macro is run, a new worksheet is inserted into the user’s workbook to hold the History
Log. Any History Log worksheet which is already present in the workbook (created by a previous macro
run) is deleted. [Tip: if you wish to retain History Logs from previous macro runs, rename their worksheets
(History Log 1, History Log 2, etc) before running the macro.]

The History Log records:

• The sequence of processes which have been applied by the macro. This is important as an audit trail of
how the final data table was derived from the original version, especially if the process sequence has to
be repeated at some future time.

• The processing time spent on the main iterative processes (to assist in estimating overall processing
times for very large data tables).

• Any errors which were detected during processing.

In order to ensure that the History Log travels with the SimFIT file, its contents are appended to the SimFIT
file as additional lines between the delimiters
begin{transformation history} and end{transformation history}.

E.6.2.12 Processing very large data tables

The processing steps for very large data tables can run into several minutes. During these periods, the mouse
pointer will be displayed as an hourglass icon, indicating that the user must wait for the current process to
finish.

Timing tests on a 60000 rows by 50 columns matrix indicated that the longest processes were the copying of
the active worksheet (C1), the actual transformations (C2), and the creation of the SimFIT file (C3), where the
times were in the ratio

C1 : C2 : C3 = 69 : 62 : 14.

The length of time for the copying of the active worksheet is the reason why this process has been made
optional, but the user who chooses to omit this step must take alternative precautions to safeguard the original
data.

Importing SimFIT results tables into documents 491

E.7 Importing SimFIT results tables into documents and spreadsheets

E.7.1 SimFIT results files

Each time a data set is analyzed the results are written to a file called f$result.txt, and the current files
are renamed so that the existing f$result.txt becomes f$result.001 while f$result.001 becomes
f$result.002 and so on. These can be viewed using the [Results] option from the main SimFIT menu.

These SimFIT results files are formatted so that the numbers displayed only contain the number of significant
figures that are meaningful in context. For instance, probabilities will usually only have four digits after the
decimal point, which indicates that it does not make any sense to consider any subsequent digits for purpose
of statistical testing, and in any case probability estimates will not be accurate for more than about four digits.
Furthermore, as experimental data are rarely more accurate than about three or four significant figures anyway,
it may be wishful thinking to ever consider more than say six. In addition, the tables are formatted using a
fixed font with scientific notation to line up column entities irrespective of absolute size, and many users do
not want this in a thesis or published document. Naturally, these arguments do not apply to integers.

E.7.2 Preliminary analysis

As an example consider the following case with the title Table 1.

Table 1

1Way Analysis of Variance: 1 (Grand Mean 4.316E+01)

Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p

Between Groups 2.19344E+03 4 5.48316E+02 5.61546E+01 0.0000

Residual 2.44130E+02 25 9.76520E+00

Total 2.43757E+03 29

Actually, most users would want to import such a table formatted as tabbed-text, html, xml, or LATEX into
documents such as a report, thesis, or publication looking something like Table 2.

Table 2
1-Way Analysis of Variance: 1 (Grand Mean 43.16)

Transformation:- x (untransformed data)
Source SSQ NDOF MSQ F p
Between Groups 2193.44 4 548.316 56.1546 0.0000
Residual 244.130 25 9.76520
Total 2437.57 29

Or even, for those with artistic leanings, possibly something like Table 3.

Table 3

1-Way Analysis of Variance: Grand Mean 43.16

Transformation: G (untransformed data)

Source SSQ NDOF MSQ � ?

Between Groups 2193.44 4 548.316 56.1546 0.0000

Residual 244.130 25 9.76520

Total 2437.57 29

492 Importing SimFIT results tables into documents

E.7.3 The procedure

This article explains the procedures required to export tables from from SimFIT results files into forms suitable
for inclusion into word processors, spreadsheet programs, website scripts, or even professional document
preparation systems such as LATEX. Also, decimal points can be replaced by commas as in continental notation
if required.
It is important to realize that the [Results] option from the SimFIT main menu gives access to all the currently
saved results files.

• Choosing a results file.

Early versions of SimFIT allowed users to name results files individually to avoid anything being lost.
However, now that up to 100 results files are saved and users have the option [Results] from the main
SimFIT menus from which to view, print, save, edit, or export tables, this is no longer usually necessary.
Clearly, if results are always required for retrospective use, regular back-up or saving will be necessary.

• Extracting a table.

From the [Extract tables] option view the file to make sure it is the one required then copy to the
clipboard only the table required along with any associated header and trailer sections ... but nothing
else.

• Preliminary editing.

Sometimes editing of the file is required to make sure that every row of the table has exactly the same
number of columns. So note that, for extracting a table there can be no empty cells, and each cell
must contain precisely one word. Any column titles must be edited so that they consist of one word,
for instance changing Time of Day to Time_of_Day, or filling empty cells by three dots. Added
underscores and sets of three contiguous dots can be removed when the final table is written to file. A
pre-processing option is provided for editing before attempting to create a table.

Note that often tables have cells with added comments relating to goodness of fit or results of statistical
testing, and these no not need to be underscored. There are also special tables with only two columns
containing several words in some cells, and Example 1 later will make this clear.

• Viewing the hashtag table.

The algorithm attempts to identify cells in a table by inserting a hashtag between every column. If the
algorithm succeeds there would be no need to view this hashtag table. However this option should be
switched on until the process of the algorithm is understood, or if it fails and you need to see why.

The hashtag table is clarified in Example 1.

• Headers and trailers.

Frequently tables have header and trailer sections that are descriptive and not part of the table itself. As
these can have strings of word and numbers that would confuse the algorithm checking that every row
must have the same number of columns, they must be identified. This is done by using buttons on a
window that allows the header and trailer lines to be highlighted. If this is not done the table creating
algorithm will fail.

Selecting headers and trailers is clarified in Example 2.

• Saving the table.

For programs that produce Windows quality hardcopy the table should be saved as html or xml as these
will import directly into word processors or spreadsheets. Tabbed-text is also available but is much less
versatile than html or xml, and LATEX is available for those up to it.

• Fine tuning.

Inevitably there will often be the need for dealing with details. For instance, users will sometimes want
to replace alpha by U or chisqd by j2 and this can be done for html, xml, and LaTeX output but not

Importing SimFIT results tables into documents 493

for tabbed-text. On the other hand html, xml, and LATEX have reserved letters and these must be dealt
with retrospectively.

For instance, consider the transformation of the following expressions which can be done in html, xml,
and LATEX but not in tabbed text.

Original Transformed

>= ≥
=< ≤
alpha U

beta V

delta X

gamma W

lambda _

infinity ∞
P(chi-sqd >= TS) = 0.2037 %(j2 ≥)() = 0.2037

Where ambiguity could arise in LATEX using underscores or similar special characters they will be
replaced by question marks. So LATEX users should search for ? characters to replace for the final table.

• Padding with zeros.

As the [Extract tables] option will never remove significant figures a problem arises if users wish to
replace numbers in scientific notation by floating point representation. In order to extend the range over
which this can be done, padding zeros can be introduced as illustrated in this next table.

Scientific notation Padding Floating point representation

1.234E-01 0 .1234

1.234E+00 0 1.234

1.234E+01 0 12.34

1.234E+02 0 123.4

1.234E-02 2 0.01234

1.234E-01 2 0.12340

1.234E+00 2 1.23400

1.234E+01 2 12.3400

1.234E+02 2 123.400

1.234E+03 2 1234.00

1.234E+04 2 12340.0

1.234E-04 4 0.0001234

.

1.234E+06 4 1234000.0

Evidently increasing the number of padding zeros increases the range over which transformation from
scientific to floating point representation can be achieved, and the default is two which allows a wide
range, but four ensures that a mixture of transformed and untransformed numbers will occupy the same
width in the columns of a table.

However, there is here a problem because adding padding zeros could suggest all trailing zeros are
meaningful. For instance, the number 1.2341213179 stored in the computer could be written as
1.234E+00 in SimFIT output because the analysis in question only justifies accuracy or meaning for up
to four significant figures. However, 1.23400 could be mistaken for indicating the internal representation
with twelve significant figures. So users may wish to suppress trailing zeros in such cases, noting that
this could result in numbers with different widths in a column. In any case, the transformation from
scientific notation to floating point can be switched off.

Sometimes, for instance with numerical analysis where more significant figures are justified than with
data analysis, eight significant figures are output, and some procedures can optionally allow more. In
addition special DLLs dedicated for particular routines can be supplied for this purpose.

494 Importing SimFIT results tables into documents

E.7.4 Example 1

This example shows the transformationof a special type of SimFIT table containing just two columns separated
by equals signs (i.e., =) and containing cells with multiple words. As long as the equals signs are perfectly
lined up and there is no header or trailer section, this type of table can always be transformed. Here is the
table with no header or trailer sections as extracted using the [Results] then [Extract tables] options from the
main SimFIT menu using the results file f$result.txt following the exhaustive analysis of a vector process
used to analyze data contained in the default test file normal.tf1.

Sample size = 50

Minimum value = 2.20820E+00

Maximum value = 1.61750E+00

Coefficient of skew = 1.66905E02

Coefficient of kurtosis = 7.68395E01

Lower Hinge (25th percentile) = 8.55015E01

Median value (50th percentile) = 9.73615E02

Upper Hinge (75th percentile) = 7.85965E01

Sample mean = 2.57897E02

Sample standard deviation = 1.00553E+00

Coefficient of variation (CV%) = > 100%

Standard error of the mean = 1.42203E01

Upper 2.5% tvalue = 2.00958E+00

Lower 95% con lim for mean = 3.11558E01

Upper 95% con lim for mean = 2.59978E01

Sample variance = 1.01109E+00

Lower 95% con lim for variance = 7.05519E01

Upper 95% con lim for variance = 1.57006E+00

ShapiroWilks W statistic = 9.62693E01

Significance level for W = 0.1153

Conclusion = Tentatively accept normality

This is the corresponding intermediate hashtag table.

Sample size # 50

Minimum value # 2.20820E+00

Maximum value # 1.61750E+00

Coefficient of skew # 1.66905E02

Coefficient of kurtosis # 7.68395E01

Lower Hinge (25th percentile) # 8.55015E01

Median value (50th percentile) # 9.73615E02

Upper Hinge (75th percentile) # 7.85965E01

Sample mean # 2.57897E02

Sample standard deviation # 1.00553E+00

Coefficient of variation (CV%) # > 100%

Standard error of the mean # 1.42203E01

Upper 2.5% tvalue # 2.00958E+00

Lower 95% con lim for mean # 3.11558E01

Upper 95% con lim for mean # 2.59978E01

Sample variance # 1.01109E+00

Lower 95% con lim for variance # 7.05519E01

Upper 95% con lim for variance # 1.57006E+00

ShapiroWilks W statistic # 9.62693E01

Significance level for W # 0.1153

Conclusion # Tentatively accept normality

Importing SimFIT results tables into documents 495

The hashtag table is very useful for detecting the source of errors. The table making algorithm attempts
to locate the position separating columns and writes a hashtag there. If every row has the same number of
columns then every row will have the same number of hashtags and the algorithm has succeeded. Observing
this hashtag table when the algorithm has failed will allow you identify then correct the error.

Here is the selected table as it would be written to the output file.

Sample size 50

Minimum value -2.2082000

Maximum value 1.6175000

Coefficient of skew -0.0166905

Coefficient of kurtosis -0.7683950

Lower Hinge (25th percentile) -0.8550150

Median value (50th percentile) -0.0973615

Upper Hinge (75th percentile) 0.7859650

Sample mean -0.0257897

Sample standard deviation 1.0055300

Coefficient of variation (CV%) > 100%

Standard error of the mean 0.1422030

Upper 2.5% t-value 2.0095800

Lower 95% con lim for mean -0.3115580

Upper 95% con lim for mean 0.2599780

Sample variance 1.0110900

Lower 95% con lim for variance 0.7055190

Upper 95% con lim for variance 1.5700600

Shapiro-Wilks W statistic 0.9626930

Significance level for W 0.1153

Conclusion Tentatively accept normality

Here it is with a few minor cosmetic changes.

Exhaustive analysis of a vector

Sample size 50

Minimum value -2.2082000

Maximum value 1.6175000

Coefficient of skew -0.0166905

Coefficient of kurtosis -0.7683950

Lower Hinge (25th percentile) -0.8550150

Median value (50th percentile) -0.0973615

Upper Hinge (75th percentile) 0.7859650

Sample mean -0.0257897

Sample standard deviation 1.0055300

Coefficient of variation (CV%) > 100%

Standard error of the mean 0.1422030

Upper 2.5% t-value 2.0095800

Lower 95% confidence limit for mean -0.3115580

Upper 95% confidence limit for mean 0.2599780

Sample variance 1.0110900

Lower 95% confidence limit for variance 0.7055190

Upper 95% confidence limit for variance 1.5700600

Shapiro-Wilks, statistic 0.9626930

Significance level for, 0.1153

Conclusion: Tentatively accept normality

496 Importing SimFIT results tables into documents

E.7.5 Example 2

From fitting a two-exponential model to data in the test file exfit.tf4 using program exfit the following
results can be extracted from the results file.

For bestfit 2exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 8.5255E01 6.7731E02 7.1332E01 9.9177E01 0.0000

A(2) 1.1765E+00 7.4779E02 1.0227E+00 1.3302E+00 0.0000

k(1) 6.7935E+00 8.5386E01 5.0383E+00 8.5486E+00 0.0000

k(2) 1.1121E+00 5.1128E02 1.0070E+00 1.2172E+00 0.0000

AUC 1.1834E+00 1.4714E02 1.1531E+00 1.2136E+00 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.5983E02

Final time point (B) = 1.6110E+00

Area over range (A,B) = 9.3832E01

Average over range (A,B) = 5.9575E01

Now the file has an additional head and trailer section so, if the full table is selected, it will have to be
highlighted as follows in the header and trailer selection control as shown next, where the header is colored
magenta and the trailer colored cyan.

For bestfit 2exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 8.5255E01 6.7731E02 7.1332E01 9.9177E01 0.0000

A(2) 1.1765E+00 7.4779E02 1.0227E+00 1.3302E+00 0.0000

k(1) 6.7935E+00 8.5386E01 5.0383E+00 8.5486E+00 0.0000

k(2) 1.1121E+00 5.1128E02 1.0070E+00 1.2172E+00 0.0000

AUC 1.1834E+00 1.4714E02 1.1531E+00 1.2136E+00 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.5983E02

Final time point (B) = 1.6110E+00

Area over range (A,B) = 9.3832E01

Average over range (A,B) = 5.9575E01

Using two padding zeros this leads to the following table.

For best-fit 2-exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 0.852550 0.067731 0.713320 0.991770 0.0000

A(2) 1.176500 0.074779 1.022700 1.330200 0.0000

k(1) 6.793500 0.853860 5.038300 8.548600 0.0000

k(2) 1.112100 0.051128 1.007000 1.217200 0.0000

AUC 1.183400 0.014714 1.153100 1.213600 0.0000

AUC is the area under the curve from C = 0 to C = ∞
Initial time point (A) = 0.035983

Final time point (B) = 1.611

Area over range (A,B) = 0.93832

Average over range (A,B) = 0.59575

Importing SimFIT results tables into documents 497

However, note that, with this example, three points emerge.

1. Numbers outside the main table will also be transformed into floating point numbers.

2. Equals signs lined up the trailer will not lead directly to secondary tabulation.

3. Some special words, like infinity, will be recognized.

So, because a certain amount of fine tuning will be required, the possibilities for handcrafting are endless.
Here, for example, the header is enlarged by adding a formula, while the trailer is added in the form of a
footnote to the main table.

For the best-fit 2-exponential function

5 (C) = �1 exp(−:1C) + �2 exp(−:2C)

Parameter Value Std.Error Lower95%cl Upper95%cl ?

�1 0.852550 0.067731 0.713320 0.991770 0.0000

�2 1.176500 0.074779 1.022700 1.330200 0.0000

:1 6.793500 0.853860 5.038300 8.548600 0.0000

:2 1.112100 0.051128 1.007000 1.217200 0.0000

�*� 1.183400 0.014714 1.153100 1.213600 0.0000

Area under the curve �*� =

∫ ∞

0

5̂ (C) 3C

Initial time point (A) = 0.035983

Final time point (B) = 1.611

Area over range (A,B) = 0.93832

Average over range (A,B) = 0.59575

E.7.6 Example 3

A special situation exists with symmetric matrices where just a lower or upper triangle is displayed, and also
some other related situations. For instance, following on from the previous example we have the parameter
correlation matrix expressed in the following form.

Parameter correlation matrix

1.0000

0.8758 1.0000

0.5964 0.8996 1.0000

0.8480 0.9485 0.8200 1.0000

Clearly, the algorithm to count the number of columns per row in order to insert hashtags will fail because all
the rows have different numbers of columns, unless editing is performed like this.

Parameter correlation matrix

1.0000

0.8758 1.0000

0.5964 0.8996 1.0000 ...

0.8480 0.9485 0.8200 1.0000

498 Importing SimFIT results tables into documents

Now transformation would be possible leading to a table such as the following.

Parameter correlation matrix

1

-0.8758 1

-0.5964 0.8996 1

-0.8480 0.9485 0.8200 1

Another example to consider is from correlation analysis which leads to A values in the strict upper triangle
and significance levels in the strict lower triangle as shown next followed by the extracted table.

Pearson correlation results

Upper triangle = r, Lower = corresponding twotail p values

..... 0.5295 0.2874 0.0662 0.1941 0.6255 0.5876 0.3010

0.0766 0.3285 0.0219 0.7930 0.5338 0.4230 0.3006

0.3650 0.2971 0.2833 0.2165 0.0264 0.2314 0.0304

0.8381 1.0000 1.0000 0.2787 0.2837 0.5238 0.1166

0.5455 0.0021 0.4992 0.3804 0.2029 0.1949 0.2144

0.0296 0.0738 0.9351 1.0000 0.5271 0.4532 0.1360

1.0000 1.0000 0.4694 1.0000 1.0000 1.0000 0.1696

0.3418 0.3424 1.0000 1.0000 0.5035 0.6735 1.0000

Test for absence of any significant correlations

H0: correlation matrix is the identity matrix

Determinant = 2.476E03

Test statistic (TS) = 4.501E+01

Degrees of freedom = 28

P(chisq >= TS) = 0.0220 Reject H0 at 5% sig.level

Pearson correlation results

Upper triangle = A, Lower = corresponding two-tail ? values

..... 0.5295 0.2874 0.0662 0.1941 0.6255 -0.5876 0.3010

0.0766 0.3285 -0.0219 0.7930 0.5338 -0.4230 0.3006

0.3650 0.2971 -0.2833 0.2165 0.0264 0.2314 -0.0304

0.8381 1.0000 1.0000 0.2787 -0.2837 -0.5238 -0.1166

0.5455 0.0021 0.4992 0.3804 0.2029 -0.1949 0.2144

0.0296 0.0738 0.9351 1.0000 0.5271 -0.4532 0.1360

1.0000 1.0000 0.4694 1.0000 1.0000 1.0000 -0.1696

0.3418 0.3424 1.0000 1.0000 0.5035 0.6735 1.0000

Test : for absence of any significant correlations

�0 : correlation matrix is the identity matrix

Determinant = 0.002476

Test statistic()() = 45.01

Degrees of freedom = 28

%(j2 ≥)() = 0.0220 Reject �0 at 5% significance level

Here the five dots (.....) denote that the diagonal elements have no meaning and this is just a convenient way
to conserve space by having one matrix instead of two. Note that the option to blank out three dots (...) used
as temporary column separators does not blank out groups with less three or more than three contiguous dots.

A summary of the options available and procedure to be used comes next.

Importing SimFIT results tables into documents 499

E.7.7 Summary

• The first step is to select just one table from the results file.

• This can be followed by an optional pre-processing step to edit the table so that every row has exactly
the same number of columns.

• Empty cells must be denoted by a three dot ellipsis (...) and cells containing multiple words must have
them joined by underscores or similar.

• Three dot symbols to denote empty cells are deleted from the output file.

• The input table can have optional header and trailer sections if required, but these must be highlighted
by the control to select headers and trailers.

• There is an option to transform scientific numbers into floating point format by specifying the number
of padding zeros required. This option can be switched off.

• Numbers in the header and trailer will also be transformed in this way.

• If it is required, decimal points in floating point numbers can be replaced by commas.

• If transformation fails then the option for pre-processing should be switched on, and also the hashtag
table should be requested. By viewing the hashtag table most errors can easily be diagnosed, then
rectified by a re-run using pre-process editing.

• If tabbed-text output is selected the resulting file will have to be input into a spreadsheet program for
formatting before importing into a word processing program.

• Both html and xml output can allow a certain number of further changes, like changing alpha into U, or
adding cell borders.

• LATEX output will have question marks (?) inserted to replace forbidden character such as underscores
which must be edited retrospectivelydepending the intention, e.g., linking words, or denoting subscripts.

Three further things should be emphasized.

1. Some tables have specialized features such as lined up equals signs that allow multiple words in a
column and, as long as every row in the table has an equals sign in exactly the same position, this feature
will be recognized.

2. Some SimFIT results files output tables to the display without three dot separators (...) to create a more
pleasing effect, but add them to the results files to assist the processing described in this document.

3. There are several widely used tables that can have empty cells and multi-word titles that the parsing
routine will recognize and format automatically.

Finally, should you require further worked examples, you can browse the SimFIT tutorials, or the document
w_examples.pdf, where a large number of alternative display styles are demonstrated.

500 Importing SimFIT graphs into documents

E.8 Printing and importing SimFIT graphs into documents

SimFIT will create high quality graphics files without any other software packages. However, if the free
GhostScript package is installed then, not only does this greatly increase the quality of output available,
but also many other advanced graphical options are then available. This is because the primary high level
graphics format created by SimFIT is the Encapsulated PostScript vector format, i.e., .eps files but, as not all
applications can use these directly, you may have to create graphic image files in other formats. However,
if you cannot benefit directly from the superior quality of such .eps files, you should never import SimFIT
graphics files into documents in .bmp, .pcx, .jpg, or .tif formats; only use .emf or svg exported from SimFIT
using the [Win] button, or better .png, or pdf exported using the [PS] button then generated from .eps using
GhostScript should be used.

E.8.1 Graphics hardcopy

Any graph displayed by SimFIT can be used directly to drive printers using a high resolution bitmap. The
resolution and size can be adjusted but this is only useful for a quick record.

If you have a PostScript printer, then hardcopy driven directly from the display will be of very high quality.
If you do not have a PostScript printer, then install Ghostscript and Gsview and similar print quality can be
obtained on any printer.

E.8.1.1 Bitmaps and compressed bitmaps

You should never choose to save .bmp, .jpg, .tif, .pcx from the display unless you have a good reason for being
satisfied with such large, poor resolution files.

E.8.1.2 Enhanced metafiles (.emf)

Probably the easiest way to use SimFIT graphs in Windows is to save Enhanced Metafiles, i.e., .emf files
directly from SimFIT. The quality of .emf files can be improved somewhat by configuring SimFIT to use
slightly thicker lines and bolder fonts than the default settings, which you can investigate. If you do not have
a PostScript printer, and do not have SimFIT configured to use GSview and Ghostscript, then this is the only
course of action open to you, and you will miss out on a great many sophisticated SimFIT plotting techniques.

A further undesirable feature of using .emf files is that they can too easily have their aspect ratio changed
within Windows programs, leading to ugly fonts.

E.8.1.3 Scalable vector graphics (.svg)

The W3C recommended format for web line graphics is now the XML based SVG format, and many Windows
applications can import these. As SimFIT graphs are line drawings and do not need to save pixel information
for the backgroundor filling symbols, then .svg files are an alternative to .png, and have many of the advantages
of .eps files.

E.8.2 PostScript graphics files (.eps)

The advantage of storing SimFIT encapsulated PostScript graphics files is that they are very compact, can be
printed at any resolution with any number of colors, and SimFIT has many facilities for editing, re-sizing,
rotating, overlaying, or making collages from such .eps files. A unique feature is that SimFIT .eps files have a
structured format, so they can easily be edited in a text editor, e.g., Notepad, to change sizes, fonts, line types
symbols, colors, labels, etc., retrospectively.

Importing SimFIT graphs into documents 501

E.8.2.1 Ghostscript generated files

If you have Ghostscript installed, then SimFIT can supply .eps files for transformation into other graphics
formats such as .bmp, .jpg, .tif, or especially .pdf, or .png.

E.8.2.2 Portable Document graphics files (.pdf)

If you use Adobe Acrobat, or can import Portable Document Format files, i.e., .pdf files generated from
SimFIT .eps files by Ghostscript, into your Windows application, then such true .pdf files are an excellent
choice. However, beware of the fact that many applications simply embed bitmaps into PostScript or .pdf
files, whereupon all the advantages are lost.

E.8.2.3 Portable network graphics files (.png)

Increasingly, the most versatile format for importing graphic image files into Windows programs, such as
Microsoft Word and PowerPoint, or LibreOffice Writer or Impress, is the Portable Network Graphics format,
as the compression used in .png files results in smaller files than .bmp or .jpg, and edge resolution is far
superior. So the best way for users without PostScript printers to use SimFIT graphs in Windows is to store
graphs in .eps format, then create .png files at 72dpi for small applications, like the web, where resolution is
not important, but at 300dpi or 600dpi if you wish the graph to be printed or displayed at high resolution.

The industry standard for scientific graphs is no longer .gif, it is .png, as these are free from patent problems
and are increasingly being accepted by all applications and all operating systems.

E.8.3 Using Encapsulated PostScript (.eps) files directly

If you have a PostScript printer, you can import SimFIT .eps files into Word, but Word may add a low resolution
preview, so that what you see in the display may not be what you get on printing. A Word document containing
.eps files will print SimFIT graphs at high resolution only on PostScript printers, on non-PostScript printers
the resolution may be poor and the graph may not be printed correctly. For this reason, the best way is to save
.eps files then create .png or .svg files, either when the .eps file is created or retrospectively. To do this, SimFIT
must be configured to use Gsview and Ghostscript, and these can be downloaded from the SimFIT or GSview
websites. Note that, for some applications, GSview can add a preview to .eps files in the expectation that this
preview will just be used for display and that the PostScript graph will be printed, but not all applications
do this correctly. Another advantage of having SimFIT configured to use the GSview package is that your
archived .eps files can then be printed as professional quality stand alone graphs at high resolution on any
printer.

Appendix F

The SimFIT package

F.1 SimFIT program files

F.1.1 Dynamic Link Libraries

The DLL files must be consistent, that is they must all be compiled and linked together at the same release. If
they are upgraded you must replace the whole set, not just one or two of them. If they are not consistent (i.e.
not all created at the same time) bizarre effects can result from inconsistent export tables.

numbers.dll

The academic version is a stand-alone library containing the public domain numerical analysis codes required
to replace the NAG library routines used by SimFIT. The software included is a selection from: BLAS,
Linpack, Lapack, Minpack, Quadpack, Curfit (splines), Dvode and L-BFGS-B. However, the NAG library
versions do not contain these numerical analysis codes, but call the NAG library DLLs indirectly through the
NAG library version of the maths DLL.

maths.dll

The academic version contains in-line replacement code for the NAG library, and calls to the numbers library
to satisfy dependencies. The methods described in the NAG library handbook are used for most of the
routines, but some exploit alternative methods described in sources such as AS or ACM TOMS. The NAG
library maths versions are mainly front ends to the NAG library DLLs, but they do contain some extra code.

menus.dll

This is the GUI interface to the Windows Win32 API that is responsible for creating the SimFIT menus and
all input/output. SimFIT does not use resource scripts and all menus and tables are created on the fly. This
DLL consists of a set of subroutines that transform data into a format that can be recognized by the arguments
of the winio@(.) integer function of the Salford Software Clearwin Plus Windows Interface. When the calls
have been processed, the resulting arguments are passed to the Clearwin interface. So menus is dependent on
the clearwin DLL.

graphics.dll

This contains the graphics codes, and is dependent on the menus and clearwin DLLs.

simfit.dll

This consists of all the numerical analysis routines used by SimFIT that are not in numbers.dll or maths.dll.
It also contains numerous special routines to check data and advise users of ill-conditioned calculations,
unsatisfactory data and so on. It depends on the maths, menus and graphics DLLs.

models.dll

This contains the model subroutines used in simulation and curve fitting. The basic model (Version 2.0) is

Executables 503

rather limited in scope and there are many variations with models dedicated to specific uses. Most of these
are consistent with maths.dll and numbers.dll but some use special functions that need enhanced versions of
maths.dll. It is possible to upgrade the library of equations and use an enlarged set of user defined functions
by upgrading this file alone. It depends on the menus, maths, and numbers DLLs.

clearwin.dll

This contains all the codes that require the Salford-Silverfrost runtime library salflibc.dll. This, and the help
DLL, are the only source codes in SimFIT that must be compiled using the FTN95 compiler. Note that some
versions of the clearwin DLL are also linked to the graphics DLL for reverse communication.

help.dll

This contains compiled HTML scripts. It depends on the menus DLL and must be compiled using the FTN95
compiler.

salflibc.dll

This contains the Salford-Silverfrost runtime library to interface with the Windows API.

F.1.2 Executables

adderr

This takes in exact data for functions of one, two or three independent variables and adds random error to
simulate experimental data. Replicates and outliers can be generated and there is a wide range of choice in
the probability density functions used to add noise and the methods to create weighting factors.

average

This takes in G, H data points, calculates means from replicates if required, and generates a trapezoidal model,
i.e. a sectional model for straight lines joining adjacent means. This model can then be used to calculate areas
or fractions of the data above a threshold level, using extrapolation/interpolation, for any sub-section of the
data range.

binomial

This is dedicated to the binomial, trinomial and Poisson distributions. It generates point mass functions,
cumulative distributions, critical points, binomial coefficients and their sums and tests if numbers supplied
are consistent with a binomial distribution. Estimates of binomial probability values with 95% confidence
levels can be calculated by the exact � method or approximate quadratic method, analysis of proportions is
carried out and confidence contours for the trinomial distribution parameters can be plotted.

calcurve

This reads in curve-fitting data and creates a cubic spline calibration curve. This can then be used to predict
G given H or H given G with 95% confidence levels. There is a wide range of procedures and weighting options
that can be used for controlling the data smoothing.

chisqd

This is dedicated to the chi-square distribution. It calculates density and cumulative distribution functions
as well as critical points, tests if numbers are consistent with a chi-square distribution, does a chi-square test
on paired observed and expected values or on contingency tables and calculates the Fisher exact statistics and
chi-square statistics with the Yates correction for 2 by 2 tables.

compare

This fits a weighted least squares spline with user-chosen smoothing factor to data sets. From these best-fit
splines the areas, derivatives, absolute curvature and arc length can be estimated and pairs of data sets can be
compared for significant differences.

504 The SimFIT package

csafit

This is dedicated to estimating the changes in location and dispersion in flow cytometry data so as to express
changes in ligand binding or gene expression in terms of estimated parameters.

deqsol

This simulates systems of differential equations. The user can select the method used, range of integration,
tolerance parameters, etc. and can plot profiles and phase portraits. The equations, or specified linear
combinations of the components can be fitted to data sets.

editfl

This editor is dedicated to editing SimFIT curve fitting files. It has numerous options for fusing and rearranging
data sets, changing units of measurement and weighting factors, plotting data and checking for inconsistencies.

editmt

This is a general purpose numerical editor designed to edit SimFIT statistical and plotting data files. It has a
large number of functions for cutting and pasting, rearranging and performing arithmetical calculations with
selected rows and columns. This program and EDITFL are linked into all executables for interactive editing.

editps

This editor is specifically designed to edit PostScript files. It can change dimensions, rotation, titles, text, etc.
as well as overprinting files to form insets or overlays and can group PostScript files together to form collages.

eoqsol

This item is for users who wish to study the effect of spacing and distribution of data points for optimal design
in model discrimination.

exfit

This fits sequences of exponential functions and calculates best fit parameters and areas under curves. It is
most useful in the field of pharmacokinetics.

ftest

This is dedicated to the � distribution. It calculates test statistics, performs tests for consistency with the �
distribution and does the � test for excess variance.

gcfit

This can be run in three modes. In mode 1 it fits sequences of growth curves and calculates best-fit parameters
such as maximal growth rates. In mode 2 it fits survival models to survival data. In mode 3 it analyzes censored
survival data by generating a Kaplan-Meier nonparametric survival estimate, finding maximum likelihood
Weibull models and performing Cox analysis.

help

This item provides on-line help to SimFIT users.

hlfit

This is dedicated to analyzing ligand binding data due to mixtures of high and low affinity binding sites where
the response is proportional to the percentage of sites occupied plus a background constant level. It is most
useful with dose response data.

inrate

This finds initial rates, lag times, horizontal or inclined asymptotes using a selection of models. It is most
useful in enzyme kinetics and transport studies.

linfit

This does multi-linear regression and a provides a variety of linear regression techniques such as overde-

Executables 505

termined L1 fitting, generalized linear interactive modelling, orthogonal fitting, robust regression, principal
components, etc.

makcsa

This simulates flow cytometry data for testing program CSAFIT.

makdat

This can generate exact data for functions of one, two or three independent variables, differential equations
or user-defined equations. It can also create two and three dimensional plots.

makfil

This is designed to facilitate the preparation of data sets for curve fitting. It has many features to make sure
that the user prepares a sensible well-scaled and consistent data file and is also a very useful simple plotting
program.

maklib

This collects SimFIT data files into sets, called library files, to facilitate supplying large data sets for fitting,
statistical analysis or plotting.

makmat

This facilitates the preparation of data files for statistical analysis and plotting.

maksim

This takes in tables with columns of data from data base and spread sheet programs and allows the user to
create SimFIT files with selected sub-sets of data, e.g. blood pressure for all males aged between forty and
seventy.

mmfit

This fits sequences of Michaelis-Menten functions. It is most useful in enzyme kinetics, especially if two or
more isoenzymes are suspected.

normal

This is dedicated to the normal distribution. It calculates all the usual normal statistics and tests if numbers
are consistent with the normal distribution.

polnom

This fits all polynomials up to degree six and gives the user all the necessary statistics for choosing the best-fit
curve for use in predicting G given H and H given G with 95% confidence limits.

qnfit

This is a very advanced curve-fitting program where the models can be supplied by the user or taken from a
library, and the optimization procedures and parameter limits are under the user’s control. The best fit curves
can be used for calibration, or estimating derivatives and areas. Best-fit surfaces can be plotted as sections
through the surface and the objective function can be visualized as a function of any two estimated parameters.

rannum

This generates pseudo random numbers and random walks from chosen distributions.

rffit

This performs a random search, constrained overdetermined L1 norm fit then a quasi-Newton optimization
to find the best-fit positive rational function. It is most useful in enzyme kinetics to explore deviations from
Michaelis-Menten kinetics.

506 The SimFIT package

rstest

This does runs and signs tests for randomness plus a number of nonparametric tests.

run5

This program-manager runs the SimFIT package. The executable is called w_simfit.exe.

sffit

This is used for fitting saturation curves when cooperative ligand binding is encountered. It gives binding
constants according to all the alternative conventions and estimates Hill plot extremes and zeros of the binding
polynomial and its Hessian.

simplot

This takes in ASCII coordinate files and creates plots, bar charts, pie charts, surfaces and space curves. The
user has a wealth of editing options to create publication quality hardcopy.

simstat

This describes the SimFIT statistics options and does all the usual tests. In addition it does numerous statistical
calculations such as zeros of polynomials, determinants, eigenvalues, singular value decompositions, time
series, power function estimations, etc.

spline

This utility takes in spline coefficients from best-fit splines generated by CALCURVE and COMPARE and
uses them for plotting and calculating areas, derivatives, arc lengths and curvatures.

ttest

This is dedicated to the C statistic. It calculates densities and critical values, tests if numbers are consistent
with the C distribution, and does C and paired C tests after testing for normality and doing a variance ratio test.

usermod

This utility is used to develop user defined models. It also plots functions, estimates areas by adaptive
quadrature and locates zeros of user defined functions and systems of simultaneous nonlinear equations.

change_simfit_version

This program can be used at any time to transform the current version of SimFIT into one of the alternative
versions. For instance transforming the academic version into a NAG library version. It does this by
overwriting the current copies of the maths and number DLLs, so it is important that SimFIT is not in use
when this utility is executed.

F.2 SimFIT data files

To use SimFIT you must first collect your data into tables then create data files. These are ASCII text files with
a two-line header section, then a table consisting of your < by = matrix of data values, followed, if required,
by an optional trailer section, as follows.

Data files 507

Title :Header line 1

m n :Header line 2 (no. of rows and columns)

a(1,1) a(1,2) ... a(1,n) :Data row 1 ...

a(2,1) a(2,2) ... a(2,n) :Data row 2 ...

...

a(m,1) a(m,2) ... a(m,n) :Data row m ...

k :Trailer line 1 (no. of appended lines)

appended line 1 :Trailer line 2

appended line 2 :Trailer line 3

...

appended line k :Trailer line k + 1

There are special SimFIT programs to prepare and edit such files: makfil or editfl for curve fitting data,
and makmat or editmt for statistics. These editors have a very extensive range of functions. However, if
you already have data in a spread sheet or data base program like Excel, you can copy selected tables to the
clipboard and paste them directly into SimFIT or into the special program maksim which allows you to select
rows and columns to be written to a data file in the SimFIT format.

The next examples are SimFIT test files chosen to illustrate some features of the SimFIT data file format.
Although all data files have an identical format, the meaning of the rows and columns must be consistent with
the use intended. For instance, column 1 must be in nondecreasing order for curve fitting or MANOVA data
sets, and this is best appreciated by viewing the test files designated as defaults for each procedure. Note
that SimFIT does not differentiate between floating point numbers and integers in the matrix table section
of data files, and either spaces or commas can be used a separators. The title is quite arbitrary, but the row
and column dimensions must be exact. The trailer can be omitted altogether, or may be used to store further
items, such as labels, indicators, values, or starting estimates and limits. A particularly valuable feature of the
trailer section is that there is a begin{. . . } . . . end{. . . } format which can be used to append labels, indicators,
starting values, or parameter limits to the end of data files.

F.2.1 Example 1: a vector

Table F.1 illustrates a typical vector file (vector.tf1), with title, row and column dimensions, 1 column of
data, then an unused trailer section.

Vector with components 1, 2, 3, 4, 5

5 1

1.0

2.0

3.0

4.0

5.0

1

Default line

Table F.1: Test file vector.tf1

F.2.2 Example 2: a matrix

Table F.2 illustrates a typical matrix file (matrix.tf1), with 5 rows and 5 columns.

F.2.3 Example 3: an integer matrix

Table F.3has integer entries, and the trailer is being used to describe the meaning of the columns of observations
in the test file binomial.tf3.

508 The SimFIT package

Arbitrary 5 by 5 matrix

5 5

1.2 4.5 6.1 7.2 8.0

3.0 5.6 3.7 9.1 12.5

17.1 23.4 5.5 9.2 3.3

7.15 5.87 9.94 8.82 1.08

12.4 4.3 7.7 8.95 1.6

1

Default line

Table F.2: Test file matrix.tf1

y,N,x for analysis of proportions

5 3

23 84 1

12 78 2

31 111 3

65 92 4

71 93 5

3

Column 1 = y, number of successes

Column 2 = N, number of Bernoulli trials, N >= y > = 0

Column 3 = x, xcoordinates for plotting

Table F.3: Test file binomial.tf3

F.2.4 Example 4: appending labels

Table F.4 originally had the first 12 lines of the trailer for row labels to be plotted corresponding to the 12 rows
(i.e., cases in the test file cluster.tf1). To use this method, the labels must be the first lines in the trailer
section, and there must be at least as many labels as there are columns. Where both row and column labels are
required, e.g. with biplots, column labels follow on from row labels. The current version of cluster.tf1
now uses a more versatile method to add labels which will be described next.

F.2.5 Example 5: using begin ... end to add labels

Table F.5 illustrates the alternative method for adding 12 labels to the trailer section for the 12 rows in test file
piechart.tf1..

F.2.6 Example 6: various uses of begin ... end

Table F.6 illustrates how to append starting clusters, indicator variables to include or suppress covariates, as
well as labels to a data file. When such begin{. . . } . . . end{. . . } techniques are used, the appended data can
be placed anywhere in the trailer section. Note that 17 rows and 17 labels have been suppressed to make the
table compact, but the complete test file is kmeans.tf1.

F.2.7 Example 7: starting estimates and parameter limits

The advanced curve-fitting program qnfit must have starting estimates and parameter limits appended to the
data file in order to use expert mode model fitting. This example shows how this is done using begin{limits}
. . . end{limits} with the test file gauss3.tf1, where the model has 10 parameters. Note that each line
representing a limit triple must satisfy

[botom limit] ≤ [starting estimate] ≤ [upper limit]

Test files 509

Cluster analysis data, e.g. dendrogram

12 8

1 4 2 11 6 4 3 9

8 5 1 14 19 7 13 21

...

15 21 8 7 17 12 4 22

18

A1

B2

C3

D4

E5

F6

G7

H8

I9

J10

K11

L12

...

Table F.4: Test file cluster.tf1 (original version)

Advanced pie chart 1: fill styles

10 4

1.0 1.0 0.0 15

1.0 2.0 0.0 15

...

1.0 10.0 0.0 15

12

begin{labels}

Style 1

Style 2

...

Style 10

end{labels}

Table F.5: Test file piechart.tf1

i.e., be in nondecreasing order, otherwise the parameter limits will not be acceptable. Test file gauss3.tf2

illustrates the alternative way to supply these 10 sets of lower limits, starting estimates, and upper limits for
the 10 parameters to be estimated.

F.3 SimFIT auxiliary files

The test files consist of data sets that can be used to understand how SimFIT works. You can use a test
file with a program, then view it to appreciate the format before running your own data. Library files are
just collections of names of test files so you can enter many files at the same time. This is very useful with
statistics (e.g., ANOVA, multiple comparisons with simstat) and plotting (e.g., supplying ASCII coordinate
files to simplot). Configuration and default files are used by SimFIT to store certain parameter values that are
relevant to some particular functions. Some files are created automatically and upgraded whenever you make

510 The SimFIT package

Data for 5 variables on 20 soils (G03EFF, Kendall and Stuart)

20 5

77.3 13.0 9.7 1.5 6.4

82.5 10.0 7.5 1.5 6.5

...

69.7 20.7 9.6 3.1 5.9

...

The next line defines the starting clusters for k = 3

begin{values} < token to flag start of appended values

82.5 10.0 7.5 1.5 6.5

47.8 36.5 15.7 2.3 7.2

67.2 22.7 10.1 3.3 6.2

end{values}

The next line defines the variables as 1 = include, 0 = suppress

begin{indicators} < token to flag start of indicators

1 1 1 1

end{indicators}

The next line defines the row labels for plotting

begin{labels} < token to flag start of row labels

A

B

...

T

end{labels}

Table F.6: Test file kmeans.tf1

QNFIT EXPERT mode file: 3 Gaussians plus 7.5% relative error

150 3

3.0 0.0041947 0.00085276

3.0 0.005899 0.00085276

...

15.0 0.029515 0.0024596

27

...

begin{limits}

0 1 2

0 1 2

0 1 2

2 0 2

2 4 6

8 10 12

0.1 1 2

1 2 3

2 3 4

0 0 0

end{limits}

Table F.7: Test file gauss3.tf1

significant changes, and some are created only on demand. All such configuration and default files are ASCII
text files that can be browsed in the SimFIT viewer. In general, the idea is that when a particular configuration

Test files 511

proves satisfactory you make the file read-only to fix the current defaults and prevent SimFIT from altering
the settings. SimFIT generates many temporary files and if you exit from a program in an abnormal fashion
(e.g., by Ctrl+Alt+Del) these are left in an unfinished state. Usually these would be automatically deleted, but
expert users will sometimes want the facility to save temporary files on exit from SimFIT, so this possibility
is provided. You should not attempt to edit such files in a text editor but note that, if you suspect a fault may
be due to a faulty configuration or default files, just delete them and SimFIT will create new versions.

F.3.1 Test files (Data)

adderr.tf1 Data for adding random numbers using adderr

adderr.tf2 Data for adding random numbers using adderr

anova1.tf1 Matrix for 1 way analysis of variance in ftest or simstat

anova2.tf1 Matrix for 2 way analysis of variance in ftest or simstat

anova2.tf2 Matrix for 2 way analysis of variance in ftest or simstat

anova3.tf1 Matrix for 3 way analysis of variance in ftest or simstat

anova4.tf1 Matrix for groups/subgroups analysis of variance in ftest or simstat

anova5.tf1 Matrix for factorial ANOVA (2 factors, 1 block)
anova5.tf2 Matrix for factorial ANOVA (2 factors, 3 blocks)
anova5.tf3 Matrix for factorial ANOVA (3 factors, 1 blocks)
anova5.tf4 Matrix for factorial ANOVA (3 factors, 3 blocks)
anova6.tf1 Matrix for repeated measures ANOVA (5 subjects, 4 treatments)
average.tf1 Data for program average

barchart.tf1 Creates a barchart in simplot

barchart.tf2 Creates a barchart in simplot

barchart.tf3 Creates a barchart in simplot

barchart.tf4 Creates a barchart in simplot

barchart.tf5 Creates a barchart in simplot

barchart.tf6 Creates a barchart in simplot

barchart.tf7 Adds a curve to barchart created from barchart.tf6
barcht3d.tf1 Creates a 3 dimensional barchart in simplot

barcht3d.tf2 Creates a 3 dimensional barchart in simplot

barcht3d.tf3 Creates a 3 dimensional barchart in simplot

beta.tf1 Fifty numbers from a beta distribution with � = 2.0, � = 2.0
binomial.tf1 Fifty numbers from a binomial distribution with # = 50, ? = 0.5
binomial.tf2 Analysis of proportions with no effector values, i.e. -, #
binomial.tf3 Analysis of proportions with effector values, i.e. -, #, C
binomial.tf4 Analysis of proportions with effector values, i.e. -, #, C
binomial.tf5 Analysis of proportions with effector values, i.e. -, #, C
bivariate.tf1 Data for fitting a scaled bivariate normal model
calcurve.tf1 Prepares a calibration curve in EXPERT mode using calcurve

calcurve.tf2 Calcurve.tf1 with no weights or EXPERT mode settings
calcurve.tf3 Predicts G given H with calcurve.tf1
chisqd.tf1 Fifty numbers from a chi-square distribution with a = 10
chisqd.tf2 Vector of observed values to be used with chisqd.tf3
chisqd.tf3 Vector of expected values to be used with chisqd.tf2
chisqd.tf4 Matrix for Fisher exact test in chisqd or simstat

chisqd.tf5 Contingency table for chi-square test in chisqd or simstat

cluster.tf1 Data for multivariate cluster analysis in simstat

cluster.tf2 Data for multivariate cluster analysis in simstat

cochranq.tf1 Matrix for Cochran Q test
column1.tf1 Vector for 1 way ANOVA in ftest or simstat

column1.tf2 Vector for 1 way ANOVA in ftest or simstat

column1.tf3 Vector for 1 way ANOVA in ftest or simstat

column1.tf4 Vector for 1 way ANOVA in ftest or simstat

512 The SimFIT package

column1.tf5 Vector for 1 way ANOVA in ftest or simstat

column2.tf1 Vector for nonparametric correlation in rstest or simstat

column2.tf2 Vector for nonparametric correlation in rstest or simstat

column2.tf3 Vector for nonparametric correlation in rstest or simstat

compare.tf1 Use with compare to compare with compare.tf2
compare.tf2 Use with compare to compare with compare.tf1
consec4.tf1 Used by deqsol in consec4.TFL for A in 4 differential equations A=B=C=D
consec4.tf2 Used by deqsol in consec4.TFL for B in 4 differential equations A=B=C=D
consec4.tf3 Used by deqsol in consec4.TFL for C in 4 differential equations A=B=C=D
consec4.tf4 Used by deqsol in consec4.TFL for D in 4 differential equations A=B=C=D
consec5.tf1 Used by deqsol in consec4.TFL for A in 5 differential equations A=B=C=D=E
consec5.tf2 Used by deqsol in consec4.TFL for B in 5 differential equations A=B=C=D=E
consec5.tf3 Used by deqsol in consec4.TFL for C in 5 differential equations A=B=C=D=E
consec5.tf4 Used by deqsol in consec4.TFL for D in 5 differential equations A=B=C=D=E
consec5.tf5 Used by deqsol in consec4.TFL for E in 5 differential equations A=B=C=D=E
cox.tf1 Survival data for Cox proportional hazards model
cox.tf2 Survival data for Cox proportional hazards model
cox.tf3 Survival data for Cox proportional hazards model
cox.tf4 Survival data for Cox proportional hazards model
csadat.tf1 Example of the preliminary flow cytometry format for csadat

csadat.tf2 Example of the preliminary flow cytometry format for csadat

csafit.tf1 Geometric type data with 15% stretch for csafit

csafit.tf2 Arithmetic type data with 5% translation for csafit

csafit.tf3 Mixed type data for csafit

deqsol.tf1 Library data for fitting LV1.tf1 and LV2.tf1 by deqsol

deqsol.tf2 Library data for fitting LV1.tf1 by deqsol

deqsol.tf3 Library data for fitting LV2.tf1 by deqsol

diversity.tf1 Shannon-Brillouin indices of diversity for simstat

editfl.tf1 Data for editing by editfl

editfl.tf2 Data for editing by editfl

editfl.tf3 Data for editing by editfl

editfl.tf4 Data for editing by editfl

editmt.tf1 Data for editing by editmt

editmt.tf2 Data for editing by editmt

editmt.tf3 Data for editing by editmt

errorbar.tf1 Normal error bars (4 columns)
errorbar.tf2 Advanced error bars (6 columns)
exfit.tf1 Exact data for 1 exponential for fitting by exfit

exfit.tf2 Random error added to exfit.tf1 by adderr

exfit.tf3 Exact data for 2 exponentials for fitting by exfit

exfit.tf4 Random error added to exfit.tf3 by adderr

exfit.tf5 Exact data for Model 5 in exfit

exfit.tf6 Exact data for Model 6 in exfit

exfit.tf7 Exact data for concave down exponentials in exfit

fdr_bh.tf1 Data for false dicovery rate calculations in simstat

ftest.tf1 Fifty numbers from the � distribution with < = 2, = = 5
gauss3.tf1 3 Gaussians: starting estimates by begin{limits}...end{limits}
gauss3.tf2 3 Gaussians: starting estimates from start of trailer section
gcfit.tf1 Exact data for model 3 in gcfit

gcfit.tf2 Random error added to gcfit.tf1 by adderr

gcfit.tf3 Random error added to gcfit.tf1 by adderr

gcfit.tf4 Random error added to logistic equation by adderr

gcfit.tf5 Gompertz growth data
gcfit.tf6 Gompertz decay data by reversing gcfit.tf5

Test files 513

gcfit.tf7 Logistic decay data by reversing gcfit.tf2
glm.tf1 Normal errors, reciprocal link
glm.tf2 Binomial errors, logistic link
glm.tf3 Poisson errors, log link
glm.tf4 Gamma errors, reciprocal link
gompertz.tf1 Data for gcfit in survival mode 2
hlfit.tf1 Exact data for 1 site for fitting by hlfit

hlfit.tf2 Random error added to hlfit.tf1 by adderr

hlfit.tf3 Exact data for 2 sites for fitting by hlfit

hlfit.tf4 Random error added to hlfit.tf3
hotcold.tf1 Data for mmfit/hlfit/qnfit in isotope displacement mode
hotel.tf1 Data for Hotelling 1-sample T-square test
houses.tf1 Data for constructing a biplot
incomplete.tf1 Incomplete matrix with missing values (comma-separated)
incomplete.tf2 Incomplete matrix with missing values (semicolon-separated)
incomplete.tf3 Incomplete matrix with missing values (tab-separated)
incomplete.mv1 Copy of incomplete.tf1
incomplete.mv2 Copy of incomplete.tf2
incomplete.mv3 Copy of incomplete.tf3
inhibit.tf1 Data for fitting mixed inhibition as v = f(S,I)
inrate.tf1 Data for models 1 and 2 in inrate

inrate.tf2 Data for model 3 in inrate

inrate.tf3 Data for model 4 in inrate

inrate.tf4 Data for model 5 in inrate

latinsq.tf1 Latin square data for 3 way ANOVA in ftest or simstat

iris.tf1 Iris data for K-means clustering (see manova1.tf5)
iris.tf2 Starting K-means clusters for iris.tf2
kmeans.tf1 Data for K-means cluster analysis
kmeans.tf2 Starting clusters for kmeans.tf1
ld50.tf1 Dose-response data for LD50 by GLM as y,N,x
ld50.tf2 Dose-response data for LD50 by GLM as x,y,N,s
ld50.tf3 Dose-response data for LD50 by GLM as x,N-y,N,s
line.tf1 Straight line data
line.tf2 Straight line data
linfit.tf1 Multilinear regression data for linfit

linfit.tf2 Multilinear regression data for linfit

linfit.tf3 Weighted linear regression data for linfit

logistic.tf1 Data for binary logistic regression
logistic.tf2 Data to predict p after fitting logistic.tf1
logistic.tf3 Data for logistic regression
logistic.tf4 Data for logistic regression
logistic.tf5 Data for logistic regression
loglin.tf1 Data for log-linear contingency table analysis
lognor.tf1 Fifty numbers from a lognormal distribution with � = 0.0, � = 1.0
lv1.tf1 Data for H(1) in the Lotka-Volterra differential equations
lv2.tf1 Data for H(2) in the Lotka-Volterra differential equations
maksim.tf1 Matrix for editing by maksim

maksim.tf2 Matrix for editing by maksim

manova1.tf1 MANOVA data: 3 groups, 2 variables
manova1.tf2 MANOVA data: 3 groups, 2 variables
manova1.tf3 MANOVA data: 2 groups, 5 variables
matrix_a.tf1 30 by 3 Directed correlation data
matrix_b.tf1 30 by 4 Directed correlation data
matrix_p.tf1 3 by 4 Matrix of probabilities

514 The SimFIT package

matrix.tf1 5 by 5 matrix for simstat in calculation mode
matrix.tf2 7 by 5 matrix for simstat in calculation mode
matrix.tf3 Positive-definite symmetric 4 by 4 matrix for simstat in calculation mode
matrix.tf4 Symmetric 4 by 4 matrix for simstat in calculation mode
matrix.tf5 25 by 4 matrix for simstat in correlation mode
mcnemar.tf1 Data for McNemar test
meta.tf1 Data for Cochran-Mantel-Haentzel Meta Analysis test
meta.tf2 Data for Cochran-Mantel-Haentzel Meta Analysis test
meta.tf3 Data for Cochran-Mantel-Haentzel Meta Analysis test
mmfit.tf1 Exact data for 1 Michaelis-Menten isoenzyme in mmfit

mmfit.tf2 Random error added to mmfit.tf1 by adderr

mmfit.tf3 Exact data for 2 Michaelis Menten isoenzymes in mmfit

mmfit.tf4 Random error added to mmfit.tf3 by adderr

negexp.tf1 Fifty numbers from a negative exponential distributiom with mean � = 2.0
normal.tf1 Fifty numbers from a normal distribution with ` = 0, f = 1
normal.tf2 Fifty numbers from a normal distribution with ` = 1, f = 2
normal.tf3 Fifty numbers from N(-1.5,1) plus fifty from N(1.5,1)
npcorr.tf1 Matrix for nonparametric correlation in rstest or simstat

pacorr.tf1 Correlation matrix for partial correlation in simstat

pabst-einstein.tf1 log10(Pabst-Einstein) equation
piechart.tf1 Creates a piechart in simplot

piechart.tf2 Creates a piechart in simplot

piechart.tf3 Creates a piechart in simplot

plot2.tf1 LHS axis data for double plot in simplot

plot2.tf2 LHS axis data for double plot in simplot

plot2.tf3 RHS axis data for double plot in simplot

pls_x.tf1 Partial least squares X matrix in simstat

pls_y.tf1 Partial least squares Y matrix in simstat

pls_z.tf1 Partial least squares Z matrix in simstat

poisson.tf1 Forty numbers from a Poisson distribution
poisson.tf2 Death from horse kicks in Prussian cavalry
polnom.tf1 Data for a quadratic in polnom

polnom.tf2 Predict G given H from polnom.tf1
polnom.tf3 Predict H given G from polnom.tf1
polnom.tf4 Fit after transforming to G = log(G), H = log(H/(1 − H))
primes.tf1 Single prime numbers up to 10000
primes.tf2 Twin prime numbers up to 10000
qnfit_data.tf1 Data for qnfit tutorials: Example 1 Quadratic
qnfit_data.tf2 Data for qnfit tutorials: Example 2 2D linear
qnfit_data.tf3 data for qnfit tutorials: Example 3 3D linear
qnfit_data.tf4 data for qnfit tutorials: Example 4 Sum of 2 MM curves
qnfit_data.tf5 data for qnfit tutorials: Example 5 B ib A->B->C
qnfit_data.tf6 data for qnfit tutorials: Example 6 Sum of 2 normal pdfs
qnfit_data.tf7 data for qnfit tutorials: Example 6 Sum of 2 normal cdfs
qnfit.tf1 Quadratic in EXPERT mode for qnfit

qnfit.tf2 Reversible Michaelis-Menten data in EXPERT mode for qnfit

qnfit.tf3 Linear function of 3 variables in EXPERT mode for qnfit

qnfit_ode.tf1 Michaelis-Menten substrate depletion data in EXPERT mode for qnfit

qnfit_ode.tf2 Von Bertallanffy growth data in EXPERT mode for qnfit

qnfit_ode.tf3 Von Bertallanffy growthdecay data in EXPERT mode for qnfit

rainfall.tf1 Rainfall in England and Wales from 1766 to 2015
recurrent.tf1 Data for y(1) in the recurrent epidemic scheme
recurrent.tf1 Data for y(2) in the recurrent epidemic scheme
recurrent.tf1 Data for y(3) in the recurrent epidemic scheme

Test files 515

rffit.tf1 2:2 Rational function data for rffit

rffit.tf2 1:2 Rational function data for rffit

rffit.tf3 2:2 Rational function data for rffit

rffit.tf4 2:3 Rational function data for rffit

rffit.tf5 4:4 Rational function data for rffit (2 turning points)
rffit.tf6 3:4 Rational function data for rffit (3 turning points)
rffit.tf7 rffit6 with triplicates and 7.5% relative error
robust.tf1 Normal.tf1 with 5 outliers
rstest.tf1 Residuals for runs test in rstest

sffit.tf1 Exact data for 1 site in sffit

sffit.tf2 Random error added to sffit.tf1 by adderr

sffit.tf3 Exact data for 2 sites in sffit

sffit.tf4 Random error added to sffit.tf3 by adderr

simplot.tf1 Error-bar data for simplot

simplot.tf2 Best-fit 1:1 to simplot.tf1 for simplot

simplot.tf3 Best-fit 2:2 to simplot.tf1 for simplot

spiral.tf1 Creates a 3 dimensional curve in simplot

spiral.tf2 Creates a 3 dimensional curve in simplot

spline.tf1 Spline coefficients for spline-e02baf.tf1
spline.tf2 Spline coefficients for spline-compare.tf1
spline.tf3 Spline coefficients for spline-compare.tf2
strata.tf1 Data for stratified binomial logistic regression
surface.tf1 Creates a surface in simplot

surface.tf2 Creates a surface in simplot

surface.tf3 Creates a surface in simplot

surface.tf4 Creates a surface in simplot

survive.tf1 Survival data for gcfit in mode 3
survive.tf2 Survival data to pair with survive.tf1
survive.tf3 Survival data for gcfit in mode 3
survive.tf4 Survival data to pair with survive.tf3
survive.tf5 Survival data for gcfit in mode 3
survive.tf6 Survival data to pair with survive.tf5
swarm.tf1 Data with error in x and y
times.tf1 Data for time series analysis in simstat

trinom.tf1 Trinomial contour plots in binomial

trinom.tf2 Trinomial contour plots in binomial

trinom.tf3 Trinomial contour plots in binomial

ttest.tf1 Fifty numbers from a C distribution with a = 10
ttest.tf2 C test data for ttest or simstat

ttest.tf3 Data paired with ttest.tf2
ttest.tf4 C test data for ttest or simstat

ttest.tf5 Data paired with ttest.tf4
ttest.tf6 Data for t test on rows of a matrix
tukeyq.tf1 matrix for ANOVA then Tukey Q test
uniform.tf1 Fifty numbers from uniform distribution with � = 0.0, � = 1.0
ukmap.tf1 coordinates for K-means clustering
ukmap.tf2 starting centroids for ukmap.tf2
ukmap.tf3 uk coastal outline coordinates
vector.tf1 Vector (5 by 1) consistent with matrix.tf1
vector.tf2 Vector (7 by 1) consistent with matrix.tf2
vector.tf3 Vector (4 by 1) consistent with matrix.tf3
vfield.tf1 vector field file (4 columns)
vfield.tf2 vector field file (9 columns, i.e. a biplot)
weibull.tf1 Survival data for gcfit in mode 2

516 The SimFIT package

weibull.tf2 Fifty numbers from a Weibull distribution with � = 1.0, � = 1.0
wilcoxon.tf1 Data for Wilcoxon signed ranks paired with wilcoxon.tf2
wilcoxon.tf2 Data for Wilcoxon signed ranks paired with wilcoxon.tf1
zeros.tf1 Zeros of the Riemann zeta function
zigzag.tf1 Zig-zag data to illustrate clipping to boundaries

F.3.2 Library files (Data)

anova1.TFL 1-way ANOVA in ftest or simstat

consec3.TFL Data for fitting by qnfit using consec3.mod

consec4.TFL Used by deqsol for 4 differential equations A=B=C=D
consec5.TFL Used by deqsol for 5 differential equations A=B=C=D=E
convolv3.TFL Data for fitting by qnfit using convolv3.mod

deqsol.TFL Curve fitting data for deqsol (Identical to deqsol.tf1)
editps.TFL PostScript files for EDITPS
epidemic.TFL Data for fitting epidemic differential equations
images.TFL PostScript files for EDITPS
inhibit.TFL Data for plotting mixed inhibition results
npcorr.TFL Nonparametric correlation data for rstest or simstat

recurrent.TFL Data for 3 components in the recurrent epidemic scheme
simfig1.TFL Creates figure 1 in simplot

simfig2.TFL Creates figure 2 in simplot

simfig3.TFL Creates figure 3 in simplot

simfig4.TFL Creates figure 4 in simplot

simplot.TFL Identical to simfig1.TFL
spiral.TFL Creates a spiral in simplot

qnfit.TFL Parameter limits library file for qnfit

line3.TFL Data for fitting three lines simultaneously by qnfit

F.3.3 Test files (Models in reverse Polish)

camalot.mod Model for Logarithmic Spiral as used in Camalots
cheby.mod Model for Chebyshev expansion
consec3.mod Model for irreversible chemical kinetics A to B to C
convolve.mod Model for a convolution between an exponential and gamma function
convolv3.mod Version of convolve.mod for all components
dble_exp.mod Chemical kinetic double exponential model
d01fcf.mod Model with four variables for integration
ellipse.mod Model for an ellipse in makdat/simplot/usermod

family2d.mod Two dimensional family of diffusion equations
family3d.mod Three dimensional family of diffusion equations
helix.mod Model for a helix in makdat/simplot/usermod

if.mod Model illustrating logical commands
impulse.mod Model illustrating 5 single impulse functions
line3.mod Model for 3 lines in qnfit

optimum.mod Model for optimizing Rosenbrock’s 2-dimensional test function in usermod

periodic.mod Model illustrating 7 periodic impulse functions
rose.mod Model for a rose in makdat/simplot/usermod

tangent.mod Tangent to logarithmic spiral defined in camalot.mod
twister.mod Projection of a space curve onto coordinate planes
updown.mod Model that swaps definition at a cross-over point
updownup.mod Model that swaps definition at two cross-over points
user1.mod Model illustrating arbitrary models
deqmat.tf1 How to transform a system of differential equations

Model files using expressions 517

deqmat.tf2 How to transform a system of differential equations
deqmod1.tf1 1 DE Michaelis-Menten substrate depletion
deqmod1.tf2 1 DE Michaelis-Menten product accumulation
deqmod1.tf3 1 DE Generalised substrate depletion
deqmod1.tf4 1 DE Generalised product accumulation
deqmod1.tf5 1 DE Membrane transport corrected for osmosis
deqmod1.tf6 1 DE von Bertalannfy allometric growth
deqmod2.tf1 2 DE Order 2 equation expressed as two equations
deqmod2.tf2 2 DE Lotka-Volterra predator-prey model
deqmod2.tf3 2 DE Competing species ecological model
deqmod3.tf1 3 DE Epidemic model (with Jcobian)
deqmod3.tf2 3 DE Epidemic model (without Jacobian)
deqmod4.tf1 4 DE Comprehensive Michaelis-Menten reversible model
deqpar1.tf1 Parameters for deqmod1.tf1
deqpar1.tf2 Parameters for deqmod1.tf2
deqpar1.tf3 Parameters for deqmod1.tf3
deqpar1.tf4 Parameters for deqmod1.tf4
deqpar1.tf5 Parameters for deqmod1.tf5
deqpar1.tf6 Parameters for deqmod1.tf6
deqpar2.tf1 Parameters for deqmod2.tf1
deqpar2.tf2 Parameters for deqmod2.tf2
deqpar2.tf3 Parameters for deqmod2.tf3
deqpar4.tf1 Parameters for deqmod4.tf1
usermod1.tf1 Function of 1 variable: line
usermod1.tf2 Function of 1 variable: quadratic
usermod1.tf3 Function of 1 variable: cubic
usermod1.tf4 Function of 1 variable: 2:2 rational function
usermod1.tf5 Function of 1 variable: one exponential
usermod1.tf6 Function of 1 variable: two exponentials
usermod1.tf7 Function of 1 variable: normal integral
usermod1.tf8 Function of 1 variable: capillary diffusion
usermod1.tf9 Function of 1 variable: damped simple harmonic motion
usermod2.tf1 Function of 2 variables: linear
usermod3.tf1 Function of 3 variables: linear
usermod4.tf1 Function of 4 variables: integrand for D01FCF
usermodd.tf1 Differential equation for usermod

usermodn.tf1 Four functions for plotting by usermod

usermodn.tf2 Two functions of 2 variables for usermod

usermodn.tf3 Three functions of 3 variables for usermod

usermodn.tf4 Nine functions of 9 variables for usermod

usermods.tf1 Special functions with one argument
usermods.tf2 Special functions with two arguments
usermods.tf3 Special functions with three arguments
usermodx.tf1 Using a sub-model for function evaluation
usermodx.tf2 Using a sub-model for quadrature
usermodx.tf3 Using a sub-model for root-finding
usermodx.tf4 Using three sub-models for root-finding of an integral
usermodx.tf5 Using a sub-model to evaluate a multiple integral

F.3.4 Test files (Models using expressions)

camalot_e.mod Model for Logarithmic Spiral as used in Camalots
convolv3_e.mod Version of convolve.mod for all components
deqmod2_e.tf1 Model for 2 differential equations

518 The SimFIT package

ellipse_e.mod Model for an ellipse
gauss3_e.mod Model for a sum of three Gaussians
helix_e.mod Model for a helix
line3_e.mod Model for 3 lines
optimum_e.mod Model for optimizing Rosenbrock’s 2-dimensional test function
qnfit_model.tf1 Model for qnfit tutorials: Example 1 Quadratic
qnfit_model.tf2 Model for qnfit tutorials: Example 2 2D linear
qnfit_model.tf3 Model for qnfit tutorials: Example 3 3D linear
qnfit_model.tf4 Model for qnfit tutorials: Example 4 Sum of 2 MM curves
qnfit_model.tf5 Model for qnfit tutorials: Example 5 B in A->B->C
qnfit_model.tf6 Model for qnfit tutorials: Example 6 Sum of 2 normal pdfs
qnfit_model.tf7 Model for qnfit tutorials: Example 7 Sum of 2 normal cdfs
rose_e.mod >Model for a eight-leaved rose
usermod1_e.tf1 Function of 1 variable: line
usermod1_e.tf2 Function of 1 variable: quadratic
usermod1_e.tf3 Function of 1 variable: cubic
usermod1_e.tf4 Function of 1 variable: 2:2 rational function
usermod1_e.tf5 Function of 1 variable: one exponential
usermod1_e.tf6 Function of 1 variable: two exponentials
usermod1_e.tf7 Function of 1 variable: normal integral
usermod1_e.tf8 Function of 1 variable: capillary diffusion
usermod1_e.tf9 Function of 1 variable: damped simple harmonic motion
usermod2_e.tf1 Function of 2 variables: linear
usermod3_e.tf1 Function of 3 variables: linear
usermod4_e.tf1 Function of 4 variables: integrand for D01FCF
usermodd_e.tf1 Differential equation
usermodn_e.tf1 Four functions for plotting
usermodn_e.tf2 Two functions of 2 variables
usermodn_e.tf3 Three functions of 3 variables
usermodn_e.tf4 Nine functions of 9 variables
usermods_e.tf1 Special functions with one argument
usermods_e.tf2 Special functions with two arguments
usermods_e.tf3 Special functions with three arguments
deqmod1_e.tf1 1 DE Michaelis-Menten substrate depletion
deqmod1_e.tf2 1 DE Michaelis-Menten product accumulation
deqmod1_e.tf3 1 DE Generalised substrate depletion
deqmod1_e.tf4 1 DE Generalised product accumulation
deqmod1_e.tf5 1 DE Membrane transport corrected for osmosis
deqmod1_e.tf6 1 DE von Bertalannfy allometric growth
deqmod2_e.tf1 2 DE Order 2 equation expressed as two equations
deqmod2_e.tf2 2 DE Lotka-Volterra predator-prey model
deqmod2_e.tf3 2 DE Competing species ecological model
deqmod3_e.tf1 3 DE Epidemic model (with Jcobian)
deqmod3_e.tf2 3 DE Epidemic model (without Jacobian)
deqmod3_e.tf3 3 DE Recurrent Epidemic model (with Jacobian)
deqmod4_e.tf1 4 DE Comprehensive Michaelis-Menten reversible model

F.3.5 Miscellaneous data files

cheby.data Data required by cheby.mod

consec3_A.data Data for component A in consec3.mod

consec3_B.data Data for component B in consec3.mod

consec3_C.data Data for component C in consec3.mod

graphics configuration and metafiles 519

convolv3.data Data for convolv3.mod
inhibit?.data Data for inhibit.tfl
line?.data line1.data, line2.data and line3.data for line3.tfl
simfig3?.data Data for simfig3.tfl
simfig4?.data Data for simfig4.tfl
y?.data y1.data, y2.data and y3.data for epidemic.tfl

F.3.6 Graphics configuration and metafiles

These files can be created on demand from program simplot in order to save plotting parameters from the
current plot for subsequent re-use.

logodds.cfg Configure a logodds plot
logoddsratios.cfg Configure a logoddsratios plot
metafile.tf1 Metafile for multiple plots
metafile.tf2 Metafile for a double plot
metafile.tf3 Metafile for a barchart
metafile.tf4 Metafile for a piechart
metafile.tf5 Metafile for a labels plot
metafile.tf6 Metafile for a vector field plot
metafile.tf7 Metafile for a biplot
metafile.tf8 Metafile for a dendrogram
metafile.tf9 Metafile for logodds plot
w_simfig1.cfg Configures simplot to use simfig1.tfl
w_simfig2.cfg Configures simplot to use simfig2.tfl
w_simfig3.cfg Configures simplot to use simfig3.tfl
w_simfig4.cfg Configures simplot to use simfig4.tfl

F.3.7 Parameter limits files

These files consist of lowest possible values, starting estimates and highest possible values for parameters
used by qnfit and deqsol for constraining parameters during curve fitting. They are usually referenced by
library files such as qnfit.tfl. See, for example, positive.plf, negative.plf and unconstrained.plf.

F.3.8 Error message files

When programs like deqsol, makdat and qnfit start to execute they open special files like w_deqsol.txt
and w_qnfit.txt to receive all messages generated during the current curve fitting and solving of differential
equations. Advanced SimFIT users can inspect these files and other files like iterate.txt to get more details
about any singularities encountered during iterations. If any serious problems are encountered using deqsol

or qnfit, you can consult the appropriate *.txt file for more information.

F.3.9 PostScript example files

pscodes.ps PostScript octal codes
psgfragx.ps Illustrating psfragex.tex/psfragex.ps1
simfig1.ps Example
simfig2.ps Example
simfig3.ps Example
simfig4.ps Example
simfonts.ps Standard PostScript fonts
ms_office.ps Using MS Excel and Word
pspecial.i Example PS specials (i = 1 to 10)

520 The SimFIT package

*.eps Assorted Encapsulated PostScript files

F.3.10 SimFIT configuration files

These files are created automatically by SimFIT and should not be edited manually unless you know exactly
what you are doing, e.g., setting the PostScript color palette.

g_recent.cfg Recent graphics files
l_simfit.cfg This stores information for configuring the Linux version
pspecial.cfg Configuration file for PostScript specials
w_clpbrd.cfg This holds the last file number x as in clipboard_x.txt
w_colors.cfg Colors for simple graphs
w_filter.cfg This contains the current search patterns used to configure

the file selection and creation controls
w_fsizes.cfg This holds the graphics font sizes
w_ftests.cfg This holds the last NPTS, NPAR, WSSQ values used for F tests
w_graphs.cfg This holds the graph configuration parameters
w_input.cfg This holds the last filenames used for data input
w_labels.cfg This holds the labels and other bar and pie chart details
w_matrix.cfg This holds the last file number x as in matrix_x.txt
w_modules.cfg This holds the names of current modules
w_output.cfg This holds the last filenames used for data output
w_params.cfg Current parameters for editing data sets
w_pathto.cfg Paths
w_ps.cfg This stores all the PostScript configuration details
w_result.cfg This holds the filename of the latest results file
w_simfit.cfg This stores all the important details needed to run SimFIT

from the program manager w_simfit.exe
w_symbol.cfg Symbol and Line types
w_vector.cfg This holds the last file number x as in vector_x.txt
a_recent.cfg Recently selected project files (all types)
c_recent.cfg Recently selected project files (covariance matrices)
f_recent.cfg Recently selected project files (curve fitting)
g_recent.cfg Recently selected project files (graphics)
m_recent.cfg Recently selected project files (matrix))
p_recent.cfg Recently selected project files (PostScript)
v_recent.cfg Recently selected project files (vector)

F.3.11 Default files

These files save details of changes made to the SimFIT defaults from several programs.

w_labels.cfg Stores default plotting labels
w_module.cfg Stores file names of executable modules
w_params.cfg Stores default editing parameters
w_symbol.cfg Stores default plotting symbols

F.3.12 Temporary files

These next two files are deleted then re-written during each SimFIT session. You may wish to save them to
disk after a session as a permanent record of files analyzed and created.

NAG library files 521

w_in.tmp Stores the list of files accessed during the latest SimFIT session
w_out.tmp Stores the list of files created during the latest SimFIT session

The results log file f$result.tmp is created anew each time a program is started that performs calculations,
so it overwrites any previous results. You can save results retrospectively either by renaming this file, or else
you can configure SimFIT to ask you for a file name instead of creating this particular results file. SimFIT also
creates a number of temporary files with names like f$000008.tmp which should be deleted. If you have an
abnormal exit from SimFIT, the current results file may be such a file and, in such circumstances, you may
wish to save it to disk. SimFIT sometimes makes other temporary files, such as f$simfit.tmp with the name
of the current program, but you can always presume that it is safe to delete any such files

F.3.13 NAG library files (contents of list.nag)

Models
c05adf.mod 1 function of 1 variable
c05adf_e.mod 1 function of 1 variable
c05nbf.mod 9 functions of 9 variables
c05nbf_e.mod 9 functions of 9 variables
d01ajf.mod 1 function of 1 variable
d01ajf_e.mod 1 function of 1 variable
d01eaf.mod 10 functions of 4 variables
d01eaf_e.mod 10 functions of 4 variables
d01fcf.mod 1 function of 4 variables
d01fcf_e.mod 1 function of 4 variables
e04fyf.mod 1 function of 3 variables
e04fyf_e.mod 1 function of 3 variables
Data
c02agf.tf1 Zeros of a polynomial
e02adf.tf1 Polynomial data
e02baf.tf1 Data for fixed knot spline fitting
e02baf.tf2 Spline knots and coefficients
e02bef.tf1 Data for automatic knot spline fitting
e04fyf.tf1 Data for curve fitting using e04fyf.mod
f01abf.tf1 Inverse: symposdef matrix
f01blf.tf1 Pseudo inverse of a matrix
f02fdf.tf1 A for Ax = (lambda)Bx
f02fdf.tf2 B for Ax = (lambda)Bx
f02wef.tf1 Singular value decomposition
f02wef.tf2 Singular value decomposition
f03aaf.tf1 Determinant by LU
f03aef.tf1 Determinant by Cholesky
f07fdf.tf1 Cholesky factorisation
f08kff.tf1 Singular value decomposition
f08kff.tf2 Singular value decomposition
g02baf.tf1 Correlation: Pearson
g02bnf.tf1 Correlation: Kendall/Spearman
g02bny.tf1 Partial correlation matrix
g02caf.tf1 Unweighted linear regression
g02daf.tf1 Multiple linear regression
g02gaf.tf1 GLM normal errors
g02gbf.tf1 GLM binomial errors
g02gcf.tf1 GLM Poisson errors
g02gdf.tf1 GLM gamma errors

522 The SimFIT package

g02haf.tf1 Robust regression (M-estimates)
g02laf.tf1 Partial Least squares X-predictor data
g02laf.tf2 Partial Least Squares Y-response data
g02laf.tf3 Partial Least Squares Z-predictor data
g02wef.tf1 Singular value decomposition
g02wef.tf2 Singular value decomposition
g03aaf.tf1 Principal components
g03acf.tf1 Canonical variates
g03adf.tf1 Canonical correlation
g03baf.tf1 Matrix for Orthomax/Varimax rotation
g03bcf.tf1 X-matrix for procrustes analysis
g03bcf.tf2 Y-matrix for procrustes analysis
g03caf.tf1 Correlation matrix for factor analysis
g03ccf.tf1 Correlation matrix for factor analysis
g03daf.tf1 Discriminant analysis
g03dbf.tf1 Discriminant analysis
g03dcf.tf1 Discriminant analysis
g03eaf.tf1 Data for distance matrix: calculation
g03ecf.tf1 Data for distance matrix: clustering
g03eff.tf1 K-means clustering
g03eff.tf2 K-means clustering
g03faf.tf1 Distance matrix for classical metric scaling
g03ehf.tf1 Data for distance matrix: dendrogram plot
g03ejf.tf1 Data for distance matrix: cluster indicators
g04adf.tf1 ANOVA
g04aef.tfl ANOVA library file
g04caf.tf1 ANOVA (factorial)
g07bef.tf1 Weibull fitting
g08acf.tf1 Median test
g08acf.tf2 Median test
g08aef.tf1 ANOVA (Friedman)
g08aff.tfl ANOVA (Kruskall-Wallis)
g08agf.tf1 Wilcoxon signed ranks test
g08agf.tf2 Wilcoxon signed ranks test
g08ahf.tf1 Mann-Whitney U test
g08ahf.tf2 Mann-Whitney U test
g08baf.tf1 Mood and David dispersion tests
g08baf.tf2 Mood and David dispersion tests
g08cbf.tf1 Kolmogorov-Smirnov 1-sample test
g08daf.tf1 Kendall coefficient of concordance
g08eaf.tf1 1000 U(0,1) psedo-random numbers
g08raf.tf1 Regression on ranks
g08rbf.tf1 Regression on ranks
g10abf.tf1 Data for cross validation spline fitting
g10caf.tf1 Data for T4253H smoothing
g11caf.tf1 Stratified logistic regression
g12aaf.tf1 Survival analysis
g12aaf.tf2 Survival analysis
g12baf.tf1 Cox regression
g13dmf.tf1 Auto- and cross-correlation matrices
j06sbf.tf1 Time series

Acknowledgements 523

F.4 Acknowledgements

History of SimFIT

Early on Julian Shindler used analogue computing to simulate enzyme kinetics but SimFIT really started with
mainframes, cards and paper tape; jobs were submitted to be picked up later, and visual display was still a
dream. James Crabbe and John Kavanagh became interested in computing and several of my colleagues,
notably Dennis Waight, used MINUITS for curve fitting. This was an excellent program allowing random
searches, Simplex and quasi-Newton optimization; imposing constraints by mapping sections of the real line
to (−∞,∞). Bob Foster and Tom Sharpe helped us to make this program fit models like rational functions and
exponentials, and Adrian Bowman gave valuable statistical advice. By this time we had a mainframe terminal
and Richard Woolfson and Jean Pierre Mazat used the NAG library to find zeros of polynomials as part of
our collaboration on cooperativity algebra, while Francisco Solano, Paul Leff and Jean Wardell used the NAG
library random number generators for simulation. Andrew Wright advanced matters when we started to use
the NAG library differential equation solvers and optimization routines to fit differential equations to enzyme
kinetic problems, and Mike Pettipher and Ian Gladwell provided hints on how to do this. Phil McGinlay took
on the task of developing pharmacokinetic and diffusion models, Manuel Roig joined us to create the optimal
design programs, while Naveed Buhkari spent time developing the growth curve fitting models. When the
PC came along, Elina Melikhova worked on the flow cytometry analysis programs, Jesus Cachaza helped
with improving the goodness of fit and plotting functions, Ralph Ackerman explained the need for a number
of extra features, while Robert Burrows and Igor Plesner provided feedback on the development of the user
supplied model routines, which were tested by Naveed Prasad.

The Windows and Linux versions of SimFIT

SimFIT has been subjected to much development on numerous platforms, and the latest project has been
to write substitutes for NAG routines using the public domain code that is now available for linear algebra,
optimization, and differential equation solving, so that there are now two SimFIT versions.

❍ The academic version
This is a completely free version, designed for student use.

❍ The professional version
This has more features than the academic version, but it requires the NAG library DLLs.

Geoff Morgan, Sven Hammarling, David Sayers, and John Holden from NAG have been very helpful here.
Also, the move into the Windows environment guided by Steve Bagley and Abdul Sattar, was facilitated by
the Clearwin Plus interface provided by Salford Software, helped by their excellent support team, particularly
David Bailey, Paul Laidler, Ivan Lucas, and Richard Putman. I thank Mark Ferguson for his interest and
support during this phase of the project, and John Clegg for developing the Excel macros. Mikael Widersten
was very helpful in the development of the Linux/Wine version, Stephen Langdell suggested numerous
improvements which were incorporated at Version 6, Martin Wills helped develop the website, and Samad
Bonakdar helped to improve the graphics interface.

Important collaborators

Although I am very grateful for the help that all these people have given I wish to draw attention to a number
of people whose continued influence on the project has been of exceptional value. Reg Wood has been
an unfailing source of help with technical mathematics, Eos Kyprianou has provided constant advice and
criticism on statistical matters, Len Freeman has patiently answered endless questions about optimization
software, Keith Indge has been a great source of assistance with computational techniques, David Carlisle
showed me how to develop the SimFIT PostScript interface and Francisco Burguillo has patiently tested and
given valuable feedback on each revision. Above all, I thank Robert Childs who first persuaded me that
mathematics, statistics and computing make a valuable contribution to scientific research and who, in so
doing, rescued me from having to do any more laboratory experiments.

524 Index

Public domain code

SimFIT has a computational base of reliable numerical methods constructed in part from public domain code
that is contained in w_maths.dll and w_numbers.dll. The main source of information when developing
these libraries was the comprehensive NAG Fortran library documentation, and the incomparable Handbook
of Mathematical Functions (Dover, by M.Abramowitz and I.A.Stegun). Numerical Recipes (Cambridge
University Press, by W.H.Press, B.P.Flannery, S.A.Teukolsky, and W.T.Vetterling) was also consulted, and
some codes were used from Numerical methods of Statistics (Cambridge University Press, by J.F.Monahan).
Editing was necessary for consistency with the rest of SimFIT but I am extremely grateful for the work of the
numerical analysts mentioned below because, without their contributions, the SimFIT package could not have
been created.

BLAS, LINPACK, LAPACK [Linear algebra]
T.Chen, J.Dongarra, J. Du Croz, I.Duff, S.Hammarling, R.Hanson, R.J.Kincaid, F.T.Krogh, C.L.Lawson,
C.Moler, G.W.Stewart, and others.

MINPACK [Unconstrained optimization]
K.E.Hillstrom, B.S.Garbou, J.J.More.

LBFGSB [Constrained optimization]
R.H.Byrd, P.Lu-Chen, J.Nocedal, C.Zhu.

DVODE [Differential equation solving]
P.N.Brown, G.D.Byrne, A.C.Hindmarsh.

SLATEC [Special function evaluation]
D.E.Amos, B.C.Carlson, S.L.Daniel, P.A.Fox, W.Fullerton, A.D.Hall, R.E.Jones, D.K.Kahaner, E.M.Notis,
R.L.Pexton, N.L.Schryer, M.K.Weston.

CURFIT [Spline fitting]
P.Dierckx

QUADPACK [Numerical integration]
E.De Doncker-Kapenga, D.K.Kahaner, R.Piessens, C.W.Uberhuber

ACM [Collected algorithms]
487 (J.Durbin), 493 (M.A.Jenkins), 495 (I.Barrodale,C.Philips), 516 (J.W.McKean, T.A.Ryan), 563 (R.H.Bartels,
A.R.Conn), 642 (M.F.Hutchinson), 698 (J.Berntsen, A.Genz), 707 (A.Bhalla, W.F.Perger), 723 (W.V.Snyder),
745 (M.Goano), 757 (A.J.McLeod).

AS [Applied statistics]
6 and 7 (M.J.R.Healey), 63 (G.P.Bhattacharjee, K.L.Majumder), 66 (I.D.Hill), 91 (D.J.Best, D.E.Roberts),
94, 177 and 181 (J.P.Royston), 97 (D.M.Munro), 109 (G.W.Cran, K.J.Martin, G.E.Thomas), 111 (J.D.Beasley,
S.G.Springer), 136 (J.A.Hartigan,M.A.Wong), 171 (E.L.Frome),176 (B.W.Silverman) using ASR50 (M.C.Jones
and H.W.Lotwick), 190 (R.E.Lund), 196 (M.D.Krailko, M.C.Pike), 226 and 243 (R.V.Lenth), 275 (C.G.Ding),
280 (M.Conlon, R.G.Thomas).

Subroutines
varmx (D.M.Hawkins)

Index

LATEX, 340, 342, 474

Abramovitz functions, 428, 442
Adair constants, 467
Adam’s method, 458
Adaptive quadrature, 438, 439
Adderr (program), 503

adding random error, 26
simulating experimental error, 27
simulating the logistic model, 37

Affinity constants, 466
Airy functions and derivatives, 429, 442
Akaike AIC, 64
Aliasing, 32, 56
Allosterism, 468
Analysis of categorical data, 178

Analysis of proportions, 178

Angular transformation, 163
ANOVA, 161

1-way and Kruskal-Wallis, 164
2-way and Friedman, 169
3-way and Latin squares, 170
factorial, 173
groups and subgroups, 171
introduction, 161
power and sample size, 281, 282
repeated-measurements, 175, 232
table, 40

Arbitrary graphical objects, 332
Arc length, 275
Archives, 12, 36
Arcsine transformation, 163
Areas, 61, 79, 264, 268, 269, 433
ARIMA, 246, 249

Aspect ratio, 332, 336
Assigning observations to groups, 236
Association constants, 65, 466
Asymmetrical error bars, 348
Asymptotes, 264
Asymptotic steady states, 265
AUC, 61, 113, 116, 264, 268, 269
Auto-correlation matrices, 250
Autocorrelation functions, 246
Autoregressive integrated moving average, 249
Average (program), 503

AUC by the trapezoidal method, 269

Bar charts, 23, 124, 344
Bar charts with error bars, 167
Bartlett test, 161
Bayesian techniques, 236
Bernoulli distribution, 417
Bessel functions, 429, 442
Beta distribution, 424, 427

fitting a cdf, 91
Fitting a pdf, 89
generating random samples, 86

Binary data, 50
Binary logistic regression, 50, 55
Binding constants, 66–68, 466, 467
Binding polynomial, 67
Binomial (program), 503

analysis of proportions, 178
Cochran-Mantel-Haenszel test, 183
error bars, 188

Binomial coefficient, 426
Binomial distribution, 285, 417

Binomial parameter confidence limits, 180
Binomial test, 152, 278, 279
Bioassay, 55, 110, 187, 360
Biplots, 241, 483
Bivariate confidence ellipses 1: basic theory, 197
Bivariate confidence ellipses 2: regions, 198
Bivariate normal distribution, 190, 421

Bonferroni correction, 122, 305
Bound-constrained quasi-Newtonoptimization,322
BoundingBox, 335
Box and whisker plots, 124, 167, 343
Bray-Curtis distance measure, 205
Bray-Curtis similarity, 209
Brillouin diversity index, 290
brittle-ductile-transition equation, 469
Browse, 11
Burst times, 264

Calcurve (program), 503
constructing a calibration curve, 112

Calibration, 79, 105, 110

Camalot, 363
Camming devices, 363
Canberra distance measure, 205

526 Index

Canonical correlation, 202
Canonical variates, 233
Categorical variables, 29, 32, 52
Cauchy distribution, 422
Censoring, 258
Central limit theorem, 421
Centroids, 219, 220
Change_simfit_version (program), 506
Chebyshev approximation, 447
Chebyshev inequality, 276
Chi-square distribution, 134, 423

Chi-square test, 35, 143, 226
Chisqd (program), 503
Cholesky factorization of a matrix, 312
Classical metric scaling, 212
Clausen integral, 427, 442
Clipboard, 11
Clipboard uses, 484

Clipping graphs, 189, 210, 211, 218, 335, 381
Cluster analysis, 204, 209, 213, 353
Cochran Q test, 151
Cochran-Mantel-Haenszel test, 183
Cochrans’s theorem, 423
Coefficient of kurtosis, 122
Coefficient of skewness, 122
Coefficient of variation, 276
Collages, 4–6, 364
Communalities, 239
Compare (program), 503

model-free fitting, 265
Comparing parameter estimates, 36
Composition of functions, 352
Concentration at half maximum response, 66
Condition number, 58, 59, 79, 95, 311

Confidence limits, 14, 21, 116, 187, 188, 287, 348
binomial parameter, 285
correlation coefficient, 286
normal distribution, 286
Poisson parameter, 285
trinomial distribution, 286

Confidence region, 197, 198, 225
Confluent hypergeometric functions, 428
Contingency tables, 52, 55, 143
Continuous distributions, 419
Contours, 24, 79, 95, 350
Contrasts, 175
Convolution integral, 99, 439, 462
Cooperativity, 66

Correlation, 359
95% confidence ellipse, 198
auto, 250
canonical, 202
coefficient, 283
coefficient confidence limits, 286

cross, 250
Kendall-tau and Spearman-rank (nonparamet-

ric), 199
matrix, 35, 191, 224
partial, 200
Pearson product moment (parametric), 190
residuals, 36
scattergrams, 196

Cosine integral, 427, 442
Covariance matrix, 50, 62, 116, 126, 191, 312, 314

inverse, eigenvalues and determinant, 126
parameter, 36
principal components analysis, 224
singular, 41
symmetry and sphericity, 127
testing for equality, 231
zero off-diagonal elements, 98

Covariates, 32
Cox regression, 55, 253, 259
Cross validation, 274
Cross-correlation matrices, 250
Cross-over points, 356
Csafit (program), 299, 504
Curvature, 275
Curve fitting

advanced programs, 79
cooperative ligand binding, 66
decay curves, 77
differential equations, 103
exponentials, 60
functions of several variables, 97
growth curves, 74
high/low affinity binding sites, 65
Lotka-Volterra predator-prey equations, 27
model free, 265
multi Michaelis-Menten model, 68
multifunction mode, 98
positive rational functions, 70
summary, 58
surfaces, 96
survival curves, 77
user friendly programs, 59
weights, 30

Cylinder plots, 347

Data
files, 506

mining, 122, 204, 213
smoothing, 246

Data base interface, 15
Dawson integral, 428, 442
Debye functions, 427, 442
Decay curves, 77
Deconvolution, 70

Index 527

by curve fitting, 439
graphical, 38, 80
numerical, 99

Degrees of freedom, 35
Demo, 11
Dendrograms, 206, 209–211
Deqsol (program), 504

epidemic differential equations, 330
orbits, 102
phase portraits, 102
simulating differential equations, 27

Derivatives, 79, 113, 275
Design of experiments, 41, 282
Determinants, 309
Deviances, 51
Deviations from Michaelis-Menten kinetics, 70
Differences between binomial parameter estimates,

181
Differences between parameter estimates, 36
Differencing, 246
Differential equations

compiled models, 465
fitting, 103
orbits, 102
phase portraits, 102
transformation, 459
user defined models, 457

Diffusion from a plane source, 354, 355
Diffusion into a capillary, 469
Digamma function, 428, 442
Dirac delta function, 430, 442
Directed correlation, 306
Discrete distribution functions, 417
Discriminant analysis, 236
Discriminant functions, 233
Dispersion, 134, 158
Dissimilarity matrix, 204
Distance matrix, 204
Distribution

Bernoulli, 417
beta, 132, 424, 427, 470
binomial, 49, 132, 178, 188, 295, 417, 503
bivariate normal, 421, 473
Cauchy, 27, 422, 470
chi-square, 34, 134, 143, 423, 503
Erlang, 424
exponential, 55, 423, 470
extreme value, 55
F, 34, 282, 423, 504
gamma, 49, 132, 424, 426, 470
Gaussian, 420
geometric, 418
hypergeometric, 143, 418

log logistic, 425

logistic, 425, 470
lognormal, 132, 421, 470
Maxwell, 470
multinomial, 418
multivariate normal, 421
negative binomial, 418
non-central, 291, 425

noncentral F in power calculations, 282
normal, 49, 132, 346, 420, 470, 505
plotting pdfs and cdfs, 135, 295
Poisson, 49, 132, 134, 135, 346, 419, 503
Rayleigh, 470
t, 34, 422, 506
trinomial, 187, 287, 503
uniform, 132, 420

Weibull, 55, 132, 253, 424, 470
Diversity indices, 290
Dose response curves, 113, 187, 360
Dot product, 449
Doubling dilution, 49, 360
Dummy indicator variables, 52, 55, 147
Dummy variables, 32
Dunn-Sidak correction, 122
Durbin-Watson test, 36, 63

Dvips, 474
Dynamic link libraries, 502

EC50, 113

ED50, 113

Editfl (program), 504
editing a curve fitting file, 14
recommended ways to use, 13

Editing
curve fitting files, 14
matrix/vector files, 15
PostScript files, 366

Editmt (program), 504
editing a matrix/vector file, 15

Editps (program), 504
aspect ratios and shearing, 336
composing graphs, 342
rotating and scaling graphs, 335
text formatting commands, 378

Eigenvalues, 79, 95, 224, 309
Eigenvectors, 309
Elliptic integrals, 429, 442
Entropy, 290
Enzyme kinetics

burst phase, 265
competitive inhibition, 472
coupled assay, 265, 468
deviations from Michaelis-Menten, 70
fitting inhibition data, 68
fitting rational functions, 70

528 Index

fitting the Michaelis-Menten equation, 68
inhibition, 96
inhibition by competing substrate, 472
isoenzymes, 70
isotope displacement, 69
lag phase, 265
Michaelis-Menten depletion curve, 469
Michaelis-Menten pH dependence, 472
Michaelis-Menten progress curve, 468
mixed inhibition, 68, 472
MWC activator/inhibitor, 473
MWC allosteric model, 468
noncompetitive inhibition, 472
ordered bi bi, 472
ping pong bi bi, 472
progress curves, 265
reversible Michaelis-Menten, 472
substrate activation, 68
substrate inhibition, 68, 70
time dependent inhibition, 472
transients, 265
uncompetitive inhibition, 472

Eoqsol (program), 301, 504
Epidemic differential equations, 107, 330
Equamax rotation, 227
Erlang distribution, 424
Error bars, 14, 124, 167

asymmetrical, 348
barcharts, 346
binomial parameter, 188
calculated interactively, 21, 59, 349
end caps, 326
log odds, 188
log odds ratios plots, 189
multiple, 348
plotting, 21, 59
skyscraper and cylinder plots, 347
slanting, 348

Error message files, 519
Error messages, 59
Error tolerances, 437
Estimable parameters, 41, 50, 309
Estimating percentiles, 55
Euclidean norm, 448
Euler’s gamma, 449
Evidence ratio, 64
Excel, 487

Exfit (program), 504
fitting exponentials, 60

Expected frequencies, 143
Experimental design, 41
Exponential distribution, 423
Exponential functions, 60, 467
Exponential growth, 467

Exponential integral, 427, 442
Exponential survival, 55, 258
Extrapolation, 68
Extreme value survival, 55, 259

F distribution, 423
F test, 35, 65, 137, 155

Factor analysis, 238
Factor levels, 55
Factorial ANOVA, 173
False discovery rates, 305
Families of curves, 354, 355
Fast Fourier transform (FFT), 294
FDR(HM), 305
Fermi-Dirac integrals, 427, 442
Files

analyzed, 11
archive, 12
ASCII plotting coordinates, 12, 21, 332
ASCII text, 15
created, 11
curve fitting, 14
data, 506
demonstration, 11
editing curve fitting files, 14
editing matrix/vector files, 15
error, 519
format, 13, 15
graphics configuration, 21
input from keyboard, 11
library, 14, 516
matrix/vector, 15
model files in reverse Polish, 516
model files using expressions, 517
multiple selection, 12
names, 11, 13
parameter limits, 79, 519
pasted from clipboard, 11
pdf, 8
polygon, 332
PostScript, 519
project, 12
results, 9, 13
temporary, 520
test, 10, 15, 511
view, 10

Fisher exact Poisson test, 134

Fisher exact test, 143, 279
Fitting functions of several variables, 97
Fitting models

a beta distribution, 86
a sum of Gaussians, 79
basic principles, 31
generalized linear models, 33

Index 529

limitations, 32
linear models, 32
nonlinear models, 33
sum of 2 normal distributions, 82
survival analysis, 34

Fitting several models simultaneously, 98
Flow cytometry, 299, 504
Fonts, 329

Greek alphabet, 19
Helveticabold, 23
ZapfDingbats, 19

Fresnel integrals, 428, 442
Freundlich isotherm, 469
Friedman test, 169
Ftest (program), 504

Gamma distribution, 424, 426
Gamma function, 426, 442
Gauss pdf function, 430, 442
Gaussian distribution, 420, 467
Gcfit (program), 504

fitting decay curves, 77
fitting growth curves, 74, 359
fitting survival curves, 77
fitting the logistic model, 37
survival analysis, 262

Gear’s method, 457, 458
Generalized linear models, 49, 58
Geometric distribution, 418
Ghostscript, 19, 474

GLM, 49, 58
Gompertz growth, 468
Gompertz survival, 468
Goodness of fit, 34, 35, 58, 62
graphical deconvolution, 83
Graphics

SimFIT character display codes, 377
2D families of curves, 354
3D families of curves, 355
adding extra text, 370
adding logos, 381
advanced bar charts, 344
advanced interface, 17
arbitrary diagrams, 331
arbitrary objects, 332
arrows, 329
aspect ratios and shearing, 336
bar charts, 23, 124, 167, 344
binomial parameter error bars, 188
biplots, 241
bitmaps and chemical equations, 342
box and whisker plots, 124, 167, 343
changing line and symbol types, 369
changing line thickness and plot size, 367

changing PS fonts, 367
changing title and legends, 368
characters outside the keyboard set, 372
clipping, 189, 210, 211, 218
collages, 4–6, 364
contours, 323
correlations and scattergrams, 196
cumulative distributions, 295
cylinder plots, 124
deconvolution, 38, 70
decorative fonts, 372
deleting graphical objects, 368
dendrograms, 206, 209
dilution curves, 360
double plots, 22
editing SimFIT PS files, 366
error bars, 124, 326, 348
extending lines, 327
extrapolation, 68
filled polygons, 332
first time user’s guide, 16
font size, 337
fonts, 328
generating error bars, 349
growth curves, 359
half normal plot, 123
histograms, 295
histograms, pdfs and cdfs, 22, 132
information panels, 361
insets, 359, 365
ISOLatin1Encoding vector, 374
K-means clustering, 213, 218–220
labelling, 221
letter size, 329
line thickness, 329, 337
line types, 326
Log-Odds plot, 188
mathematical equations, 340
models with cross-over points, 356
moving axes, 333
moving labels, 333
multivariate normal plot, 125
normal plot, 123
normal scores, 133
objects, 329
parameter confidence regions, 287
parametric curves, 362
perspective effects, 343
phase portraits, 102
pie charts, 24
plotting sections of 3D surfaces, 96
plotting styles, 330
plotting the objective function, 95
plotting user defined models, 437

530 Index

principal components, 222, 224
probability distributions, 135, 295
projecting onto planes, 352
random walks, 292
range and percentiles plot, 167
rotation and scaling, 335
saving configuration details, 21
scattergrams, 124, 167, 222, 225
scree plot, 222, 225
simple interface, 16
size, shape and clipping, 335
skyscraper plots, 24, 124, 345
special effects, 381
species fractional populations, 67
splitting axes, 338
standard fonts, 371
StandardEncoding vector, 373
stepping over data, 339
stretch-clip-slide, 367
stretching, 189, 210, 211, 218
subsidiary figures as insets, 359
surfaces and contours, 350
surfaces, contours and 3D bar charts, 24
survival analysis, 262
symbol types, 325
SymbolEncoding vector, 375
text, 328
three dimensional bar charts, 345
three dimensional scatter diagrams, 353
three dimensional space curves, 351
time series plot, 123
transforming data, 333
warning about editing PS files, 366
ZapfDingbatEncoding vector, 376
zero centered rod plot, 123

Greek alphabet, 19
Greenhouse-Geisser epsilon, 177
Growth curves, 74, 359
GSview, 19, 474

Half normal plot, 123
Half saturation points, 113
Hanning filter, 246
Hazard function, 253, 419, 424
Heaviside unit function, 430, 442
Helmert matrix, 175
Help (program), 504
Hessian, 58, 59, 62, 79, 95

binding polynomial, 67
Hill equation, 113
Hinges, 122
Histograms, 22, 132, 134, 295
Hlfit (program), 504

fitting a dilution curve, 360

fitting High/Low affinity sites, 65
Hodges-Lehhman location estimator, 287
Hotelling’s)2 test, 126, 175, 177, 224, 230
Hotelling’s generalized)2

0
statistic, 229

Huyn-Feldt epsilon, 177
Hyperbolic and inverse hyperbolic functions, 442
Hypergeometric distribution, 418
Hypergeometric function, 428, 429

IC50, 70, 113

IFAIL, 59
Ill-conditioned problems, 95
Immunoassay, 360
Importing graphs into documents, 500
Importing spreadsheet tables into SimFIT, 485
Importing tables into documents, 491
Impulse functions

periodic, 358, 430
single, 357, 430

Incomplete beta function, 427, 442
Incomplete gamma function, 426, 442
Independent variables, 32
Indicator variables, 55, 201, 202
Indices of diversity, 290
Information panels, 361
Initial conditions, 459
Initial rates, 264
Inrate (program), 504

rates, lags and asymptotes, 264
Insets, 359, 365
Integrated hazard function, 419
Integrating 1 function of 1 variable, 319, 438, 439
Integrating n functions of m variables, 320, 438
Inverse functions, 442
Inverse prediction, 113
IOSTAT, 59
Isoenzymes, 70
Isotope displacement curve, 69, 466, 467

Jacobi elliptic integrals, 429
Jacobian, 433, 457, 458

K-means cluster analysis, 213, 218–220
Kaplan-Meier estimate, 253, 262
Kelvin functions, 429, 442
Kendall coefficient of concordance, 159
Kendall’s tau, 199
Kernel density estimation, 293
Keyboard, 11
Kinetic isotope effect, 69
Kolmogorov-Smirnov 1-sample test,121, 132, 135
Kolmogorov-Smirnov 2-sample test,121, 130, 139

Kronecker delta function, 430, 442
Kruskal-Wallis test, 165
Kummer functions, 428, 442

Index 531

Kurtosis, 122

Labelling statistical graphs, 221
Labels, 508
Lag times, 264, 265, 468
Last in first out, 433
Latent variables, 238
Latin squares, 170, 291

LD50, 55, 77, 113, 187
Legendre polynomials, 429, 442
Levenburg-Marquardt, 59
Levene test, 161
Leverages, 40, 51, 64
Library files, 14, 516
LibreOffice:, 475

Limits of integration, 437
Line thickness, 329
Linear regression, 58
Linfit (program), 504

constructing a calibration curve, 111
multilinear regression, 40

Link functions for GLM, 50
Loadings, 224
Log logistic distribution, 425
Log rank test, 262
Log transform, 164
Log-linear model, 54, 147
Log-Odds plot, 178, 179, 188, 348
Log-Odds-Ratios plot, 55, 183, 186
Logarithmic spiral, 363
Logistic distribution, 425
Logistic equation, 75
Logistic growth, 74, 468, 472, 473
Logistic polynomial regression, 55
Logistic regression, 50, 55, 178, 187
Logit model, 470, 473
Lognormal distribution, 421
Lotka-Volterra, 27, 457
LU factorization of a matrix, 311

M-estimates, 44
Macros for Excel, 487
Mahalanobis distance, 36, 233, 236, 314
Major axis line, 192
Makcsa (program, 300
Makcsa (program), 505
Makdat (program), 505

simulating exact data, 25
simulating the logistic model, 37

Makfil (program), 505
making a curve fitting file, 14
recommended ways to use, 13

Maklib (program), 505
making a library file, 14

Makmat (program), 505
making a matrix/vector file, 15

Maksim (program), 505
transforming data into SimFIT format, 15

Mallows Cp, 40, 65

Manifest variables, 238
Mann-Whitney U test, 121, 130, 140, 289
MANOVA, 125, 177, 228, 421
Mantel-Haenszel log rank test, 253
Matched case control studies, 57
Mathematical constants, 449
Matrix

�G = 1 full rank case, 314
�G = 1 in !1, !2 and !∞ norms, 314
Cholesky factorization, 312
determinant, inverse, eigenvalues, eigenvec-

tors, 309
evaluation of quadratic forms, 314
hat, 40
LU factorization, 311
multiplication, 313
norms and condition numbers, 311
pseudo inverse and rank, 310, 314
QR factorization, 312
singular value decomposition, 309

Mauchly sphericity test, 127, 175
Maximum growth rate, 75, 113
Maximum likelihood, 32, 44, 132, 253
Maximum size, 75, 113
McNemar test, 149
Means, 14

an important principle, 21
warning about fitting means, 58, 59

Median of a sample, 287
Median test, 157
Meta Analysis, 183, 189
Method of moments, 132
Metric scaling, 212
Michaelis pH functions, 469
Michaelis-Menten

equation, 114, 466
pH dependence, 472

Minimizing a function, 322
Minimum growth rate, 75, 113
Missing values, 480
Mmfit (program), 505

fitting isotope displacement kinetics, 69
fitting the multi Michaelis-Menten model, 68

Model discrimination, 35, 64, 79
Model free fitting, 265
Models

log10 law, 471
Adair constants isotope displacement, 467
Adair constants saturation function, 467

532 Index

allometric growth and decay, 106, 466
arctangent, 471
Arrhenius rate constant, 469
beta cdf, 470
beta pdf, 470
binding constants isotope displacement, 467
binding constants saturation function, 467
binding to one site, 468
bivariate normal, 473
Briggs-Haldane, 27
Brittle-Ductile-Transition, 469
Cauchy cdf, 470
Cauchy pdf, 470
competitive inhibition, 472
consecutive irreversible reactions, 460
convolution integral, 99, 462
cooperative ligand binding, 66
cross-over points, 356
damped simple harmonic motion, 455, 471
decay curves, 77
differential equations, 465
diffusion into a capillary, 456, 469, 472
double exponential plus quadratic, 471
double logistic, 471
epidemic differential equations, 107
error tolerances, 437
exponential cdf, 470
exponential growth, 467
exponential pdf, 470
exponentials, 60
Freundlich isotherm, 469
from a dynamic link library, 432
gamma pdf, 470
gamma type, 471
Gaussian plus exponential, 471
Gaussian times exponential, 471
general P-accumulation DE, 465
general S-depletion DE, 465
generalized inhibition, 469
generalized linear, 49
GLM, 49
Gompertz, 74
Gompertz growth, 468
Gompertz survival, 468
growth curves, 74
H/L sites isotope displacement, 466
high/low affinity sites, 65, 466
Hill, 265, 471
inhibition by competing substrate, 472
irreversible MM depletion curve, 469
irreversible MM P-accumulation DE, 465
irreversible MM progress curve, 468
irreversible MM S-depletion DE, 104, 465
isotope displacement, 69

lag phase to steady state, 264, 265, 468
limits of integration, 437
linear plus recprocal, 471
logistic, 37, 74, 75
logistic cdf, 470
logistic growth (1 variable), 468
logistic growth (2 variables), 472
logistic growth (3 variables), 473
logit, 470, 473
lognormal cdf, 470
lognormal pdf, 470
Lotka-Volterra, 27, 102, 457
Maxwell pdf, 470
membrane transport DE, 465
Michaelis pH functions, 469
Michaelis-Menten, 265
Michaelis-Menten pH dependence, 472
Michaelis-Menten plus diffusion, 469
mixed inhibition, 68, 472
Monod-Wyman-Changeux allosterism, 468
monomolecular, 74, 468
Mualen equation, 469
multi Michaelis-Menten, 68, 466
multi MM isotope displacement, 466
multilinear, 40
MWC activator/inhibitor, 473
noncompetitive inhibition, 472
nonparametric, 265
normal cdf, 470
normal pdf, 470
order = : = rational function, 466
ordered bi bi, 472
overdetermined, 147
Pabst-Einstein, 469
parametric, 362, 363
ping pong bi bi, 472
polynomial in one variable, 112, 466
polynomial in three variables, 473
polynomial in two variables, 471
power law, 471
Preece and Baines, 468
probit, 115, 470, 473
progress curve, 265
proportional hazards, 255, 259
quadratic binding, 468
rational function in one variable, 70
rational function in two variables, 472
Rayleigh pdf, 470
Reversible Michaelis-Menten, 472
Richards, 74, 468
saturated, 148
segmented, 356
sine/cosine, 471
sinh/cosh, 471

Index 533

splines, 265, 270
sum of 2 normal cdfs, 470
sum of 2 normal pdfs, 470
sum of exponentials, 467
sum of Gaussians, 38, 467
sum of trigonometric functions, 467
survival, 77, 253
tanh, 471
three lines, 457
time dependent inhibition, 472
transition state rate constant, 469
uncompetitive inhibition, 472
up/down exponential, 471
up/down logistic, 471
upper or lower semicircle, 471
upper or lower semiellipse, 471
user defined, 28, 362, 363, 432
using reverse Polish, 433
using standard expressions, 432
Von Bertalanffy, 74
Von Bertalanffy DE, 26, 105, 466
Weibull cdf, 470
Weibull pdf, 470
Weibull survival, 77, 253, 468

Monod-Wyman-Changeux allosteric model, 468
Monomolecular growth, 468
Mood-David equal dispersion tests, 158
Morse dot wave function, 431, 442
Moving averages, 246
MS Office:, 475

Mualen equation, 469
Multidimensional scaling (MDS), 212
Multinomial distribution, 418
Multiple error bars, 348
Multiple file selection, 12
Multiple statistical tests, 121
Multivariate analysis of variance, 228
Multivariate biplots, 483
Multivariate calibration, 117
Multivariate normal distribution, 125, 421

Multivariate normal plot, 125

NAG library, 1, 11, 60, 97, 502, 521, 523
Nearest neighbors, 205
Negative binomial distribution, 418
NNT number needed to treat, 183, 185

Non-central distributions, 291, 425

Non-metric scaling, 212
Non-seasonal differencing, 246
Nonparametric tests, 156

chi-square, 143
Cochran Q, 151
correlation, 199
Friedman, 169

Kolmogorov-Smirnov 1-sample, 132
Kolmogorov-Smirnov 2-sample, 139
Kruskal-Wallis, 165
Mann-Whitney U, 140
sign, 152
Wilcoxon signed-ranks, 142

Normal (program), 505
Normal distribution, 286, 420

Normal plot, 123
Normal scores, 133
Norms of a vector, 44
Number needed to treat, 184

Objective function, 58, 59, 95
Observed frequencies, 143
Odds, 178, 188
Odds ratios, 55, 183, 189
Offsets, 258
OpenOffice:, 475

Operating characteristic, 277
Optimal design, 301
Optimization, 322, 323
Orbits, 102
Order statistics, 133
Ordinal scaling, 212
Orthomax rotation, 227
Orthonormal contrasts, 175
Osculating hyperbola, 72
Outliers, 27, 58, 59, 287

in regression, 44, 124
Over-dispersion, 134
Overdetermined model, 55, 56, 147

Pabst-Einstein equation, 469
Paired t test, 138
Parameters

confidence contours, 187, 287
confidence limits, 62, 188, 285
correlation matrix, 35
estimable, 41, 50
limits, 508
limits files, 519
redundancy, 58, 155
significant differences between, 36, 287
standard errors, 41, 50, 116, 287
starting estimates, 58, 59, 79, 459, 508
t test and p values, 35

Parametric equations, 362, 363
Parsimax rotation, 227
Partial autocorrelation functions, 246
Partial clustering, 207
Partial correlation, 200
Partial least squares (PLS), 117
Paste, 11

534 Index

Pearson product moment correlation, 190
Percentiles, 55, 187
pH

Michaelis functions, 469
Michaelis-Menten kinetics, 472

Pharmacokinetics, 61, 268
Phase portraits, 102
Pie charts, 24
Pielou evenness, 290
Plotting transformed data, 333
Plotting user defined models, 437
Poisson distribution, 134, 143, 285, 419

Polnom (program), 42, 505
constructing a calibration curve, 111

Polygamma function, 428
Polynomial, 42, 112

Horner’s method, 446
Positive-definite symmetric matrix, 312
Postfix notation, 433
PostScript

SimFIT character display codes, 377
adding extra text, 370
changing line and symbol types, 369
changing line thickness and plot size, 367
changing PS fonts, 367
changing title and legends, 368
characters outside the keyboard set, 372
creating PostScript text files, 378
decorative fonts, 372
deleting graphical objects, 368
driver interface, 19
editing SimFIT PS files, 366
editps text formatting commands, 378
example files, 519
ISOLatin1Encoding vector, 374
specials, 343, 381
standard fonts, 371
StandardEncoding vector, 373
summary, 19
SymbolEncoding vector, 375
user defined dictionary, 329
using program EDITPS, 364
warning about editing PS files, 366
ZapfDingbatEncoding vector, 376

Power and sample size, 276, 282
1 binomial sample, 278
1 correlation, 283
1 normal sample, 279
1 variance, 283
2 binomial samples, 279
2 correlations, 283
2 normal samples, 280
2 variances, 283
chi-square test, 284

Fisher exact test, 279
k normal samples (ANOVA), 281

Predator-prey equations, 457
Preece and Baines, 74, 468
Presentation graphics, 343
Principal components analysis, 222, 223, 353
Principal coordinates, 212
Probit analysis, 187
Probit model, 470, 473
Procrustes analysis, 226
Profile analysis, 232
Progress curve, 265, 468, 469
Project archives, 12, 36
Projecting space curves onto planes, 352
Propagation of errors, 78, 116
Proportional hazards model, 55, 255, 259
Pseudo inverse and rank of a matrix, 310, 314
PSfrag, 328, 340, 474
Psi function, 428, 442

Qnfit (program), 505
advanced curve fitting, 79
calculating error bars, 349
calibration, 113
estimating AUC, 113
estimating derivatives, 113
fitting 2 normal distributions, 82
fitting a beta distribution, 86
fitting a sum of Gaussians, 79
graphical deconvolution, 38
numerical deconvolution, 99

QR factorization of a matrix, 312
Quadratic binding model, 468
Quadratic forms, 314
Quadrature, 319, 437–439
Qualitative variables, 29, 32, 55
Quantal data, 50
Quantitative structure activity relationships (QSAR),

117
Quantitative variables, 29
Quartiles, 122
Quartimax rotation, 227
Quasi-Newton, 59, 79, 322

R-squared test, 36, 40
Random walks, 292
Randomized block, 151
Range and percentiles plots, 167
Rank deficiency, 50
Rannum (program), 505

random permutations and Latin squares, 291
random walks, 292

Rate constants, 469
Rational functions, 70

Index 535

Rectified sine half-wave function, 442
Rectified sine wave function, 431, 442
Rectified triangular wave function, 431, 442
Reduced major axis line, 192
Regression

!1 norm, 44
!2 norm, 44
!∞ norm, 44
binary logistic, 55
comparing parameter estimates, 36
Cox, 253, 259
generalized linear, 49, 58, 178
linear, 58
logistic, 50, 55, 178
logistic polynomial, 55
multilinear, 40
nonlinear, 34, 58, 59
on ranks, 47
orthogonal, 41
reduced major and major axis, 41, 192
robust, 44

Relaxation times, 265
Repeated-measurements design, 151, 175, 232
Replicates, 14, 21

warning about fitting means, 21, 58, 59
Residuals, 35, 51, 58, 59, 62, 154

deviance, 64
studentized, 40, 64

Reverse Polish, 433
Rffit (program), 505

fitting positive rational functions, 70
Richards growth model, 468
Robust parameter estimates, 287, 289
Robust regression, 44
Roots of a polynomial of degree n - 1, 308
Roots of equations, 26, 317, 437–439
Rosenbrock’s function, 323
Rotating graphs, 335
Rstest (program), 506

nonparametric tests, 156
Run test, 35, 36, 153

Run5 (program), 506
Running medians, 246
Runs up or down test for randomness, 156

Sample size, 282
Saturated model, 148
Sawtooth graph, 332
Sawtooth wave function, 431, 442
Scalable vector graphics (SVG), 383
Scalar product, 449
Scaling

classical metric, 212
non-metric (ordinal), 212

Scatchard plot, 21
warning about uncritical use, 71

Scattergrams, 124, 167, 196, 222, 225
Schwarz Bayesian criterion, 64
Scores, 224
Scree plot, 202, 222, 225

Seasonal differencing, 246
Segmented models, 356
Sensitivity analysis, 25
Sffit (program), 506

cooperativity analysis, 67
fitting cooperative ligand binding, 66

Shannon diversity index, 290
Shapiro-Wilks test, 36, 123, 133, 137
Sigmoid curve, 72
Sigmoidicity, 73
Sign test, 35, 36, 152

Signal-to-noise ratio, 276
Simfit

character display codes, 377
configuration files, 520
data files, 506
default files, 520
dynamic link libraries, 502
error message files, 519
error messages, 59
file format, 13, 15
goodness of fit statistics, 34
library files, 516
model files in reverse Polish, 516
model files using expressions, 517
Open . . . , 10
parameter limits files, 519
Save As . . . , 10
saving results, 9
starting estimates, 58, 59
temporary files, 520
test files, 10, 511
the main menu, 7

Similarity matrix, 204
Simplot (program), 506

creating a simple graph, 21
Simpson’s rule, 438, 439
Simstat (program), 506

1-sample t test, 130
1-way ANOVA and Kruskal-Wallis, 164
2-way-ANOVA and Friedman, 169
3-way ANOVA and Latin squares, 170
all possible pairwise tests, 130
analysis of proportions, 178
Bartlett and Levene tests, 161
binomial test, 152
chi-square and Fisher exact tests, 143
Cochran Q test, 151

536 Index

Cochran-Mantel-Haenszel test, 183
constructing a calibration curve, 111
cooperativity analysis, 67
data exploration, 122
determinant, inverse, eigenvalues, eigenvec-

tors, 309
exhaustive analysis of a multivariate normal

matrix, 125
exhaustive analysis of an arbitrary matrix,124
exhaustive analysis of an arbitrary vector, 122
F test, 155
factorial ANOVA, 173
Fisher exact Poisson test, 134
groups and subgroups ANOVA, 171
Kolmogorov-Smirnov 1-sample test, 132
Kolmogorov-Smirnov 2-sample test, 139
lags and autocorrelations, 246
Mann-Whitney U test, 140
McNemar test, 149
non-central distributions, 291
nonparametric correlation, 199
paired t test, 138
parameter confidence limits, 285
Pearson correlation, 190
power and sample size, 276, 282
pseudo inverse and rank, 310
random permutations and Latin squares, 291
run test, 153
Shapiro-Wilks test, 133
sign test, 152
singular value decomposition, 309
solving �G = 1, 314
statistical tests, 130
t and variance ratio tests, 136
trinomial confidence regions, 187
Tukey Q test, 166
Wilcoxon signed-ranks test, 142
zeros of a polynomial, 308

Simulation
2-dimensional families of curves, 354
3-dimensional families of curves, 355
adding error, 27
differential equations, 27
experimental error, 27
plotting parametric equations, 362, 363
plotting user defined models, 437
summary, 25

Sine integral, 427, 442
Singular value decomposition, 41, 309
Skewness, 122
Skyscraper plots, 24, 124, 347
Slanting error bars, 348
Slopes, 264
Space curves, 351

Spearman’s rank, 199
Special functions, 426, 442
Species fractional saturation, 67
Species fractions, 67
Speedup options, 9
Spence integral, 427, 442
Sphericity test, 127, 175
Spline (program), 506
Splines, 112, 265, 270

Spreadsheet, 15
Spreadsheet tables, 482
Square root transformation, 164
Square wave function, 431, 442
Standard distributions, 291
Starting estimates, 79, 459, 508
Statistics

analysis of proportions, 178
ANOVA 1-way, 164
ANOVA 2-way, 169
ANOVA 3-way, 170
Bartlett and Levene tests, 161
binomial test, 152
Bonferroni correction, 122
canonical variates, 233
chi-square test, 35, 143, 226
chi-square test on observed and expected fre-

quencies, 143
cluster analysis, 204, 213
Cochran Q test, 151
Cochran-Mantel-Haenszel test, 183
correlation (canonical), 202
correlation (nonparametric), 199
correlation (parametric), 190
correlation(partial), 200
distribution from nonlinear regression, 34
Dunn-Sidak correction, 122
Durbin-Watson test, 36
F test, 35, 155
Fisher exact Poisson test, 134
Fisher exact test, 143
Friedman test, 169
groups and subgroups ANOVA, 171
K-means cluster analysis, 213
Kolmogorov-Smirnov1-sample test,121, 132,

135
Kolmogorov-Smirnov2-sample test,121, 139
Kruskal-Wallis test, 165
Latin squares, 170
log rank test, 262
Mann-Whitney U test, 121, 140
MANOVA, 228
Mantel-Haenszel log rank test, 253
Mantel-Haenszel test, 262
McNemar test, 149

Index 537

Meta Analysis, 183
multiple tests, 121
multivariate cluster analysis, 204
non-central distributions, 291, 425
performing tests, 121
plotting cdfs and pdfs, 135, 295
power and sample size, 276, 282
principal components analysis, 222, 223
R-squared test, 36
run test, 35, 36, 153
Shapiro-Wilks test, 36
sign test, 35, 36, 152
standard distributions, 291
summary, 121
t test, 35, 130, 136
trinomial confidence regions, 187
Tukey Q test, 122, 166
variance ratio test, 136, 283
Wilcoxon rank-sum test, 140
Wilcoxon signed-ranks test, 142
Yates’s correction to chi-square, 143

Steady states, 264, 468
Strata, 57
Stretching graphs, 189, 210, 211, 218
Struve functions, 428, 442
Studentized residuals, 40
Substrate activation, 68, 70
Substrate inhibition, 68, 70, 72
Sum of squares and products matrix, 191
Surfaces, 24, 350
Survival analysis, 253, 262

fitting survival curves, 74
general principles, 34
statistical theory, 419
using generalized linear models, 55, 257

Survivor function, 253, 419

SVD, 41, 50, 224, 309
SVG: creating collages, 405
SVG: differential scaling, 411
SVG: editing using Notepad, 399
SVG: importing LATEX chemical formulas, 390
SVG: importing LATEX maths equations, 387
SVG: importing SVG files into SVG files, 393
SVG: Introduction, 383
SVG: Using LaTeX to label SVG H axes, 396
Swap-over points, 356
Sylvester dialytic eliminants, 72
Symmetric eigenvalue problem, 316

t distribution, 422
t test, 35, 129, 130, 136, 279, 280

1-sample, 130
2-sample paired, 138
2-sample unpaired, 136

T4253H smoother, 246
Temporary files, 520
Test and data files

auxiliary files, 509
configuration files, 520
Data, 511
default files, 520
error message files, 519
graphics configuration and metafiles, 519
library files, 516
miscellaneous data files, 518
models in reverse Polish, 516
models using expressions, 517
NAG library related files, 521
parameter limits files, 519
PostScript examples files, 519
temporary files, 520

Test files, 15, 511
Text formatting commands, 378
The law of =, 276
Theoretical parent hyperbola, 72
Three dimensional bar charts, 24, 345
Three dimensional scatter diagrams, 353
Three dimensional space curves, 351
Time at half survival, 253
Time series, 246, 249

plot, 123
Time to half maximum response, 61, 75, 77, 78
Training sets, 236
Trapezoidal method, 269
Trigamma function, 428, 442
Trigonometric functions, 467
Trimmed mean, 287
Trinomial confidence regions, 187, 286
Ttest (program), 506
Tukey Q test, 122, 166
Type 1 error, 121

Under-dispersion, 134
Uniform distribution, 420
Unit impulse function, 430, 442
Unit impulse wave function, 442
Unit spike function, 430, 442
Unpaired t test, 136
Usermod (program), 506

calling special functions, 442
calling sub-models, 438
checking user defined models, 433
developing models, 316
integrating a user defined model, 319, 438,

439
minimizing a function, 322
plotting user defined models, 433, 437
simulating 2D families of curves, 354

538 Index

simulating 3D families of curves, 355
simulating parametric equations, 362, 363
simulating projections, 352
zeros of n functions of n variables, 438, 439
zeros of user defined models, 317, 438

Variables
categorical, 32, 52
dummmy, 32
independent, 32
qualitative, 32
quantitative, 32

Variance, 27, 35, 282
stabilizing transformations, 163
tests for homogeneity, 161

Variance ratio test, 136, 283
Varimax rotation, 227
Vector norms, 44, 448
Venn diagrams, 331

Wave functions, 358, 430

Weibull distribution, 424
Weibull survival, 55, 253, 258, 468
Weighting, 29, 40, 59, 77
Welch’s approximate t, 422
Wilcoxon rank-sum test, 140
Wilcoxon signed-ranks test, 142, 287
Winsorized mean, 287
WSSQ, 34, 35, 58, 95

Yates’s correction to chi-square, 143

ZapfDingbats, 19, 376
Zero centered rods plot, 123
Zeros of a polynomial of degree n - 1, 308
Zeros of n functions of n variables, 308, 318, 433,

437–439
Zeros of nonlinear equations, 26, 317, 438, 439

	Cover
	Contents
	List of tables
	List of Figures
	INTRODUCTION
	Overview
	Installation
	Documentation
	Plotting
	Collage 1
	Collage 2
	Collage 3

	First time user's guide
	The main menu
	The task bar
	The file selection control
	Multiple file selection
	The project archive technique
	Checking and archiving project files

	First time user's guide to data handling
	The format for input data files
	File extensions and folders
	Advice concerning data files
	Advice concerning curve fitting files
	Example 1: Making a curve fitting file
	Example 2: Editing a curve fitting file
	Example 3: Making a library file
	Example 4: Making a vector/matrix file
	Example 5: Editing a vector/matrix file
	Example 6: Saving data-base/spread-sheet tables to files

	First time user's guide to graph plotting
	The Simfit simple graphical interface
	The Simfit advanced graphical interface
	PostScript, GSview and Simfit
	Example 1: Creating a simple graph
	Example 2: Error bars
	Example 3: Histograms and cumulative distributions
	Example 4: Double graphs with two scales
	Example 5: Bar charts
	Example 6: Pie charts
	Example 7: Surfaces, contours and 3D bar charts

	First time user's guide to simulation
	Why fit simulated data ?
	Programs makdat and adderr
	Example 1: Simulating y = f(x)
	Example 2: Simulating z = f(x,y)
	Example 3: Simulating experimental error
	Example 4: Simulating differential equations
	Example 5: Simulating user-defined equations

	DATA ANALYSIS
	Data analysis techniques
	Introduction
	Weighting
	Arbitrary weights
	Replicate weights
	Curve fitting weights

	Principles involved when fitting models to data
	Limitations when fitting models
	Fitting linear models
	Fitting generalized linear models
	Fitting nonlinear models
	Fitting survival models

	Goodness of fit
	The chi-square test for goodness of fit
	The t test for parameter redundancy
	The F test for model discrimination
	Analysis of residuals
	How good is the fit ?

	Testing for differences between two parameter estimates
	Testing for differences between several parameter estimates
	Graphical deconvolution of complex models

	Linear models
	Introduction
	Linear regression
	Polynomial regression
	Robust regression
	Regression on ranks

	Generalized linear models (GLM)
	Introduction
	GLM examples
	The Simfit simplified Generalized Linear Models interface
	Logistic regression
	Conditional binary logistic regression with stratified data

	Nonlinear models: Simple fitting
	Introduction
	User friendly curve fitting programs
	IFAIL and IOSTAT error messages

	Exponential functions
	How to interpret parameter estimates
	How to interpret goodness of fit
	How to interpret model discrimination results
	High/low affinity ligand binding sites
	Cooperative ligand binding
	Cooperativity analysis
	Ligand binding species fractions
	Michaelis-Menten kinetics
	Extrapolating Michaelis-Menten kinetics

	Isotope displacement kinetics
	Positive rational functions
	Plotting positive rational functions
	Scatchard plots
	Semi-log plots
	Asymptotic forms
	Sigmoidicity

	Nonlinear growth curves
	Nonlinear survival curves
	Nonlinear decay curves
	Accuracy of growth/decay/survival parameter estimates

	Nonlinear models: Advanced fitting
	Fitting a function of one variable using qnfit
	Fitting a mixture of two normal distributions
	Fitting histogram data
	Fitting a cumulative frequency

	Fitting a beta distribution to a sample of observations
	Generating random samples
	Parameter estimation for statistical distributions
	Preparing samples of observations for curve fitting
	Fitting a beta pdf
	Fitting a beta cdf
	Plotting a combined graph
	Practical issues

	Plotting the objective function using qnfit
	Plotting best-fit surfaces using qnfit
	Fitting functions of several variables using qnfit
	Fitting multi-function models using qnfit
	Fitting a convolution integral using qnfit

	Differential equations
	Introduction
	Phase portraits of plane autonomous systems
	Orbits of differential equations
	Fitting differential equations
	Fitting a single differential equation using qnfit
	Michaelis-Menten irreversible substrate depletion
	Von Bertalanffy allometric growth model
	Von Bertalanffy allometric growth and decay model

	Fitting systems of differential equations using deqsol

	Calibration and Bioassay
	Introduction
	Calibration curves
	Turning points in calibration curves
	Calibration using polnom
	Calibration using calcurve
	Calibration using qnfit

	Dose response curves, EC50, IC50, ED50, and LD50
	95% confidence regions in inverse prediction
	Partial Least Squares (PLS)

	Statistical analysis
	Introduction
	Statistical tests
	Multiple tests

	Data exploration
	Exhaustive analysis: arbitrary vector
	Exhaustive analysis: arbitrary matrix
	Exhaustive analysis: multivariate normal matrix
	t tests on groups across rows of a matrix
	Nonparametric tests across rows of a matrix
	All possible pairwise tests (n vectors or a library file)

	Tests
	1-sample t test
	1-sample Kolmogorov-Smirnov test
	1-sample Shapiro-Wilks test for normality
	1-sample Dispersion and Fisher exact Poisson tests
	Goodness of fit to a Poisson distribution
	2-sample unpaired t and variance ratio tests
	2-sample paired t test
	2-sample Kolmogorov-Smirnov test
	2-sample Wilcoxon-Mann-Whitney U test
	2-sample Wilcoxon signed-ranks test
	Chi-square test on observed and expected frequencies
	Chi-square, Fisher-exact, and loglinear contingency table tests
	The chi-square contingency table test
	The Fisher exact contingency table test
	The loglinear contingency table test

	McNemar test
	Cochran Q repeated measures test on a matrix of 0,1 values
	The binomial test
	The sign test
	The run test
	The F test for excess variance
	Nonparametric tests using rstest
	Runs up or down test for randomness
	Median test
	Mood's test and David's test for equal dispersion
	Kendall coefficient of concordance

	Analysis of variance
	Introduction
	Variance homogeneity tests (n samples or library file)
	Variance stabilizing transformations
	Angular transformation
	Square root transformation
	Log transformation

	1-way and Kruskal-Wallis (n samples or library file)
	Tukey Q test (n samples or library file)
	Plotting 1-way data
	2-way and the Friedman test (one matrix)
	3-way and Latin Square design (one matrix)
	Groups and subgroups (one matrix)
	Factorial design (one matrix)
	Repeated measures (one matrix)

	Analysis of proportions
	Introduction
	Dichotomous data
	Binomial parameter confidence limits
	Differences between binomial parameter estimates
	Confidence limits for analysis of two proportions

	Meta analysis
	Bioassay, estimating percentiles
	Trichotomous data
	Plotting binomial error bars
	Plotting Log-Odds error bars
	Plotting meta analysis error bars

	Multivariate statistics
	Introduction
	Correlation: parametric (Pearson product moment)
	Plotting lines on correlation diagrams
	Ordinary least squares
	The major axis line
	The reduced major axis line
	Plotting scattergrams, clusters, and connections

	Plotting bivariate confidence ellipses: basic theory
	Plotting bivariate confidence ellipses: regions

	Correlation: nonparametric (Kendall tau and Spearman rank)
	Correlation: partial
	Correlation: canonical
	Cluster analysis: calculating a distance matrix
	Cluster analysis: nearest neighbors
	Cluster analysis: dendrograms
	Plotting dendrograms: standard format
	Plotting dendrograms: stretched format
	Plotting dendrograms: subgroups

	Cluster analysis: classical metric scaling, MDS
	Cluster analysis: non-metric (ordinal) scaling
	Cluster analysis: K-means clustering
	Plotting K-Means clusters: UK airports
	Plotting K-Means clusters: highlighting centroids
	Plotting K-Means clusters: variables or scores

	Labeling multivariate plots
	Adjusting multivariate plot labels
	Principal components analysis
	Procrustes analysis
	Varimax and Quartimax rotation
	Multivariate analysis of variance (MANOVA)
	Comparing groups: canonical variates (discriminant functions)
	Comparing groups: Mahalanobis distances (discriminant analysis)
	Comparing groups: Assigning new observations
	Plotting training sets and assigned observations

	Factor analysis
	Biplots

	Time series
	Introduction
	Time series data smoothing
	Time series lags and autocorrelations
	Autoregressive integrated moving average models (ARIMA)
	Auto- and cross-correlation matrices

	Survival analysis
	Introduction
	Fitting one set of survival times
	Comparing two sets of survival times
	Survival analysis using generalized linear models
	The exponential survival model
	The Weibull survival model
	The extreme value survival model
	The Cox proportional hazards model

	Comprehensive Cox regression
	Plotting censored survival data

	Areas, slopes, lag times and asymptotes
	Introduction
	Models used by program inrate
	Estimating initial rates using inrate
	Lag times and steady states using inrate

	Model-free fitting using compare
	Estimating averages and AUC using deterministic equations
	Estimating AUC using average

	Spline smoothing
	Introduction
	User-defined fixed knots
	Automatically calculated knots
	In between knots: rho input
	In between knots: rho by generalized cross validation
	Using splines
	Advice on which type of spline to use

	Statistical calculations
	Introduction
	Statistical power and sample size
	Power calculations for 1 binomial sample
	Power calculations for 2 binomial samples
	Power calculations for 1 normal sample
	Power calculations for 2 normal samples
	Power calculations for k normal samples
	Plotting power as a function of sample size

	Power calculations for 1 and 2 variances
	Power calculations for 1 and 2 correlations
	Power calculations for a chi-square test

	Parameter confidence limits
	Confidence limits for a Poisson parameter
	Confidence limits for a binomial parameter
	Confidence limits for a normal mean and variance
	Confidence limits for a correlation coefficient
	Confidence limits for trinomial parameters
	Plotting trinomial parameter joint confidence regions

	Robust analysis of one sample
	Robust analysis of two samples
	Indices of diversity
	Standard and non-central distributions
	Generating random numbers, permutations and Latin squares
	Plotting random walks

	Kernel density estimation
	Fitting probability distributions
	Fitting a mixture of two normal distributions
	Fitting flow cytometry histograms
	Optimal design for model discrimination
	False discovery rates FDR(BH)
	Example 1: FDR(BH) for a vector of p values
	The systematic FDR(BH) procedure
	Example 2: FDR(BH) for a matrix of p values

	Numerical analysis
	Introduction
	Zeros of a polynomial of degree n - 1
	Determinants, inverses, eigenvalues, and eigenvectors
	Singular value decomposition
	Pseudo inverse and rank of a matrix
	LU factorization of a matrix, norms and condition numbers
	QR factorization of a matrix
	Cholesky factorization of a positive-definite symmetric matrix
	Matrix multiplication
	Evaluation of quadratic forms
	Solving Ax = b (full rank)
	Solving Ax = b; L1,L2,L-infinity norms
	The symmetric eigenvalue problem
	User-defined models
	Locating a zero of one function of one variable
	Locating zeros of n functions of n variables
	Integrating one function of one variable
	Integrating n functions of m variables
	Bound-constrained quasi-Newton optimization
	Plotting contours for Rosenbrock optimization trajectory

	GRAPHICS
	Graph plotting techniques
	Graphical objects and plotting styles
	Symbols
	Lines: standard types
	Lines: extending to boundaries
	Text
	Fonts, character sizes and line thicknesses
	Arrows
	Basic plotting styles
	Example of plotting without data: Venn diagram
	Polygons

	Sizes and shapes
	Alternative axes and labels
	Transformed data
	Alternative sizes, shapes and clipping
	Rotated and re-scaled graphs
	Changed aspect ratios and shear transformations
	Reduced or enlarged graphs
	Split axes
	Stepping over intermediate data points

	Equations
	Maths
	Chemical Formulæ
	Composite graphs

	Bar charts and pie charts
	Perspective effects
	Advanced barcharts
	Three dimensional barcharts

	Error bars
	Error bars with barcharts
	Error bars with skyscraper and cylinder plots
	Slanting and multiple error bars
	Calculating error bars interactively

	Three dimensional plotting
	Surfaces and contours
	Three dimensional space curves
	Projecting space curves onto planes
	Three dimensional scatter diagrams
	Two dimensional families of curves
	Three dimensional families of curves

	Specialized techniques
	Segmented models with cross-over points
	Plotting single impulse functions
	Plotting periodic impulse functions
	Subsidiary figures as insets
	Nonlinear growth curves
	Immunoassay and dose-response dilution curves
	Information panels

	Parametric curves
	r = r(theta) parametric plot 1: Eight leaved rose
	r = r(theta) parametric plot 2: Logarithmic spiral with tangent

	PostScript procedures
	Encapsulated PostScript files
	Using editps to manipulate PostScript files
	Editing Simfit Postscript files
	Rotating, re-sizing, and changing aspect ratios.
	Creating simple collages
	Creating freestyle collages
	Creating insets
	Creating split graphs

	The format of Simfit PostScript files
	Advice about editing PostScript files
	The percent-hash escape sequence
	Changing line thickness and plot size
	Changing PostScript fonts
	Changing title and legends
	Deleting graphical objects
	Changing line and symbol types
	Adding extra text
	Changing colors

	Standard fonts
	Decorative fonts
	Plotting characters outside the keyboard set
	The StandardEncoding Vector
	The ISOLatin1Encoding Vector
	The SymbolEncoding Vector
	The ZapfDingbatsEncoding Vector

	Simfit character display codes
	editps text formatting commands
	Special text formatting commands, e.g. left
	Coordinate text formatting commands, e.g. raise
	Currency text formatting commands, e.g. dollar
	Maths text formatting commands, e.g. divide
	Scientific units text formatting commands, e.g. Angstrom
	Font text formatting commands, e.g. roman
	Poor man's bold text formatting command, e.g. pmb?
	Punctuation text formatting commands, e.g. dagger
	Letters and accents text formatting commands, e.g. Aacute
	Greek text formatting commands, e.g. alpha
	Line and Symbol text formatting commands, e.g. ce
	Examples of text formatting commands

	PostScript specials
	What specials can do
	The technique for defining specials
	Examples of PostScript specials

	Scalable vector graphics (SVG)
	SVG: introduction
	Bitmaps
	Vector graphics
	Bogus vector files
	Using SVG files in Simfit
	Editing SVG files in Simfit
	Using LaTeX
	Important differences between EPS and SVG files

	SVG: Importing LaTeX maths equations
	The TEX source
	Creating the plot file
	Joining the SVG files using EditSVG
	Summary of files described in this section

	SVG: Importing LaTeX chemical formulas
	The TEX source
	Creating the plot file
	Joining the SVG files using EditSVG
	Summary of files used in this section

	SVG: Importing SVG files into SVG files
	Fitting exponential functions
	Creating the log transform
	Joining the SVG files using EditSVG
	Summary of files used in this section

	SVG: Using LaTeX to label SVG y axes
	The beta probability density function
	The LaTeX source
	Creating the plot file
	Joining the SVG files using EditSVG
	Summary

	SVG: Editing using text editors, e.g., Notepad
	Titles and Legends
	Lines and Curves
	Character Strings and Fonts

	SVG: Creating collages
	Collage 1: Miscellaneous LaTeX examples
	Collage 2: LaTeX maths
	Collage 3: LaTeX chemistry
	Collage 4: Tutorial examples
	Collage 5: Differential scaling to create ribbon graphs

	SVG: Differential scaling examples
	A normal dendrogram
	A crowded dendrogram
	An extremely crowded plot

	APPENDICES
	Distributions and special functions
	Discrete distribution functions
	Bernoulli distribution
	Binomial distribution
	Multinomial distribution
	Geometric distribution
	Negative binomial distribution
	Hypergeometric distribution
	Poisson distribution

	Continuous distributions
	Uniform distribution
	Normal (or Gaussian) distribution
	Example 1. Sums of normal variables
	Example 2. Convergence of a binomial to a normal distribution
	Example 3. Distribution of a normal sample mean and variance
	Example 4. The central limit theorem

	Lognormal distribution
	Bivariate normal distribution
	Multivariate normal distribution
	t distribution
	Cauchy distribution
	Chi-square distribution
	F distribution
	Exponential distribution
	Beta distribution
	Gamma distribution
	Weibull distribution
	Logistic distribution
	Log logistic distribution

	Non-central distributions
	Non-central beta distribution
	Non-central chi-square distribution
	Non-central F distribution
	Non-central t distribution

	Special functions
	Binomial coefficient
	Gamma and incomplete gamma functions
	Beta and incomplete beta functions
	Exponential integrals
	Sine and cosine integrals and Euler's gamma
	Fermi-Dirac integrals
	Debye functions
	Clausen integral
	Spence integral
	Dawson integral
	Fresnel integrals
	Polygamma functions
	Struve functions
	Kummer confluent hypergeometric functions
	Abramovitz functions
	Legendre polynomials
	Bessel, Kelvin, and Airy functions
	Elliptic integrals
	Single impulse functions
	Heaviside unit function
	Kronecker delta function
	Unit impulse function
	Unit spike function
	Gauss pdf

	Periodic impulse functions
	Square wave function
	Rectified triangular wave
	Morse dot wave function
	Sawtooth wave function
	Rectified sine wave function
	Rectified sine half-wave function
	Unit impulse wave function

	User defined models
	Supplying models as a dynamic link library
	Supplying models using standard mathematical notation
	Supplying models as ASCII text files
	Formatting conventions for user defined models
	Table of user-defined model commands
	Table of synonyms for user-defined model commands
	Error handling in user defined models
	Notation for functions of more than three variables
	The commands put(.) and get(.)
	The command get3(.,.,.)
	The commands epsabs and epsrel
	The commands blim(.) and tlim(.)

	Plotting user defined models
	Finding zeros of user defined models
	Finding zeros of n functions in n variables
	Integrating 1 function of 1 variable
	Integrating n functions of m variables
	Calling sub-models from user-defined models
	The command putpar
	The command value(.)
	The command quad(.)
	The command convolute(.,.)
	The command root(.)
	The command value3(.,.,.)
	The command order
	The command middle
	The syntax for subsidiary models
	Rules for using sub-models
	Nesting subsidiary models
	IFAIL values for D01AJF, D01AEF and C05AZF
	Test files illustrating how to call sub-models

	Calling special functions from user-defined models
	Table of special function commands
	Using the command middle with special functions
	Special functions with one argument
	Special functions with two arguments
	Special functions with three or more arguments
	Test files illustrating how to call special functions

	Operations with scalars and vectors
	The command store(j)
	The command storef(file)
	The command poly(x,m,n)
	The command cheby(x,m,n)
	The commands l1norm(m,n), l2norm(m,n) and linorm(m,n)
	The commands sum(m,n) and ssq(m,n)
	The command dotprod(l,m,n)
	Commands to use mathematical constants

	Integer functions
	Logical functions
	Conditional execution
	Arbitrary functions with arbitrary arguments

	Examples using standard mathematical expressions
	Test file usermod1_e.tf1: 1 function of 1 variable
	Test file line3_e.mod: 3 functions of 1 variable
	Test file e04fyf_e.mod: 1 function of 3 variables
	Test file d01fcf_e.mod: 1 function of 4 variables
	Test file optimum_e.mod: 3 functions of 2 variables
	Test file d01eaf_e.mod: 10 functions of 4 variables
	Test file c05nbf_e.mod: 9 functions of 9 variables
	Test file deqmod2_e.tf2: 2 differential equations

	Examples of user-defined models in reverse Polish notation
	Example 1: a straight line
	Example 2: damped simple harmonic motion
	Example 3: diffusion into a capillary
	Example 4: defining three models at the same time
	Example 5: Lotka-Volterra predator-prey differential equations
	Example 6: supplying initial conditions
	Example 7: transforming differential equations
	Example 8: consecutive irreversible chemical reactions
	Example 9: evaluating a convolution integral

	Library of models
	Mathematical models [Library: Version 2.0]
	Functions of one variable
	Differential equations
	Systems of differential equations
	Special models
	Biological models
	Biochemical models
	Chemical models
	Physical models
	Statistical models
	Empirical models
	Mathematical models

	Functions of two variables
	Polynomials
	Rational functions:
	Enzyme kinetics
	Biological
	Physical
	Statistical

	Functions of three variables
	Polynomials
	Enzyme kinetics
	Biological
	Statistics

	Auxiliary programs
	Recommended software
	Ghostscript
	GSview
	The interface between Simfit, LaTeX , and Dvips
	Simfit, Microsoft Office, and OpenOffice

	MS_Office, OpenOffice, and LibreOffice
	The easy way to import data into Simfit
	Creating a pie chart
	Creating a bar chart

	Definitions
	Data tables
	Labeled data tables
	Missing values
	Simfit data files
	Simfit data files with labels
	Clipboard data
	Files exported from spreadsheet programs

	Spreadsheet tables
	Using the clipboard to transfer data into Simfit
	Pasting data from the clipboard directly into Simfit
	Converting data from the clipboard into a Simfit file

	Using spreadsheet output files to transfer data into Simfit
	Space-delimited text files (.txt)
	Comma-delimited text files (.csv with standard Excel setup)
	Semicolon-delimited text files (.csv with continental Excel setup)
	Tab-delimited files (.txt)
	Unicode (.txt)
	Web documents (.xml, .html, .htm, .mht, .mhtml)

	Exporting Simfit data files from Excel
	Using simfit4.xls with Excel to create Simfit data files
	Using simfit6.xls with Excel to create transformed Simfit data files
	Invoking the simfit6.xls macro
	Step 1: Open the simfit6.xls workbook
	Step 2: Select the data table within the user’s workbook
	Step 3: Invoke the simfit6.xls macro
	Using the simfit6.xls macro
	Filling empty cells found in the data table
	Validation Checks Completed
	Performing transformations of the data table
	Transposing the Simfit table
	Inspecting and saving the modified worksheet
	The History Log
	Processing very large data tables

	Importing Simfit results tables into documents and spreadsheets
	Simfit results files
	Preliminary analysis
	The procedure
	Example 1
	Example 2
	Example 3
	Summary

	Printing and importing Simfit graphs into documents
	Graphics hardcopy
	Bitmaps and compressed bitmaps
	Enhanced metafiles (.emf)
	Scalable vector graphics (.svg)

	PostScript graphics files (.eps)
	Ghostscript generated files
	Portable Document graphics files (.pdf)
	Portable network graphics files (.png)

	Using Encapsulated PostScript (.eps) files directly

	The Simfit package
	Simfit program files
	Dynamic Link Libraries
	Executables

	Simfit data files
	Example 1: a vector
	Example 2: a matrix
	Example 3: an integer matrix
	Example 4: appending labels
	Example 5: using begin ... end to add labels
	Example 6: various uses of begin ... end
	Example 7: starting estimates and parameter limits

	Simfit auxiliary files
	Test files (Data)
	Library files (Data)
	Test files (Models in reverse Polish)
	Test files (Models using expressions)
	Miscellaneous data files
	Graphics configuration and metafiles
	Parameter limits files
	Error message files
	PostScript example files
	Simfit configuration files
	Default files
	Temporary files
	NAG library files (contents of list.nag)

	Acknowledgements

	INDEX

